
2006-797: REAL TIME SYSTEMS LABORATORY DEVELOPMENT:
EXPERIMENTS FOCUSING ON A DUAL CORE PROCESSOR

Mukul Shirvaikar, University of Texas-Tyler
MUKUL SHIRVAIKAR received the Ph.D. degree in Electrical and Computer Engineering from
the University of Tennessee in 1993. He is currently an Associate Professor of Electrical
Engineering at the University of Texas at Tyler. He has also held positions at Texas Instruments
and the University of West Florida. His research interests include real-time imaging, embedded
systems and pattern recognition.

Mark Humphries, University of Texas-Tyler
MARK HUMPHRIES received his Master’s in Electrical Engineering in 2005 from the
University of Texas at Tyler, and is a practicing engineer at General Dynamics Inc. in Longview,
Texas. He developed real-time systems labs for the OMAP platform. His interests include
real-time imaging, open source software and spatial geometry optimization algorithms for
multi-faceted cubes.

Leonardo Estevez, Texas Instruments Inc.
LEONARDO ESTEVEZ received the Ph.D. degree in Electrical and Computer Engineering from
Texas A & M University in 1997. He is currently the OMAP Software Architecture and
Requirements Manager at Texas Instruments. He has many national engineering awards including
SHPE in 2001 and the HENAAC “Most Promising Engineer” award in 2002. He is an Associate
Editor for the Journal of Real Time Imaging.

© American Society for Engineering Education, 2006

P
age 11.1064.1

Real Time Systems Laboratory Development:

Experiments Focusing on a Dual Core Processor

Abstract

This paper presents the laboratory curriculum developed for a senior-level elective course in

Real Time Systems. The labs developed for this semester long course are aimed at providing a

challenging experience to electrical and computer engineering students and exposing them to

state-of-the-art tools from industry. The projects were developed on the OMAP 5912 starter kit

module supplied by Texas Instruments (TI). The open multimedia architecture platform (OMAP)

technology from TI consists mainly of dual-core processor chips. The OMAP 5912 chip has an

ARM processor and a C55 digital signal processor (DSP) in the same package. The Linux kernel

runs on the ARM processor and the DSP-BIOS kernel runs on the TI C55 DSP in tandem. The

real time software development tools for this system are the Code Composer Studio integrated

development environment (IDE) and the Monta Vista Linux environment. The platform is thus

ideally suited to expose students to real time systems. The projects developed cover the

following topics sequentially: introduction to the environment, real time operating systems,

software development and application debugging. Some of the applications covered are:

implementing a finite impulse response (FIR) filter and testing with audio, modifying the filter

for different band pass characteristics, testing an audio codec and implementing an embedded

web server. TI expects to disseminate the instructional resources developed and tested in this

course to other universities and industry partners.

Introduction

Dual-core processors have recently entered mainstream computing in PC systems, and it is

critical for students of computer engineering to be exposed to them early in their career. This

paper extends past work P

1
P, which presented the development of some introductory labs using TI's

OMAP 5912 Starter Kit (OSK). The Real Time Systems senior elective course at the

University of Texas at Tyler combines lectures along with an integrated lab. The students are

required to have at least one course in structured programming, and a course or prior experience

with the operation of microprocessors, but Linux experience is not required. The lecture portion

of the course introduces students to real-time system concepts including, hard and soft deadlines,

scheduling algorithms, inter-task communication and synchronization. The lab portion of the

course reinforces these theoretical concepts and provides hands-on familiarity with software,

hardware, and development tools essential for real time systems development professionals. For

example, hard deadlines have to be met in order to complete dual-core data processing.

The initial version of the lab procedures utilized a digital signal processor (DSP) based system.

Texas Instruments' (TI) introduction of a cost effective dual core processor (OMAP 5912)

development system has enabled a new lab curricula. The OMAP 5912 gives us the flexibility of

development for a general-purpose processor based (GPP) system combined with the processing

efficiency of a DSP based system. The sheer number of new concepts introduced to students in

this course reflects the reality they have to face in the new job market. In order to fit in as

professionals the students have to be conversant with real-time, computer architecture, DSP,

P
age 11.1064.2

networking and other concepts. It is not possible to address all these topics without using a

relatively advanced and mature platform. Further, the complexity involved in successfully

debugging real-time systems makes it very difficult to design lab sequences that do not

“frustrate” the contemporary student who has a “point-and-click” mentality. The lab curriculum

and flow was deliberately chosen to kindle student interest with applications involving media.

We have developed lab procedures that illustrate how development is accomplished for dual core

systems specifically and for real time and embedded systems in general. A description of

development tools that are used for each processor core and for inter-processor communication is

provided. The students work with the Linux operating system, boot loader operation, cross

compiler tools, debug tools, kernel uploading, flashing, and driver tools for dual processor tasks.

The lab “Introduction to Dual Core Development” is designed to give the students an

introduction to using the LinuxDSP tools and DSP gateway for developing co-processing

applications. They are also introduced to the concept of patching a kernel release for

compatibility with the target platform.

Following the introductory lab, “Dual Core Implementation of a FIR Filter” gives the students an

in depth look at the development process for an application that uses both processing cores to

perform real-time filtering of an audio file. Exposed are the concepts of a FIR filter, inter-

processor communication, threaded applications, and the representation of devices as files within

the Linux operating system.

Laboratory Procedure to Introduce Dual Core Development

The objective of this lab is to introduce the students to tools that can be used for developing

applications that can utilize both processing cores. The students are introduced to the TI supplied

LinuxDSP tools P

2
P and the open source DSP Gateway P

3
P driver that allows inter-processor

communication. The students are also introduced to the concept of patching a kernel for

particular uses, the OMAP platform and DSP Gateway in this case. XFigure 1X is a flowchart for

the procedures that are followed in the lab.

This lab requires that the Linux kernel to be used for the board to be the 2.6.12 version. To be

suitable for use by the board and this project, the 2.6.12 kernel hosted at kernel.org must be

patched with the OMAP patch and the DSP Gateway 3.3 patch. The students are guided through

this process and the kernel is subsequently built for the OSK board. Students are instructed to

configure kernel features that support the DSP Gateway driver using the menuconfig utility. DSP

Gateway provides the necessary support for the Linux kernel running on the ARM core to load

and execute programs on the DSP core. Also provided with DSP Gateway is a modified version

of the TI DSP/BIOS kernel to provide services for DSP tasks. The built kernel is uploaded and

flashed into the board’s memory to provide the necessary support when the board is booted up.

DSP Gateway allows the DSP core to appear as a set of device files to the Linux kernel running

on the ARM core. This facilitates application development by presenting a familiar interface to

Linux developers for the DSP. However, to load programs into the DSP memory and begin

execution, the dspctl utility needs to be built for the ARM side Linux P

4
P. Once built, the students

P
age 11.1064.3

have the tools necessary to load and execute DSP tasks and present the interface for Linux

programs.

Figure 1. Flowchart of procedures for introducing dual core development.

At this point, students learn the communications methods used between the ARM and DSP

cores. DSP Gateway uses mailbox communication to transfer inter-processor commands and

small messages. Mailboxes are useful for transferring commands and low volumes of data. For

high volume data transfer, buffers are used and pointers to these buffers are transferred between

the processors. The pointers for the buffered data can be transferred through the typical mailbox.

Frame buffers set aside large blocks of memory in a memory space that can be accessed by both

the ARM and DSP for large volume transfers.

The first task students will execute is a demo application that comes with the DSP Gateway

tools. The students must build the DSP side application using the TI LinuxDSP tools and copy

P
age 11.1064.4

the resultant DSP executable file to the OSK board’s file system. There is a complementary

application provided for the ARM side which must be built using the ARM GNU cross complier

(GCC) utilities. This application is also copied to the board’s file system. For the Linux kernel to

provide access to DSP tasks as files, files representing the tasks have to be installed as device

modules in the “/dev” directory of the board’s file system. This provides a consistent view of the

DSP tasks as though each task is a typical Linux device. The Linux model of device presentation

represents almost all peripheral devices as though they are files contained in the file system. Data

is sent to devices by simply writing to the device files. The students are instructed how to

accomplish this and then the students are ready to run the demo application.

The students use the dspctl utility to load the DSP executable and start the DSP. Once this is

completed, the students only need to run the ARM side demo application to see the results. A

sample of the demo applications output can be seen in XFigure X2.

Figure 2. Output of the demo application for DSPgateway.

Dual Core Implementation of a FIR Filter

This lab provides insight to a practical application of the ARM/DSP core combination. The

students see the inner workings of a finite impulse response (FIR) filter implemented on the

OMAP platform utilizing the DSP Gateway driver. Presented in this lab are digital signal

filtering, using predefined C callable DSP routines and buffering to transfer large amounts of

P
age 11.1064.5

audio data. The lab also shows how to implement threaded applications in Linux. The flow of

operations for this laboratory procedure is shown graphically in XFigure X3.

Figure 3. Flow of operations for a dual core FIR filter.

Figure 4. Schematic of operation for the FIR filter application.

The students are provided with the source code to build a DSP executable for FIR filtering of

audio data and source code to build the Linux application that is responsible for sending audio

P
age 11.1064.6

data to the DSP for processing. The DSP application makes use of a hand optimized assembly

routine for FIR filtering supplied as apart of the TI DSP algorithm set. The programs

communicate via the DSP Gateway driver that was installed in lab six.

0 20 40 60 80 100 120 140
-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
Impulse Response

0 1000 2000 3000 4000 5000 6000 7000
-120

-100

-80

-60

-40

-20

0

M
a
g
n
it
u
d
e
 (

d
B

)

Frequency (Hz)

Freqency Response

0 20 40 60 80 100 120 140
-0.1

-0.05

0

0.05

0.1

0.15
Impulse Response

0 1000 2000 3000 4000 5000 6000 7000
-120

-100

-80

-60

-40

-20

0

M
a
g
n
it
u
d
e
 (

d
B

)

Frequency (Hz)

Frequency Response

Low Pass Filter CharacteristicsLow Pass Filter CharacteristicsLow Pass Filter CharacteristicsLow Pass Filter CharacteristicsLow Pass Filter Characteristics

Band Pass Filter Characteristics (1-4kHz)

Figure 5. Characteristics of the filters used in the audio filtering lab. (Top row) 1 kHz lowpass

filter response. (Bottom Row) Filter response for the 1 to 4 kHz bandpass filter.

The DSP program consists of three main functional components: the data receive function, the

data send function, and the control functions. The data receive function is used to accept the

buffered audio data from the Linux side application and filter it before storing the data. The data

send function sends processed data to the Linux application so that the filtered audio can be sent

to the audio codec for playing. The control function accepts commands from the Linux

application to allow the filter coefficients to be updated for tailored behavior by the user. XFigure X4

shows the basic operations that are accomplished by the FIR filter application.

The filter coefficients used by the filtering function are actually the summation of five filters,

which can be seen in XFigure X5 and XFigure X6, covering five bands of the audio spectrum. The

filters used in this lab were designed by using Matlab’s Filter Design and Analysis Tool P

5
P. To

allow audio equalizer type of functionality, the user supplies information as to how each audio

band should be amplified or attenuated in the Linux application. The Linux application, as can be

inferred, provides the user interface to the filtering application. The Linux application is a

threaded application that is responsible for sending unfiltered audio data to the DSP and

receiving the filtered audio data from the DSP and subsequently sending this data to the audio

P
age 11.1064.7

codec to produce sound in one thread. The other thread of the Linux application is responsible

for user input to indicate which band is to be altered and how.

0 20 40 60 80 100 120 140
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

2000 3000 4000 5000 6000 7000 8000 9000 10000
-120

-100

-80

-60

-40

-20

0

20

M
a
g
n
it
u
d
e
 (

d
B

)

Frequency (Hz)

0 20 40 60 80 100 120 140
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
4

-120

-100

-80

-60

-40

-20

0

20

M
a
g
n
it
u
d
e
 (

d
B

)

Frequency (Hz)

Band Pass Filter Characteristics (4-8kHz)

Band Pass Filter Characteristics (8-14kHz)

0 20 40 60 80 100 120 140
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

x 10
4

-160

-140

-120

-100

-80

-60

-40

-20

0

20

M
a
g
n
it
u
d
e
 (

d
B

)

Frequency (Hz)

High Pass Filter Characteristics (14kHz)

Figure 6. Characteristics of the filters used in the audio filtering lab. (Top Row) Filter responses

for the 4 to 8 kHz bandpass filter. (Middle Row) Filter responses for the 8 to 14 kHz bandpass

filter. (Bottom Row) Filter response for the 14 kHz highpass filter.

Conclusion

These labs provide a strong foundation for developing applications that utilize dual core

processors. Students are presented with tools that are common in the development community

P
age 11.1064.8

while applying techniques with interesting applications. The labs have been designed to be

accessible to anyone with a typical junior level electrical engineering or computer science

background.

Bibliography

1. M. Humphries, M. Shirvaikar, L. Estevez, "Real Time Systems Laboratory Development Using the TI OMAP

Platform," in Proceedings of the 2005 American Society for Engineering Education Annual Conference and

Exposition, June 2005.

2. Linux DSP Tools Downloads. Texas Instruments Incorporated Web Site. https://www-

a.ti.com/downloads/sds_support/targetcontent/LinuxDspTools/index.html (December 4, 2005).

3. DSP Gateway. DSP Gateway Project Web Site. http://dspgateway.sourceforge.net/pub/index.php (December 4,

2005).

4. Kobayashi, Toshiro and Takahashi, Kiyotaka. 2005. Linux DSP Gateway Specification Rev 3.3. Nokia.

5. Signal Processing Toolbox 6.2. 2004. The MathWorks, Inc.

P
age 11.1064.9

