
AC 2010-190: REGRESSION MODELS FOR PREDICTING STUDENT ACADEMIC
PERFORMANCE IN AN ENGINEERING DYNAMICS COURSE

Shaobo Huang, Utah State University
Shaobo Huang is a PhD in Engineering Education student in the Department of Engineering and
Technology Education in the College of Engineering at Utah State University (USU). With BS
and MS degrees in electrical engineering, her area of interest focuses on the predictive modeling
of student academic performance and problem solving skills in engineering courses. She is a
recipient of the USU Presidential Fellowship. 

Ning Fang, Utah State University
Ning Fang is an Associate Professor in the Department of Engineering and Technology Education
in the College of Engineering at Utah State University. He teaches Engineering Dynamics. His
areas of interest include computer-assisted instructional technology, curricular reform in
engineering education, the modeling and optimization of manufacturing processes, and lean
product design. He earned his PhD, MS, and BS degrees in Mechanical Engineering and is the
author of more than 60 technical papers published in refereed international journals and
conference proceedings. He is a Senior Member of the Society for Manufacturing Engineering
and a member of the American Society of Mechanical Engineers, the American Society for
Engineering Education, and the American Educational Research Association. 

© American Society for Engineering Education, 2010 

P
age 15.1026.1



Regression Models of Predicting Student Academic Performance 

in an Engineering Dynamics Course 
 

 

Abstract 

 

Prediction of student academic performance helps instructors develop a good understanding of 

how well or how poorly the students in their classes will perform, so instructors can take 

proactive measures to improve student learning.  Based on a total of 2,151 data points collected 

from 239 undergraduate students in three semesters, a new set of multivariate linear regression 

models are developed in the present study to predict student academic performance in 

Engineering Dynamics − a high-enrollment, high-impact, and core engineering course that 

almost every mechanical or civil engineering student is required to take.  The inputs 

(predictor/independent variables) of the models include a student’s cumulative GPA; grades 

earned in four prerequisite courses: Engineering Statics, Calculus I, Calculus II, and Physics; as 

well as scores earned in three Dynamics mid-exams.  The output (outcome/dependent variable) 

of the models is a student’s final exam score in the Dynamics course.  Multiple criteria are 

employed to evaluate and validate the predictive models, including R-square, shrinkage, the 

average prediction accuracy, and the percentage of good predictions.  A good prediction is 

defined as the one with the prediction error of ±10%.  The results show that the developed 

predictive models have the average prediction accuracy of 86.8%-90.7% and generate good 

predictions of 44.4%-65.6%.  The implications of the research findings from the present study 

are also discussed.  

 

Introduction 

 

Almost every mechanical or civil engineering student is required to take the Engineering 

Dynamics course − a high-enrollment, high-impact, and core engineering course.  This course is 

an essential basis and fundamental building block for advanced studies in many subsequent 

courses, such as vibration, structural mechanics, system dynamics and control, and machine and 

structural designs.  However, many students fail this course because it covers a broad spectrum 

of foundational engineering concepts and principles, for example, motion, force and acceleration, 

work and energy, impulse and momentum, and vibrations of a particle and of a rigid body 
1-3

. 

 

Prediction of student academic performance has long been regarded as an important research 

topic in many academic disciplines because it benefits both teaching and learning 
4, 5

.  Instructors 

can use the predicted results to identify the number of students who will perform well, averagely, 

or poorly in a class, so instructors can be proactive.  For instance, if the predicted results show 

that some students in the class would be “academically at risk,” instructors may consider taking 

certain proactive measures to help those students achieve better in the course.  Representative 

examples of proactive measures include adding recitation sessions, adding more office hours, 

using computer simulations and animations to improve student problem solving, adopting a 

variety of active and cooperative learning strategies, to name a few. 

 

A variety of mathematical techniques, such as multivariate linear regression 
6
, neural networks 

7
, 

Bayesian networks 
8
, decision trees 

9
, and genetic algorithm 

10
, have been employed to develop 
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various models to predict student academic performance.  Multivariate linear regression is 

among the most widely employed mathematical techniques.  It is easy to understand and use 

because it does not require sophisticated mathematical skills for researchers to master.  It also 

provides an explicit set of mathematical equations, allowing education researchers and 

practitioners to “see” how the predicted results are generated, and thus the predicted results can 

be interpreted in a reasonable and meaningful way 
11

.  For example, Green 
12

 developed a set of 

linear regression models for three mechanical engineering courses to predict a student’s final 

exam score from the student’s scores in mid-term quizzes.  A modest correlation was found 

between a student’s final exam score and mid-term exam scores.  Yousuf 
13

 developed a 

multivariate linear regression model to predict student academic performance in Computer 

Science and Engineering Technology programs.  The predictor/independent variables of 

Yousuf’s model 
13

 included a student’s career self-efficacy belief, math-SAT scores, high school 

GPA, and vocational interest.  The results showed that self-efficacy contributed unique variance 

in prediction of student academic performance. 

 

Objective, Scope, and Research Questions of the Present Study  

 

The objective of the present study is to develop a validated set of multivariate linear regression 

models to predict student academic performance in an Engineering Dynamics course.  The 

outcome/dependent variable (namely, the output Y) of the regression models is a student’s score 

in the comprehensive final exam of the Dynamics course.  The predictor/independent variables 

(namely, the inputs X1, X2, X3, etc.) of the regression models include a student’s   

  

X1:  Cumulative GPA 

X2: Grade earned in Engineering Statics (a prerequisite course) 

X3: Grade earned in Calculus I (a prerequisite course) 

X4: Grade earned in Calculus II (a prerequisite course) 

X5: Grade earned in Physics (a prerequisite course) 

X6: Score earned in Dynamics mid-exam #1  

X7: Score earned in Dynamics mid-exam #2  

X8: Score earned in Dynamics mid-exam #3  

 

where X1, X2, X3, X4, and X5 represent a student’s prior achievement before the student takes the 

Dynamics course, and X6, X7, and X8 are a direct representation of a student’s learning 

progression and achievement in the Dynamics course during the semester before the student 

takes the comprehensive final exam of the course.   

 

The scope of the present study is limited in the investigation of the effects of cognitive factors 

(i.e., the above-stated eight predictor variables) on student academic performance in the 

Engineering Dynamics course.  The effects of a student’s non-cognitive factors (such as learning 

style, self-efficacy, motivation and interest, time devoted to learning, family background, race, 

and many others 
14

), the instructor’s teaching effectiveness and preparation 
15

, as well as teaching 

and learning environment 
16

 on student academic performance is beyond the scope of the present 

study and will be dealt with in the future study.  
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The research questions of the present study include:  

 

1. What are the mathematical formulas of the predictive models?  

2. How accurate are the predictive models?  Or how well are the predictions if the 

models are used for students in different semesters? 

3. How well are the predictions if using only part of the eight predictor variables to 

develop the models?  For example, how well are the predictions if using only the 

first six predictor variables: student GPA, test scores in four pre-requisite courses, 

and the test score of the first Dynamics mid-term exam?  If the predictions are 

available at the beginning of the course or after the first (or even second) 

Dynamics mid-term exam, instructors would have sufficient time to take 

proactive measures and do not need to wait until the semester is over.   

 

Research Method of the Present Study 

 

A total of 239 undergraduate students in three semesters were included in the present study to 

develop and validate the predictive, regression-based model.  The following paragraphs describe 

the research method step by step.     

 

Step 1:  Collected data on student academic performance in Semesters A, B, and C.  Descriptive 

analysis was performed to develop a fundamental understanding of the collected first-hand data.  

 

Step 2:  Randomly split the full dataset collected in Semester A into a training dataset and a 

testing dataset.  First, the students’ final exam scores (maximum: 100) were divided into 

different levels: 100-90, 89-80, 79-70, 69-60, and below 59.  Then, the training dataset was 

randomly chosen from 50% of the data at each level to ensure the training dataset was a good 

representation of all students’ performance in the class.  The remaining 50% of the data at each 

level was used as the testing dataset.  In this paper, the terms of “training” and “testing” are 

borrowed from the terms typically used in the neural network modeling technique.  “Training” 

dataset is the samples employed to develop a regression model.  “Testing” dataset is the samples 

employed to test the accuracy of the developed regression model.     

 

Step 3:  Used the training dataset to develop multivariate linear regression models, based on a 

different combination of predictor variables:  

 

Model #1:  predictor variables are X1, X2, X3, X4, and X5 

Model #2:  predictor variables are X1, X2, X3, X4, X5, and X6 

Model #3:  predictor variables are X1, X2, X3, X4, X5, X6, and X7 

Model #4:  predictor variables are X1, X2, X3, X4, X5, X6, X7, and X8 

 

Model #1 only accounts for a student’s prior achievement before taking the Dynamics course.  

Model #2 considers a student’s prior achievement and his/her performance in the first Dynamics 

mid-term exam.  Model #3 considers a student’s prior achievement and his/her performance in 

the first and second Dynamics mid-term exams.  Model #4 considers a student’s prior 

achievement and his/her performance in all the three Dynamics mid-term exams.  
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Step 4:  Test each regression model developed in Step 3 using the corresponding testing dataset.  

Multiple criteria including R-square, shrinkage, and prediction accuracy were employed to test 

each model.  Because both training and testing datasets were from the same Semester A, Step 4 

was also called the “internal validation” of the regression models.   

 

Step 5:  Applied the regression models developed in Semester A to the full datasets collected in 

Semesters B and C and determined the prediction accuracy of each model.  Because the models 

were applied to students in a different semester, Step 5 was also called the “external validation” 

of the regression models.  

 

Data Collection and Pre-Processing 

 

Data on student academic performance was collected from a total of 239 undergraduate students 

in three semesters: 128 students in Semester A, 58 students in Semester B, and 53 students in 

Semester C.  Table 1 shows student demographics.  As seen from Table 1, the majority of the 

239 students were either from the mechanical and aerospace engineering major (49.8%) or from 

the civil and environmental engineering major (31.0%).  The vast majority of students were male 

(85.4%), and the female students accounted for 14.6%.   

 

Table 1.  Student demographics 

 

 Major * Sex 

 MAE CEE Other  Male Female 

Semester A (n = 128) 72 (56.3%) 34 (26.5%) 22 (17.2%) 108 (84.4%) 20 (15.6%) 

Semester B (n = 58) 22 (37.9%) 20 (34.5%) 16 (27.6%) 51 (87.9%) 7 (12.1%) 

Semester C (n = 53) 25 (47.2%) 20 (37.7%) 8 (15.1%) 45 (84.9%) 8 (15.1%) 

Total (n = 239)  119 (49.8%) 74 (31.0%) 46 (19.2%) 204 (85.4%) 35 (14.6%) 

 

* MAE: Mechanical and aerospace engineering 

   CEE:   Civil and environmental engineering 

   Other:  Biological engineering, general engineering, pre-engineering, undeclared majors, etc. 

 

For each student, nine data points were collected including the final exam score (Y) of the 

Dynamics course and the values of eight predictor/independent variables (from X1 to X8).  For a 

three-semester total of 239 students, 239 × 9 = 2,151 data points were collected.  The collected 

data (Y,  X1,  X2,  X3, …,  X8) were initially in different scales of measurements:  X1 varied from 

0.00 to 4.00;  X2,  X3,  X4,  and X5 varied from A to F (letter grades); and X6, X7, X8, and Y 

varied from 0.00 to 100.00.  Before using them to establish regression equations, the collected 

raw data must be pre-processed, which is described in the following paragraphs.  

 

First, all letter grades in X2,  X3,  X4,  and  X5 were converted into the corresponding numerical 

values, so linear regression models (other than logistic regression models) could be developed.  
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The conversion was based on the following scales:  A = 4.00;  A- = 3.67;  B+ = 3.33;  B = 3.00;  

B- = 2.67;  C+ = 2.33;  C = 2.00;  C- = 1.67;  D+ = 1.33;  D = 1.00;  F = 0.00.  

 

Then, the numerical values of all data were normalized, so each data varied within the same 

range from 0 to 1, as shown in Table 2.  The purpose of data normalization was to avoid the 

cases in which one variable received a high or low weight in its regression coefficient due to its 

initial low or large scale of measurements.  The normalized value of data was calculated through 

dividing the initial value of the data by its maximum possible value in its same category.  For 

instance, the maximum GPA that a student could receive is 4.00.  Supposing one student earned 

a GPA of 3.55, the normalized GPA of that student would be 3.55 ÷ 4.00 = 0.89.     

         

Table 2.  Normalization of the collected raw data  

 

Variables Meaning Initial value of data Normalized value 

of data  

X1 Cumulative GPA 0.00 - 4.00 (numerical value) 0.00 - 1.00 

X2 Grade earned in 

Engineering Statics 

Letter grade A, A-, B+, B, etc. 0.00 - 1.00 

X3 Grade earned in Calculus I Letter grade A, A-, B+, B, etc. 0.00 - 1.00 

X4 Grade earned in Calculus II Letter grade A, A-, B+, B, etc. 0.00 - 1.00 

X5 Grade earned in Physics Letter grade A, A-, B+, B, etc. 0.00 - 1.00 

X6 Score earned in Dynamics 

mid-exam #1 

0.00 - 100.00            

(numerical value) 

0.00 - 1.00 

X7 Score earned in Dynamics 

mid-exam #2 

0.00 - 100.00            

(numerical value) 

0.00 - 1.00 

X8 Score earned in Dynamics 

mid-exam #3 

0.00 - 100.00            

(numerical value) 

0.00 - 1.00 

Y Score earned in Dynamics 

final exam  

0.00 - 100.00            

(numerical value) 

0.00 - 1.00 

 

 

Descriptive Analysis 

 

There exists a variety in semester to semester student body and the classroom composition.  The 

reliability of the predictive models should be tested in different semesters. Tables 3-5 show the 

results of descriptive statistics of the normalized data collected in three semesters.  Compared to 

students in Semester A, students in Semesters B and C had a lower mean and a higher standard 

deviation in most variables.  For example, compared to students in Semester A as a whole, 

students in Semesters B and C had a lower cumulative GPA, a lower Statics score, a lower mid-

exam #3 score, and a higher standard deviation in GPA, Statics, and mid-exam #3 score.   

 

The above finding implies that students in Semesters B and C (as a whole) did not perform as 

well as students in Semester A, and that students in Semesters B and C were more diverse in 

their academic performance.  To more clearly show the difference of student performance, Figs. 

1-3 show the histograms of students’ normalized final exam scores in the Dynamics course in the 
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three semesters.  In short, Semesters B and C provided two excellent “external” cases to validate 

the reliability of the regression models. 

 

Table 3.  Descriptive statistics of the normalized data for Semester A (n = 128) 

 

Variable Minimum Maximum Mean Standard deviation 

Cumulative GPA 0.62 1.00 0.8586 0.09569 

Engineering Statics 0.40 1.00 0.8076 0.18898 

Calculus I 0.40 1.00 0.7580 0.18555 

Calculus II 0.40 1.00 0.7813 0.18336 

Physics 0.40 1.00 0.7925 0.15960 

Mid-exam #1 0.27 1.00 0.7870 0.15764 

Mid-exam #2 0.44 1.00 0.7778 0.13716 

Mid-exam #3 0.47 1.00 0.8477 0.12407 

Final exam 0.32 1.00 0.7175 0.16683 

 

Table 4.  Descriptive statistics of the normalized data for Semester B (n=58) 

 

Variable Minimum Maximum Mean Standard deviation 

Cumulative GPA 0.51 0.99 0.8110 0.11207 

Engineering Statics 0.33 1.00 0.6725 0.20628 

Calculus I 0.42 1.00 0.7642 0.19330 

Calculus II 0.42 1.00 0.7284 0.20030 

Physics 0.19 1.00 0.7356 0.18682 

Mid-exam #1 0.33 1.00 0.7109 0.18474 

Mid-exam #2 0.38 1.00 0.7813 0.14446 

Mid-exam #3 0.40 1.00 0.8080 0.14989 

Final exam 0.33 1.00 0.6916 0.15754 

 

Table 5.  Descriptive statistics of the normalized data for Semester C (n=53) 

 

Variable Minimum Maximum Mean Standard deviation 

Cumulative GPA 0.58 1.00 0.8379 0.10613 

Engineering Statics 0.00 1.00 0.7738 0.24276 

Calculus I 0.42 1.00 0.7223 0.19369 

Calculus II 0.00 1.00 0.7145 0.20884 

Physics 0.42 1.00 0.7479 0.16748 

Mid-exam #1 0.27 1.00 0.7255 0.15164 

Mid-exam #2 0.31 1.00 0.7276 0.15226 

Mid-exam #3 0.47 1.00 0.7709 0.15200 

Final exam 0.38 1.00 0.6647 0.17726 
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Figure 1.  Histogram of students’ normalized final exam scores in Semester A (n = 128) 
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Figure 2.  Histogram of students’ normalized final exam scores in Semester B (n = 58) 
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Figure 3.  Histogram of students’ normalized final exam scores in Semester C (n = 53) 

 

 

Regression Models for Predicting Student Academic Performance 

 

The multivariate linear regression technique was employed to develop four predictive models 

based on the training dataset collected in Semester A.  The mathematical formula of each 

predictive model is expressed as:  

 

Model #1:  

 

543211 152.0011.0128.0100.0756.0131.0 XXXXXY +−−−+=  (1)

 

Model #2:  

 

6543212 323.0148.0041.0093.0147.0621.0031.0 XXXXXXY ++−−−+=  (2)

 

Model #3:  

 

3 1 2 3 4 5 60.002 0.607 0.153 0.091 0.041 0.148 0.307 0.078Y X X X X X X= − + − − − + + + 7X

8

 (3)

 

Model #4:  

 

4 1 2 3 4 5Y 0 309 0 556X 0 194X 0 002X 0 028X 0 102X. . . . . .= − + − + − +  

6 70 251X 0 070X 0 591X. . .+ − +  (4)
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The values of the regression coefficients of predictor variables Xi were determined using the 

method of least squares commonly used in the multivariate linear regression technique.  These 

values represent the expected change in Y for one unit change in Xi.   

Each predictive model was evaluated using the following four criteria that involved the use of 

either training or testing datasets:  

 

1)  R-square value that represents the percentage that a model can explain its output based on a 

training dataset.  The higher the R-square value, the better the model.    

 

2)  Shrinkage value that indicates the loss of predictive ability when a model is applied to other 

samples (i.e., testing datasets in this case).  Shrinkage is calculated as  

 

2 2n 1 n 2 n 1
Shrinkage R 1 (1 R )

n k 1 n k 2 n

− − +⎡ ⎤= − − ⋅ ⋅ −⎢ ⎥− − − −⎣ ⎦
 (5)

where n is the number of students, and k is the number of predictor variables in the model. The 

lower the shrinkage value, the better the model. 

 

3)  Average prediction accuracy for final exam scores, which indicates on average, how well a 

model predicts final exam scores of all students in the Dynamics course.  The average prediction 

accuracy for final exam scores is calculated as 

 

n
i i

i 1 i

P A1
Average prediction accuracy for final exam scores 100%

n A
∑
=

−
= ⋅ ×  (6)

where n is the total number of predictions; Pi is the predicted final exam score of the i
th 

student in 

the class (i = 1 to n); and Ai is the actual final exam score of the i
th 

student.  The higher the 

average prediction accuracy, the better the model.   

 

4)  Percentage of good predictions among all predictions.  This percentage is calculated as the 

number of good predictions divided by the total number of predictions.  In the present study, a 

good prediction is defined as the one with the prediction error of ±10%, that is, the predicted 

value is within 90-110% of the actual value.  The higher the percentage of good predictions, the 

better the model.   

 

Table 6 summarizes the comparison of the four models.  The full dataset (n = 128) collected in 

Semester A was evenly split into the training dataset (n = 64) to develop the predictive model 

and the testing dataset (n = 64) to “internally” validate the predictive model.  As seen from Table 

6, the average prediction accuracy varies within only 2% (minimum: 88.7% for Model #1; 

maximum: 90.7% for Model #4) among the four predictive models.  However, the percentage of 

good predictions varies within 9.3% from 56.3% (for Models #2 and #3) to 65.6% (for Model 

#4).  In terms of both the average prediction accuracy and the percentage of good predictions, 

Model #4 − which includes all the eight predictor variables − is apparently the mathematically 

best model among the four models.  
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Table 6.  Predictive models developed based on the dataset collected in Semester A 

 

Predictive 

model  

Using the training 

dataset (n = 64) Internal validation using the testing dataset (n= 64) 

 R-square Shrinkage Average prediction 

accuracy (%) 

Percentage (%) of 

good predictions 

among all predictions 

#1 0.175 0.165 88.7 57.8 

#2 0.256 0.181 89.4 56.3 

#3 0.258 0.214 89.7 56.3 

#4 0.403 0.200 90.7 65.6 

 

 

External Validation of the Developed Regression Models 

 

The external validation of the above-developed predictive models was conducted based on the 

data collected in Semesters B and C.  The results are summarized in Table 7.  To make 

comparisons clearer, part of the internal validation results that have been provided in Table 6 is 

also included in Table 7.  

 

 

Table 7.  Validation of the developed predictive models 

 

Predictive 

model 

Average prediction accuracy (%) Percentage (%) of good predictions 

 Internal 

validation 

(Semester 

A, testing  

dataset n = 

64 ) 

External 

validation 

(Semester 

B, full   

dataset n = 

58) 

External 

validation  

(Semester 

C, full   

dataset n = 

53) 

Internal 

validation 

(Semester 

A, testing  

dataset n = 

64 ) 

External 

validation 

(Semester 

B, full   

dataset n = 

58) 

External 

validation  

(Semester 

C, full   

dataset n = 

53) 

#1 88.7 89.1 86.8 57.8 55.2 44.4 

#2 89.4 89.3 88.0 56.3 53.5 46.3 

#3 89.7 89.8 88.0 56.3 56.9 50.0 

#4 90.7 89.8 88.6 65.6 56.9 56.6 
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As seen from Table 7, the prediction accuracy of the developed regression models slightly varied 

when they were applied to different semesters for external validation.  The average prediction 

accuracy slightly varied within a range from -2.1% (Model #4 applied to Semester C) to 0.4% 

(Model #1 applied to Semester B).  However, in the majority of cases, the percentage of good 

prediction was reduced by a relatively wide range from -2.6% (Model #1 applied to Semester B) 

to -13.4% (Model #1 applied to Semester C).  The only case that the prediction accuracy 

increased was the one in which Model #3 was applied to Semester B.  

 

Based on the results of both internal and external validation in the three semesters, it can be 

found that the developed predictive models have the average prediction accuracy of 86.8%-

90.7%, and generate good predictions of 44.4%-65.6% (again, a good prediction is defined as the 

one with the prediction error of ±10%).  In addition, Model #4 − which includes all the eight 

predictor variables − is apparently the mathematically best model among the four models.  

 

As four representative examples, Figs. 4a) – 4d) show the predicted and actual normalized final 

exam scores for each of the 58 students in Semester B, based on Models #1, #2, #3, and #4, 

respectively.  In Fig. 4, each student was associated with two data points: a solid symbol for the 

actual final exam score and an open symbol (above or below the solid symbol in the same 

vertical line) for the predicted final exam score.   
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a) Model #1 
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Figure 4.  Comparison of the predicted and actual normalized final exam scores                        

for the 58 students in Semester B.  

 

Implications of the Research Findings 

 

The research findings from the present study imply that if an instructor would like to predict the 

“average” academic performance of all students in his/her Dynamics class, the instructor can 

choose any one of the four predictive models (#1, #2, #3, or #4) to use.  The average prediction 

accuracy of these models only slightly varies.  For this application, Model #1 − which only takes 

into account a student’s prior achievement before the student takes the Dynamics course − is the 

most useful model because it can be used even before a semester begins and thus the instructor 

has sufficient time to consider what proactive measures s/he will use in the new semester.  

 

However, if an instructor wants to generate a large number of good predictions, so s/he can focus 

on individual students, particularly those “academically at risk” students, Model #1 should not be 

used because of its lowest percentage of good predictions.  Either Model #2 or Model #3 can be 

used after the first or second mid-term exams because both models have moderate predictability 

to generate good predictions.  For example, if Model #2 or Model #3 predicts that a student will 

receive a final exam score below 50 (out of 100), the student will be identified as a potential 

“academically at-risk” student.  The student will be first interviewed and their classroom 

performance will be observed, so the instructor can develop a clear understanding of the 

student’s learning abilities and difficulties.  Based on the instructor’s judgment, additional 

instructional interventions may be implemented on that student.  The examples of additional 

instructional interventions may include one-on-one tutoring and review on the most important 

concepts and principles after the class, assigning more representative technical problems for the 

student to practice, providing remedy lessons to improve the student’s mathematical level, and 

asking the student to re-study the old topics that the student learned in the previous relevant 

courses.  Computer simulations and visualization of Dynamics problems will also help the 
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student learn better.  A detailed discussion on these instructional interventions is beyond the 

scope of this paper.  

Although Model #4 is the mathematically best among the four models, it can be used only after 

the third exam when the semester is almost over and intervention for the at-risk students is 

difficult.  In this sense, the primary application of Model #4 might be “interpretation” rather than 

“prediction,” which means Model #4 can be used to “explain” how each of the eight predictor 

variables affects a student’s final exam score.  

 

To increase the percentage of good predictions, a student’s non-cognitive factors (such as 

learning style, self-efficacy, motivation and interest, and many others 
14

), the instructor’s 

teaching effectiveness and preparation 
15

, as well as teaching and learning environment 
16

 on 

student academic performance will be included in the future modeling work. In addition, the 

models developed in the present study are based on the data collected in the Dynamics course 

that was taught in a consistent manner by the same instructor (the second author of this paper) 

with the same exam grading criteria.  Therefore, the effect of teacher variability is not taken into 

consideration in the models. It can be expected that a significant amount of future work is 

required to take all the stated non-cognitive factors and teacher variability into considerations 

due to the extreme complexity of student learning.    

 

Finally, it must be pointed out that the predictive models developed in this paper were based on 

the data collected at our public university.  The developed models can be employed as a general 

tool to predict student academic performance in the Dynamics course, so they can benefit both 

teaching and learning.  When extending the regression technique to another institution of higher 

learning, it is suggested to collect the data on student academic performance at that particular 

institution to develop a corresponding regression model.  This will ensure that the regression 

model best represents teaching and learning at that particular institution. 

 

Conclusions 

 

Prediction of student academic performance helps instructors develop a good understanding of 

how well or how poorly the students in their classes will perform, so instructors can take 

proactive measures to improve student learning.  The present study has addressed three research 

questions through quantitative modeling and analysis.  The answers to the three questions are 

summarized in the following paragraphs.  

 

Based on a total of 2,151 data points collected from 239 students in three semesters, four 

multivariate linear regression models (Eqs. 1-4) have been developed in the present study to 

predict student academic performance in an Engineering Dynamics course.  The inputs 

(predictor/independent variables) of the models include a student’s cumulative GPA; grades 

earned in Engineering Statics, Calculus I, Calculus II, and Physics; as well as scores earned in 

three Dynamics mid-exams.  The output (outcome/dependent variable) of the models is a 

student’s final exam score in the Dynamics course.   

 

Multiple criteria have been employed to evaluate and validate the developed predictive models, 

including R-square, shrinkage, the average prediction accuracy, and the percentage of good 

predictions.  Descriptive analysis shows that students in Semesters B and C (as a whole) did not 
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perform as well as students in Semester A, and shows that students in Semesters B and C were 

more diverse in their academic performance.  Thus, Semesters B and C provided two excellent 

“external” cases to validate the reliability of the predictive models developed from the data 

collected in Semester A.  In terms of both the average prediction accuracy and the percentage of 

good predictions, Model #4 − which includes all the eight predictor variables − is apparently the 

mathematically best model among the four models.   

 

The results of both internal and external validation show that the developed predictive models 

have the average prediction accuracy of 86.8%-90.7% and generate good predictions of 44.4%-

65.6%.  If an instructor would like to predict the “average” academic performance of all students 

in his/her Dynamics class, the instructor can choose Model #1 (based only on previous 

coursework) because it can be used even before a semester begins and thus the instructor has 

sufficient time to consider what proactive measures s/he will use in the new semester.  If an 

instructor wants to generate a large number of good predictions, so the instructor can focus on 

individual students, particularly those “academically at risk” students, Model #2 or Model #3 − 

which has moderate predictability to generate good predictions − can be used after the first or 

second mid-term exams.  

 

Finally, while the present study focuses on the engineering dynamics course, the methodology 

developed in this paper is applicable throughout the typical mechanics course sequence (statics, 

dynamics, mechanics of materials, and vibrations). 
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