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Recent advances in computational technology in the classroom

Abstract

Recent  advances  in  computational  technology  have  made  it  significantly  easier  to  create  interactive  demonstrations  with  pro-
grammable tools that are fully integrated within a leading mathematical software system. This paper describes how the new dynamic
interactivity language in addition to standard features built into Mathematica  are being used in teaching selected sophomore and
senior undergraduate electrical engineering classes at the University of Southern Maine.  It describes how several typical problems
encountered  in  integrating  advanced  computational  systems  into  an  undergraduate  curriculum have  been  addressed.  Particular
attention will be paid to the creation and classroom use of demonstrations illustrating some core ideas such as convolution, filtering,
and frequency response.

Introduction

Recent  advances  in  software  technology  in  Mathematica,  a  leading  mathematical  software  system  from  Wolfram  Research
(www.wolfram.com), have made it significantly easier to create interactive calculations for exploring the solution space of a problem
or for classroom demonstration purposes. The addition of a comprehensive set of control objects and a dynamic interactivity language
consisting of a few powerful new constructs that automatically track dependencies between control objects and symbols has resulted
in  a very simple mechanisms for creating interactive content.  This  paper describes how Mathematica  is  being used in teaching
selected undergraduate electrical engineering classes at the University of Southern Maine (USM) and shows how many of the typical
problems encountered in integrating advanced computational systems into an undergraduate curriculum have been addressed by the
system’s features and functionality. Particular attention will be paid to the creation and classroom use of interactive content demonstrat-
ing how it is used in explaining some core ideas such as convolution, filtering, and frequency response. The integration of computation
into a curriculum is as old as the 1970s, when it was proposed as a means of improving undergraduate mathematics education. It is
now widely accepted within the engineering disciplines as a necessary and beneficial component of the curriculum1, 2. As a result,
practically all recent textbooks in areas of electrical engineering such as circuits, signals and systems, digital signal processing, or
control include computational modules, usually based on the popular Matlab (www.mathworks.com) system. Such courses typically
require significant algebraic skills in manipulating a variety of mathematical expressions. In fact, recently published data gathered in
the Signals and Systems Concepts Inventory project3 confirms that a student's mathematical skills are a dominant factor in predicting
the student's success in learning key concepts of signals and systems. Conversely, the inability to perform these manipulations may be
a significant  barrier.  As a result,  signal and systems textbooks devote whole sections and appendices to such topics as finding
solutions to systems of ordinary constant-coefficient difference or differential equations, partial fraction expansion, the evaluation of
many types of integrals and sums, and complex numbers and functions. These are precisely the type of computations that can be
accomplished easily with Mathematica using familiar mathematical notation. State-of-the-art computer algebra is widely recognized
to be one of the premier strength of Mathematica and is one of the reasons why it was selected as the tool to teach selected electrical
engineering courses at USM. As an example consider the evaluation of a convolution integral, specifically, the response of a first-
order  RC filter  to  a  pulse input4.  This  defines  the input  and  impulse response signals  as  piecewise  functions  on  the domain
-¶ < t < ¶. 

h@t_ D : = Piecewise A99�−t , t ≥ 0==E ;

x@t_ D : = Piecewise @881, 0  t  2<<D;

This shows the calculation and returns the result. Significantly, note the use of standard mathematical notation and that integration
over piecewise functions is fully supported.

‡
−∞

∞

h@τD x@t − τD �τ

�−t I−1 + �2M t > 2

�−t I−1 + �tM 0 < t ≤ 2

0 True

Alternatively, the same result can be obtained using the built-in function Convolve.
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Convolve @x@τD, h @τD, τ, t D
�−t I−1 + �2M t > 2

1 − �−t 0 < t ≤ 2

0 True

The result can be easily plotted (see Figure 1) by referencing the most recent output using the symbol %.

Plot @%, 8t, −2, 10 <D
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Figure 1. Plot of impulse response of first-order RC filter using Mathematica function Convolve[].

Text, graphics, and computation

As demonstrated in the earlier example, Mathematica is a general purpose computational system that successfully combines the three
components  of  text,  graphics,  and computation.  (In fact,  this  paper was written entirely in  Mathematica.)   The combination of
computation and graphics helps in demonstrating import concepts by means of visualization. The addition of explanatory text makes it
a  convenient  system for  creating technical  documents  such as lectures,  presentations, reports  and more.  Consider  the following
example of  several  lines of  calculations and visualizations showing the transfer  function and frequency response of a  5th-order
Butterworth filter system. This defines the transfer function.

H@s_ D : =
1.

I1.0 + 3.23607 s + 5.23607 s 2 + 5.23607 s 3 + 3.23607 s 4 + s5M
Figure 2 shows a surface plot of HHsL , the magnitude of the system transfer function with the magnitude evaluated on the complex

plane defined by the rectangular coordinates s and w, and the symbol Â represents the imaginary number -1 . 

Plot3D @Abs@H@σ + � ωDD, 8σ, −3, 1 <, 8ω, −2, 2 <D

Figure 2. Surface plot of the magnitude of the transfer function of a 5th order Butterworth filter. 

Here is the magnitude of the frequency response HH j wL  (Figure 3). Note that the frequency response is obtained by evaluating the
system transfer function HHsL on the imaginary axis.
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Plot @Abs@H@� ωDD, 8ω, −π, π<D
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Figure 3. Magnitude response of a 5th order Butterworth filter. 

Finally, here is the so-called Bode plot of the magnitude and phase spectra of the system defined by HHsL (Figure 4).

BodePlot @H@sD, GridLines → Automatic, PlotLayout → List D
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Figure 4. Bode plot a 5th order Butterworth filter. 

However, these are just the minimal requirements. Overcoming the unfamiliarity of the syntax of any given computational language is
a common obstacle to using code and computation to illustrate core concepts of a discipline. For this reason, standard languages such
as C, C++, Java have not shown to be effective in teaching and learning circuits, signal and systems, signal processing, control and
similarly mathematical  areas of  electrical  engineering. It  is much more convenient to use a system such as Mathematica  which
supports properly typeset, familiar mathematical notation. This can be demonstrated with two simple examples. First, the discrete-time
Fourier transform (DTFT) of a causal, real, exponential sequence5.

‚
n=0

∞

an � − � ω n

�� ω

−a + �� ω

Next, the inverse DTFT of an ideal, full-band differentiator.

‡
−π

π

� ω � � ω n �ω

2 n π Cos@n πD − 2 Sin@n πD

n2

This simplifies the expression using a symbolic rule and a replace operation. (Symbol % indicates the most recent output.)

% ê. Sin @n πD → 0

2 π Cos@n πD

n

As demonstrated, a Mathematica notebook is simultaneously a platform for computation and a technical document. These two forms
complement themselves in a classroom setting allowing the instructor to freely mix two types of classroom activities. Notebooks, like
standard textbooks, may include explanatory text, typeset mathematical equations and graphics, but unlike textbooks also include
computable mathematical expressions and programs. In the signals and systems course, each notebook is written so as to maximize the
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computable mathematical expressions and programs. In the signals and systems course, each notebook is written so as to maximize the
opportunities for live computation during a lecture or laboratory session. The computational capabilities in Mathematica are used in a
variety of ways. At its most basic level Mathematica may be used as a simple, but powerful calculator which students can use to solve
many of the problems found in standard undergraduate textbooks. The student benefits  by spending more time formulating and
understanding the problem than on algebraic manipulation. Examples of algebraic evaluation common to many introductory undergrad-
uate courses include:

- solutions to constant coefficient difference and differential equations,
- solutions of systems of (non)linear equations,
- evaluation of convolution sums and integrals,
- evaluation of Fourier, Laplace and z-transform integrals and sums,
- partial fraction expansion of rational polynomials.

Here is a solution to a system of linear equations using the function Solve, as would be typical of a course on network analysis6. The
result gives the values of the node voltages v1, v2, and v3 in the given circuit.

Solve A9 v1 − v3

6 k
+

v1

12 k
+

v2

6 k
+

v2 − v3

12 k
� 0, v 1 − v2 � 2 v 2, v 3 � 6=, 8v1, v 2, v 3<E

99v1 →
9

2
, v2 →

3

2
, v3 → 6==

This returns the unit impulse response of a second-order discrete-time system7 using the difference equation solver RSolve.

RSolve A9 y@nD −
5

6
y@n − 1D +

1

6
y@n − 2D � KroneckerDelta @nD,

y@−1D � 0, y @−2D � 0=, y @nD, n E êê First

9y@nD → 6−n 2n � −2 n > −2

0 True
+ 3n � 3 n > −2

0 True
=

This shows the result in a simpler form.

PiecewiseExpand @y@nD ê. %D
−6−n I21+n − 31+nM n > −2

0 True

This evaluates the response for a range of values of n = -2, -1, ..., 10.

Table @8n, %<, 8n, −2, 10 <D

98−2, 0<, 8−1, 0<, 80, 1<, 91,
5

6
=, 92,

19

36
=, 93,

65

216
=, 94,

211

1296
=, 95,

665

7776
=,

96,
2059

46656
=, 97,

6305

279936
=, 98,

19171

1679616
=, 99,

58025

10077696
=, 910,

175099

60466176
==

If preferred, the numerical result can be obtained directly by using the numerical difference equation solver RecurrenceTable.

RecurrenceTable A9 y@nD −
5

6
y@n − 1D +

1

6
y@n − 2D � KroneckerDelta @nD,

y@−1D � 0, y @−2D � 0=, y @nD, 8n, 10 <E

90, 0, 1,
5

6
,
19

36
,

65

216
,

211

1296
,

665

7776
,

2059

46656
,

6305

279936
,

19171

1679616
,

58025

10077696
,

175099

60466176
=

Mathematica as a technical documentation platform for presentation and computation has been discussed highlighting its use in an
undergraduate electrical  engineering program. It  is important to add that while all  the features presented to this point played an
important role in selecting it as the preferred computational system for the program, it is the unique combination of outstanding
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important role in selecting it  as the preferred computational system for the program, it  is the unique combination of outstanding
symbolic and numerical evaluation capabilities that were ultimately the most important. In its early days, Mathematica was known as
a leading computer algebra system and it is probably fair to say that it remains so to this day. It is the symbolic capabilities that give a
user closed form solutions to difference and differential equations, Fourier, Laplace, z - transforms and more. These are exactly the
sort of calculations that a typical course on circuits, signals and systems, or digital signal processing demands and which can be easily
accomplished with Mathematica using familiar mathematical notation. Finally, Mathematica’s state-of-the-art numerical capabilities
and its rich and efficient programming language need to be added to its list of  features, all  together resulting in an outstanding
platform for everyday computing. 

Dynamic content

The barriers in mastering any particular software system are typically considered the main reason why computation is not more widely
used in teaching and learning. Even Mathematica despite its mostly mathematical notation, a proliferation of palettes to help users
enter syntactically correct commands, syntax coloring, and extensive on-line help, is still considered by many as difficult to master.
Therefore it comes as no surprise that the drive behind creating web-based instructional modules stems mainly from the desire to hide
implementation and avoid the specifics of any one computer language. Other reasons for the proliferation include availability of tools
for interactivity, creating animations, integration of sound and video, and lastly and importantly, universal availability. Interestingly, a
recent version of Mathematica introduced a whole range of new functionality in the area of interactivity and graphical user interface
creation. A comprehensive set of control objects and a dynamic interactivity language consisting of a few powerful new constructs
that automatically track dependencies between control  objects and symbols were added to the system. This has turned out to be
particularly useful in a classroom setting. It allows the creation of live, interactive demonstrations that can be used to easily and
naturally explore solution domains. Interactive demonstrations are a powerful abstraction tool that till now has been far too difficult
for most of us to create quickly on an “as needed” basis. Finally, since these tools are fully integrated into the Mathematica system,
the implementation behind any demonstration can be easily opened for inspection and discussion. 

Consider again, the topic of convolution, one of those notoriously difficult concepts and calculations in signals and systems courses.
The continuous-time case is especially difficult for today’s students as it requires a multiplicity of mathematical skills that are often
found lacking, including visualization of time-reversal, time shift, ability to integrate functions over multiple regions, the determina-
tion of correct formulations for functions on selected intervals and more. The addition of interactive content has the potential of
clarifying some of these concepts.

Here is a demonstration of the concepts of signal reversal and shifting (Figure 5). Note how easy it is to create interactive content,
simply by wrapping a Manipulate function across a standard plot function. Mathematica does all the rest, it binds variables (i.e., t )
to control object (the slider at the top of the plot) eliminating in most cases any need of writing low-level callback functions, designing
the layout, and other tedious tasks usually associated with graphical user interface design.

Manipulate @Plot @8x@τD, x @t − τD<, 8τ, −3, 8 <D, 88t, −0.5 <, −1, 5 <D

t
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Figure 5. Snapshot of an interactive display showing an example signal with position of the signal dependent on the slider control
object.

Here is a snapshot of an interactive plot (Figure 6) that shows the signal xHt - tL sliding across the signal hHtL and the area of intersec-
tion defined by the product hHtL xHt - tL (as required by convolution). P
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Manipulate @Plot @8h@τD x@t − τD, x @t − τD, h @τD<, 8τ, −3, 8 <, Filling → 81 → Axis <D,

88t, 1 <, −1, 5 <D

t

Figure 6. Snapshot of an interactive display showing signal area of overlap (shaded region) of signals hHtL and xHt - tL with value of t
given by the slider control object.

What remains to be calculated and plotted is the area of the shaded region defined by the product h HtL x Ht - tL. This, of course, is the
result returned by the convolution integral evaluated in the Introduction section of this paper. Here it is shown again.

y@t_ D : =

�−t I−1 + �2M t > 2

1 − �−t 0  t  2

0 True

;

A plot of the solution can be found in many textbooks on signals and systems, however, an interactive plot (Figure 7) has the advan-
tage of clearly connecting time advance and the operation of sliding one signal with respect to the other, with the build-up of the
result. 

t
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Figure 7. Snapshot of an interactive display showing the result of evaluating a convolution integral over the time interval -¶ < t < t
with value of t given by the slider control object.

Demonstrations

In the previous section we demonstrated how easily one can create interactive content to illustrate an idea or concept and embed it in a
Mathematica notebook. However, it is sometimes desirable (or even necessary) to create a stand-alone or web-based applications. The
demonstrations  website  at  Wolfram  Research  (demonstrations.wolfram.com)  currently  holds  over  five  thousand  demonstrations
uploaded by users, a testament to how relatively easy it is to create them. 

In this section a demonstration based on a common laboratory exercise in introductory courses on circuits is created. The goal is to
show how relatively easy it is to build simple yet instructive demonstrations. The demonstration highlighted in this section shows the
response of a first-order, lowpass RC filter to selected periodic inputs, such as typically available on a laboratory waveform generator.
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response of a first-order, lowpass RC filter to selected periodic inputs, such as typically available on a laboratory waveform generator.
It complements a common laboratory exercise shown in Figure 8, in which students build the circuit, connect an oscilloscope to the
input and output ports, and drive the circuit with a sinusoidal  source using a function generator. This experiment serves several
important purposes: to clearly demonstrate that sinusoidal inputs produce sinusoidal outputs in linear systems, to plot the so-called
voltage gain, and therefore learn about the frequency response of this circuit, and to learn how the values of the resistor and capacitor
impact the various properties of this circuit.   

Figure 8. A simple RC-filter experiment. [Photo courtesy: http://www.physclips.unsw.edu.au/jw/RCfilters.html]

It is well-known that the output of the circuit discussed here can be calculated in a number of different ways including differential
equations, phasors, and Laplace transform, to name the three most important approaches. Here we use the direct approach of solving
for the output from the defining differential equation. The following command gives the general solution for the voltage across the
capacitor vHtL for any frequency w.

DSolve @8v ' @t D + v@t D == Sin @ω t D UnitStep @t D, v @0D == 0<, v @t D, t D êê
First

9v@tD → −

�−t I−ω + �t ω Cos@t ωD − �t Sin@t ωDM UnitStep@tD

1 + ω2
=

Mathematica’s  differential  equation solver  is  fast  enough to allow for  “real-time,”  meaning interactive evaluation for any input
waveform of interest. We can therefore dispense with pre-calculating solutions to signals of interest and simply in-line the solver in

the demonstration. For a sinusoidal source and assuming a frequency of w = 1 
rad

sec
 we get the following graphical result, showing the

input (in blue) and the resulting output (in red).

Plot @
Evaluate @8Sin @ t D UnitStep @t D,

Hv@t D ê. First @DSolve @8v ' @t D + v@t D == Sin @t D UnitStep @t D, v @0D == 0<,

v@t D, t DDL<D, 8t, 0., 20. <, AxesLabel −> Automatic D
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t

-1.0

-0.5

0.5

1.0

Figure 9. Plot of the input sinusoid (blue) and response (red) of a first-order RC-filter. 

It is easy to set the frequency of the input signal as the interactive parameter of the demonstration, yielding the following graphical
user interface with a slider as the control object (Figure 10).

P
age 22.1219.8



frequency HwL

5 10 15 20
t

-1.0

-0.5

0.5

1.0

Figure 10. Snapshot of an interactive display showing the response of a first-order RC filter to a sinusoid with frequency given by
slider control object. 

With just a little bit more effort, controls for selecting different input waveforms can be added making it a more instructive and
versatile demonstration. This demonstration is available at http://demonstrations.wolfram.com/ResponseOfLowPassRCFilterToPeriod-
icWaveforms/. Figure 11 shows three screen shots from the on-line demonstration.

9 , , =

Figure 11. Screen shots of demonstration “Response of lowpass RC filter to periodic waveforms.”

It is interesting to consider the the full source code for the demonstration (see Figure 12). Note that the calculation neededcessary to
display the result is in the line which invokes a Plot command immediately following the word Manipulate, with the output
calculated using a differential equation solver inside the graphics function. The remainder of the code produces the buttons and slider
control objects visible at the top of the display area and initializes the calculation. It can be said that the ease with which interactive
demonstrations can be created in Mathematica compares favorably with any other system that is presently available.

Conclusion

This paper demonstrates key Mathematica features that make it almost uniquely suited for use in an undergraduate electrical engineer-
ing classroom. The features that play a particularly significant role include the notebook interface, the advanced computer algebra
capabilities, and the dynamic interactivity language and control objects. We show how each of these features is used in creating
instructional materials that support the teaching of a third-year Signals and Systems course at USM. We devote much of the paper to
describing the most recently added feature allowing for easy creation of interactive input particularly useful in exploring solution
spaces  or  classroom demonstrations.  This  is  a  significant  enhancement  of  the already formidable system capabilities,  adding a
dydactically useful modality that previously required a significant effort and specialized expertise to develop and maintain. Each of the
described features plays an important role in making Mathematica a noteworthy computational and pedagogic tool for the instructor
and the student.
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Manipulate @
Plot @Evaluate @8Tooltip @x@t,f,u D,"input" D,

Tooltip @Hy@t Dê.First @NDSolve @8y' @t D+y@t D�x@t,f,u D UnitStep @t D,

y@0D�0<,y @t D, 8t,0,3 êf <DL,"output" D<D, 8t,0,3 êf <,

PlotRange →8−1,1 <,Exclusions →None,

AxesLabel →Automatic,ImageSize →8500,300 <D,

Style @"Click button to select input signal:",11,Bold D,

88u,1," " <, 81→Plot @Sin @t D, 8t,0,2 π<,Axes →False,ImageSize →40D,

2→Plot @SquareWave @t D, 8t, −0.1,1.1 <,Exclusions →None,

Axes→False,ImageSize →40D,

3→Plot @TriangleWave @t D, 8t,0,1 <,Exclusions →None,

Axes→False,ImageSize →40D<<,

Style @"Move slider to vary frequency:",11,FontWeight →"Bold" D,

88f,0.1,"frequency Hz" <,0.01,1,Appearance →"Labeled" <,

TrackedSymbols �8u,f <, ControlPlacement →Top,

Initialization �H
x@t_,f_,u_ D : = Switch @u,

1,Sin @2 π f t D,

2,SquareWave @f t D,

3,TriangleWave @f t D,

_,Sin @2 π f t DD;

LD
Figure 12. Code for demonstration “Response of lowpass RC filter to periodic waveforms.”

References

[1] Schwingendorf, K.E. and E. Dubinsky. “Purdue University: Calculus, concepts, and computers: Innovations in learning.” In: Tucker, T.W. (Ed.), Priming the
calculus pump: Innovations and resources, Washington, DC: The Mathematical Association of America, 1990. 175-198.

[2] Brown, D., H.A. Porta, and J.J. Uhl. “Calculus and Mathematica: A laboratory course for learning by doing.” In: L. C. Leinbach (Ed.), The laboratory
approach to teaching calculus, Washington, DC: The Mathematical Association of America, 1991. 99-110.

[3] K.E. Wage, J.R. Buck, C.H. Wright, and T.B. Welch. “The Signals and Systems Concepts Inventory,” IEEE Transactions on Education, Vol. 48, No. 3,
2005. 448 - 460.

[4] Haykin, S. and B. V. Veen. “Chapter 2: Example 2.7.” Signals and Systems, John Wiley & Sons, 2005 (2nd Ed). 119-120.

[5] Oppenheim, A.v., A.S. Willsky, and S.H. Nawab. “Chapter5: Example 5.1.” Signals & Systems, Prentice Hall, 1996 (2nd Ed). 362-363.

[6] Irwin, J.D. and R.M. Nelms. “Chapter 3: Example 3.9.” Basic Engineering Circuit Analysis, John Wiley & Sons, 2008 (9th Ed). 112. 

[7] McClellan, J.H., R.W. Schafer, and M.A. Yoder. “Chapter 8: Example 8.15.” Signal Processing First, Pearson/Prentice Hall, 2003. 227-228.

P
age 22.1219.10


