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Recent advancesin computational technology in the classroom

Abstract

Recent advances in computational technology hawentasignificantly easier to create interactivendestrations with pro-
grammable tools that are fully integrated withileading mathematical software system. This papsgtrdees how the new dynamic
interactivity language in addition to standard dees$ built intoMathematica are being used in teaching selected sophomore and
senior undergraduate electrical engineering classése University of Southern Maine. It describesv several typical problems
encountered in integrating advanced computatioystems into an undergraduate curriculum have beeneased. Particular
attention will be paid to the creation and claserase of demonstrations illustrating some coresdrech as convolution, filtering,
and frequency response.

Introduction

Recent advances in software technologyMathematica, a leading mathematical software system from VéoifrResearch
(www.wolfram.com), have made it significantly eadie create interactive calculations for explorthg solution space of a problem
or for classroom demonstration purposes. The auiddf a comprehensive set of control objects adgnamic interactivity language
consisting of a few powerful new constructs thabmatically track dependencies between controlatbjend symbols has resulted
in a very simple mechanisms for creating inter&ctientent. This paper describes hihathematica is being used in teaching
selected undergraduate electrical engineeringedasssthe University of Southern Maine (USM) andveh how many of the typical
problems encountered in integrating advanced caoatipngl systems into an undergraduate curriculuve feeen addressed by the
system’s features and functionality. Particulaertibn will be paid to the creation and classro@® of interactive content demonstrat-
ing how it is used in explaining some core ideashsas convolution, filtering, and frequency resgorihe integration of computation
into a curriculum is as old as the 1970s, whenai$ wroposed as a means of improving undergradustteematics education. It is
now widely accepted within the engineering discipdi as a necessary and beneficial component @utnieulunt 2. As a result,
practically all recent textbooks in areas of eleatrengineering such as circuits, signals andesyst digital signal processing, or
control include computational modules, usually ldase the popular Matlab (www.mathworks.com) syst8orch courses typically
require significant algebraic skills in manipulafia variety of mathematical expressions. In faatently published data gathered in
the Signals and Systems Concepts Inventory pfogertfirms that a student's mathematical skillsaad®minant factor in predicting
the student's success in learning key concepigmdls and systems. Conversely, the inability tdguen these manipulations may be
a significant barrier. As a result, signal and eyst textbooks devote whole sections and appentbicgsch topics as finding
solutions to systems of ordinary constant-coefficiifference or differential equations, partiadtion expansion, the evaluation of
many types of integrals and sums, and complex ntsrdred functions. These are precisely the typeoofputations that can be
accomplished easily witWMathematica using familiar mathematical notation. State-of-#iiecomputer algebra is widely recognized
to be one of the premier strengthMéthematica and is one of the reasons why it was selecteteatbl to teach selected electrical
engineering courses at USM. As an example consigeevaluation of a convolution integral, specificahe response of a first-
order RC filter to a pulse inpltThis defines the input and impulse response Egas piecewise functions on the domain

—o00 <t < oo0.

h[t_ ] := Piecewise [{{e",t 20}}];
X[t ]:=Piecewise [{{1,0 =<t <2}}7;

This shows the calculation and returns the reSigmificantly, note the use of standard mathemhtiogation and that integration
over piecewise functions is fully supported.

hiz] X[t -] dt

et (—l+ez) t >2
e (—1+(Et> O0<t <2
0 True

Alternatively, the same result can be obtainedgigtie built-in functiorConvol ve.
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Convolve [x[t],h [t], T, t ]

et (—l+ez) t >2
1-et O0<t <2
0 Tr ue

The result can be easily plotted (see Figure Iefsrencing the most recent output using the syibol

Plot [%, {t, -2, 10 }]

3 2 4 6 8 10
Figure 1. Plot of impulse response of first-order RC filtsingMathematica functionConvol ve[] .

Text, graphics, and computation

As demonstrated in the earlier exampathematica is a general purpose computational system thaiesséully combines the three
components of text, graphics, and computationfgat, this paper was written entirely Mathematica.) The combination of
computation and graphics helps in demonstratingitmoncepts by means of visualization. The additbexplanatory text makes it
a convenient system for creating technical docusmenth as lectures, presentations, reports and. i@oreider the following
example of several lines of calculations and vigasibns showing the transfer function and freqyerasponse of a 5th-order
Butterworth filter system. This defines the trangtenction.

1.
H[s 1:=

(1.0 +3.23607s +5.23607s 2 +5.23607s 3+3.23607s *+ 85)

Figure 2 shows a surface plot pH(s) |, the magnitude of the system transfer functiomlie magnitude evaluated on the complex
plane defined by the rectangular coordinatemndw, and the symbalrepresents the imaginary numbér1 .

Plot3D [Abs[H[o+iw]], {0, -3,1}, {w, -2,2}]

Figure 2. Surface plot of the magnitude of the transfer fiamcof a 5th order Butterworth filter.

Here is the magnitude of the frequency respdrséj w) | (Figure 3). Note that the frequency response taioed by evaluating the
system transfer functiod (s) on the imaginary axis.

€'6T2T ¢ abed



Plot [Abs[H[iw]], {w, -7 =}]

Figure 3. Magnitude response of a 5th order Butterwortleffilt

Finally, here is the so-called Bode plot of the migle and phase spectra of the system defingdi(by(Figure 4).

BodePlot [H[s], GridLines - Automatic, PlotLayout - List ]
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Figure 4. Bode plot a 5th order Butterworth filter.

However, these are just the minimal requirement&ré@ming the unfamiliarity of the syntax of anyei computational language is
a common obstacle to using code and computatidlustrate core concepts of a discipline. For ti@igson, standard languages such
as C, C++, Java have not shown to be effectiveaohing and learning circuits, signal and systeigsial processing, control and
similarly mathematical areas of electrical engiimegrlt is much more convenient to use a systent ssgMathematica which
supports properly typeset, familiar mathematicahtion. This can be demonstrated with two simpknaples. First, the discrete-time
Fourier transform (DTFT) of a causal, real, expdizsequence

o
Zane-nwn

n=0
e]‘lw
—a+el®

Next, the inverse DTFT of an ideal, full-band diéfetiator.

Tt
j iwe"dow
-7

2nnxCos[nn] -2Sin[nn]

n2
This simplifies the expression using a symbolieramd a replace operation. (Symbol % indicatesribst recent output.)
% /.Sin [nx] »0
2 7 Cos [n ]

n

As demonstrated, Mlathematica notebook is simultaneously a platform for comgatatind a technical document. These two forms
complement themselves in a classroom setting atigwhie instructor to freely mix two types of clagsn activities. Notebooks, like
standard textbooks, may include explanatory tgpeset mathematical equations and graphics, bikeutdxtbooks also include
computable mathematical expressions and prograntkelsignals and systems course, each notebealtien so as to maximize the
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opportunities for live computation during a lectordaboratory session. The computational cap#slin Mathematica are used in a
variety of ways. At its most basic levdlathematica may be used as a simple, but powerful calculatochvstudents can use to solve
many of the problems found in standard undergradteattbooks. The student benefits by spending rtiore formulating and

understanding the problem than on algebraic maatijoul. Examples of algebraic evaluation common amyrintroductory undergrad-
uate courses include:

- solutions to constant coefficient difference difterential equations,
- solutions of systems of (non)linear equations,

- evaluation of convolution sums and integrals,

- evaluation of Fourier, Laplace and z-transfortegnals and sums,

- partial fraction expansion of rational polynorsial

Here is a solution to a system of linear equatitsiag the functiorSol ve, as would be typical of a course on network argfly3he
result gives the values of the node voltages,, andvs in the given circuit.

Vi -V3 Vi V2 V2 -=V3
+ +— +

12k 6k 12 k

9 3
{{V]_%—, Vo - —, V3—>6}}
2 2

Solve [{ =0,V 1-Vy=2Vy Vg =6}, {Vi,V2 V3}]

This returns the unit impulse response of a seaoddr discrete-time systérsing the difference equation solRSol ve.

5 1
RSolve [{y[n] -=y[n-1]+—y[n-2] == KroneckerDelta  [n],
6 6

y[-11 =0, y [-2] =0}, y [n],n] // First

im e = ([oF 1) ({0 Tue )

This shows the result in a simpler form.
PiecewiseExpand [y [n] /. %]

{ _gn <21+n _31+n> ns-2
0 True

This evaluates the response for a range of values-6-2, -1, ..., 10.

Table [{n, %}, {n, -2,10 }]

2, 0 10y, (0 13, {1, 21, (2 19 3 65 4 211 5 665
(200 (-1 00 0 20 {L o) {2020 {3 b 18 eeh 18 77760
2059 6305 19171 58025 175099
(e 46656 " 279936}' 8 1679616}'{9' 10077696}' {20, 60466176}}

If preferred, the numerical result can be obtaidieelctly by using the numerical difference equasofverRecur r enceTabl e.

5 1
RecurrenceTable  [{y[n] -—=y[n-1]+—y[n-2] = KroneckerDelta  [n],
6 6
y[-11 =0, y [-2] =0}, y [n], {n, 10 }]
5 19 65 211 665
fo,01, =, —, —, —, —,
6 36 216 1296 7776
2059 6305 19171 58025 175099
46656 279936 1679616 10077696 60466176

Mathematica as a technical documentation platform for pres@mtaand computation has been discussed highlightinuse in an
undergraduate electrical engineering program. imjgortant to add that while all the features pnése to this point played an
important role in selecting it as the preferred patational system for the program, it is the unigoebination of outstanding
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symbolic and numerical evaluation capabilities thate ultimately the most important. In its earfyyd, Mathematica was known as

a leading computer algebra system and it is prgtfabi to say that it remains so to this day. Ithe symbolic capabilities that give a
user closed form solutions to difference and déiféial equations, Fourier, Laplace, z - transfoamd more. These are exactly the
sort of calculations that a typical course on dissisignals and systems, or digital signal praogssemands and which can be easily
accomplished wittMathematica using familiar mathematical notation. Finaliathematica's state-of-the-art numerical capabilities
and its rich and efficient programming languagedniebe added to its list of features, all togettesulting in an outstanding
platform for everyday computing.

Dynamic content

The barriers in mastering any particular softwastesn are typically considered the main reason edmyputation is not more widely
used in teaching and learning. Edathematica despite its mostly mathematical notation, a pecddifion of palettes to help users
enter syntactically correct commands, syntax cofprand extensive on-line help, is still considdsgdnany as difficult to master.
Therefore it comes as no surprise that the drivénldecreating web-based instructional modules staaisly from the desire to hide
implementation and avoid the specifics of any coraputer language. Other reasons for the prolif@naticlude availability of tools
for interactivity, creating animations, integratiohsound and video, and lastly and importantlyyersal availability. Interestingly, a
recent version oMathematica introduced a whole range of new functionalitytie tarea of interactivity and graphical user iniefa
creation. A comprehensive set of control objects amlynamic interactivity language consisting ééa powerful new constructs
that automatically track dependencies between ababjects and symbols were added to the systeiis. fds turned out to be
particularly useful in a classroom setting. It @iothe creation of live, interactive demonstratitimst can be used to easily and
naturally explore solution domains. Interactive destrations are a powerful abstraction tool tHahtw has been far too difficult
for most of us to create quickly on an “as needmBis. Finally, since these tools are fully intégglainto theMathematica system,
the implementation behind any demonstration cagasdy opened for inspection and discussion.

Consider again, the topic of convolution, one afsth notoriously difficult concepts and calculatiomsignals and systems courses.
The continuous-time case is especially difficult today’s students as it requires a multiplicityneéithematical skills that are often
found lacking, including visualization of time-resal, time shift, ability to integrate functionsesvmultiple regions, the determina-
tion of correct formulations for functions on se&stintervals and more. The addition of interactteatent has the potential of
clarifying some of these concepts.

Here is a demonstration of the concepts of sigaansal and shifting (Figure 5). Note how easy itoi create interactive content,
simply by wrapping &hni pul at e function across a standard plot functibtathematica does all the rest, it binds variables (itg.,
to control object (the slider at the top of thetpliminating in most cases any need of writing-evel callback functions, designing
the layout, and other tedious tasks usually astatiaith graphical user interface design.

Manipulate [Plot [{x[z], X [t -]}, {z, -3,8 }], {{tt -0513}, -1,51}]

«—]

i
o

Figure 5. Snapshot of an interactive display showing an @tarsignal with position of the signal dependenttom slider control
object.

Here is a snapshot of an interactive plot (Figyrth&t shows the signalt — 7) sliding across the signh{r) and the area of intersec-
tion defined by the produti7) x(t — 1) (as required by convolution).
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Manipulate [Plot [{h[z] X[t -], X [t -], h [t]}, {t, -3, 8 }, Filling - {1 - Axis }],
{{tr 1 ]'v _11 5 ]']

Figure 6. Snapshot of an interactive display showing sigme& of overlap (shaded region) of sigriit9 andx(t — 7) with value oft
given by the slider control object.

What remains to be calculated and plotted is tea af the shaded region defined by the prodie} x (t — 7). This, of course, is the
result returned by the convolution integral evaddan the Introduction section of this paper. Here shown again.
e (—1+e2) t >2
Y 1:=15 1-¢ 0<t <2,
0 True

A plot of the solution can be found in many textk®on signals and systems, however, an interaptotgFigure 7) has the advan-
tage of clearly connecting time advance and theatipe of sliding one signal with respect to thhest with the build-up of the
result.

1.0;

0.8}

0.6}

0.4}

0.2

Figure 7. Snapshot of an interactive display showing theltes evaluating a convolution integral over tivag interval-co <7 <t
with value oft given by the slider control object.

Demonstrations

In the previous section we demonstrated how easiéycan create interactive content to illustratéaa or concept and embed it in a
Mathematica notebook. However, it is sometimes desirable yenenecessary) to create a stand-alone or web-bagpdidations. The
demonstrations website at Wolfram Research (demaiiwsis.wolfram.com) currently holds over five tdand demonstrations
uploaded by users, a testament to how relatively gas to create them.

In this section a demonstration based on a comiaooratory exercise in introductory courses on disds created. The goal is to
show how relatively easy it is to build simple ysdtructive demonstrations. The demonstration kgbiéd in this section shows the
response of a first-order, lowpass RC filter t@sedd periodic inputs, such as typically availaiiea laboratory waveform generator.
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It complements a common laboratory exercise shawfigure 8, in which students build the circuitnoect an oscilloscope to the
input and output ports, and drive the circuit watlsinusoidal source using a function generators Experiment serves several
important purposes: to clearly demonstrate thatssiilal inputs produce sinusoidal outputs in lir@mstems, to plot the so-called
voltage gain, and therefore learn about the frequessponse of this circuit, and to learn how thkies of the resistor and capacitor
impact the various properties of this circuit.

Figure 8. A simple RC-filter experiment. [Photo courtesyphwww.physclips.unsw.edu.au/jw/RCfilters.html]

It is well-known that the output of the circuit disssed here can be calculated in a number of éiffevays including differential
equations, phasors, and Laplace transform, to rihenthree most important approaches. Here we @sditéct approach of solving

for the output from the defining differential egioat The following command gives the general sohtior the voltage across the
capacitonv(t) for any frequencw.

DSolve [{v' [t] + V[t] == Sin [wt] UnitStep [t], v [0] == O}, v [t], t ] //
First

e (~w+e' wCos[t w] -e' Sinftw]) UnitStep[t]
{V[t} - -

1+ w?

Mathematica’s differential equation solver is fast enough tiova for “real-time,” meaning interactive evaluatidor any input
waveform of interest. We can therefore dispensk wiie-calculating solutions to signals of inter@stl simply in-line the solver in
the demonstration. For a sinusoidal source anchaegLa frequency ab = 1 ;ieci we get the following graphical result, showing the

input (in blue) and the resulting output (in red).

Plot [
Evaluate [{Sin [t] UnitStep [t],
(Vv[t] /. First [DSolve [{v' [t] + V[t] == Sin [t] UnitStep [t], v [0] == 0},
vitl, t 11)3}1, {t 0. 20. }, AxesLabel -> Automatic ]

DAL
- WY

Figure 9. Plot of the input sinusoid (blue) and responsd)(of a first-order RC-filter.

It is easy to set the frequency of the input sigrgathe interactive parameter of the demonstragietding the following graphical
user interface with a slider as the control obfEgjure 10).
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frequency (w)

- ﬂ\ m th
< VY

Figure 10. Snapshot of an interactive display showing thepaese of a first-order RC filter to a sinusoid witbguency given by
slider control object.

()

With just a little bit more effort, controls for Iseting different input waveforms can be added mgkt a more instructive and
versatile demonstration. This demonstration islalée at http://demonstrations.wolfram.com/Resp@iksewPassRCFilterToPeriod-
icWaveforms/. Figure 11 shows three screen shots the on-line demonstration.

Figure 11. Screen shots of demonstration “Response of lowR&ss8lter to periodic waveforms.”

It is interesting to consider the the full sourcele for the demonstration (see Figure 12). Notettiecalculation neededcessary to
display the result is in the line which invoke®laot command immediately following the wolkni pul at e, with the output
calculated using a differential equation solveidaghe graphics function. The remainder of theecpbduces the buttons and slider
control objects visible at the top of the displageaand initializes the calculation. It can be ghat the ease with which interactive
demonstrations can be creatediathematica compares favorably with any other system thatésgntly available.

Conclusion

This paper demonstrates Kehathematica features that make it almost uniquely suited & im an undergraduate electrical engineer-
ing classroom. The features that play a particulsignificant role include the notebook interfattee advanced computer algebra
capabilities, and the dynamic interactivity langei@mnd control objects. We show how each of thestitfes is used in creating
instructional materials that support the teachihg third-year Signals and Systems course at USkl.dévote much of the paper to
describing the most recently added feature alloviilangeasy creation of interactive input particufauseful in exploring solution
spaces or classroom demonstrations. This is afisigni enhancement of the already formidable systapabilities, adding a
dydactically useful modality that previously reaadra significant effort and specialized experttsddvelop and maintain. Each of the
described features plays an important role in ngakiathematica a noteworthy computational and pedagogic tootlerinstructor

and the student.
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Manipulate [
Plot [Evaluate [{Tooltip [x[tfu 1],'input* 1,
Tooltip [ (y[t]/.First @eNDSolve [{y' [t]+Yy[t]1==x[tfu ] UnitStep [t],
y[0]1==0},y [t1, {t,0,3 /f}]),"output" 131, {t,0,3 /f},
PlotRange -{-1,1 } Exclusions -None,
AxesLabel -Automatic,ImageSize -{500,300 }1,

Style ["Click button to select input signal:",11,Bold 1,
{{u,1," " 3}, {1-»Plot [Sin [t], {t0,2 x},Axes -»False,ImageSize -40],
2-Plot [SquareWave [t ], {t, -0.1,1.1 },Exclusions -None,
Axes »False,ImageSize  -40],
3-Plot [TriangleWave [t1], {t0,1 },Exclusions -None,
Axes »False,ImageSize  -401]}},
Style ["Move slider to vary frequency:",11,FontWeight -"Bold" 1,
{{f,0.1,"frequency Hz" },0.01,1,Appearance -"Labeled" 3},
TrackedSymbols :»{u,f }, ControlPlacement -Top,
Initialization = (
x[t,f,u 1 := Switch [u,
1,Sin [2 & ft ],
2,SquareWave [ft 1,
3,TriangleWave [f t ],
,Sin [2 7 ft1];
)]

Figure 12. Code for demonstration “Response of lowpass Réx fib periodic waveforms.”
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