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Introduction

Assessing the reliability of large-scale systems is a problem common to all engineering disciplines. From
simple piping systems to highly complex computer networks, reliability issues are of major concern to both
designers and manufacturers, as well as customers. At the same time, the national mathematics reform
movement would like us to introduce our students to the relevance and usefulness of the mathematics used in
other disciplines. As such, it is important to expose our students, who are interested in pursuing engineering
degrees, to the fundamentals of reliability analysis.

In this paper, we will solve for the reliability of a large-scale system. We will develop the necessary
background required for such an analysis, including a review of some fundamental probability concepts. All
introduction to basic component reliability will be followed by a discussion of series, parallel, active redundant
and standby redundant subsystems. The usefulness of the HP 48 calculator in solving for large-scale system
reliabilities will be demonstrated.

System Reliability

When assessing the reliability of a system, it is often advantageous to identify and examine the major
subsystems which comprise the overall system. After such an examination is complete, it is then possible to
compute the overall system reliability from the individual subsystem reliabilities with the use of some
elementary probability theory. We intend to show how the use of the HP 48 calculator can simplify the
computation of these subsystem reliabilities and thus enable students to analyze some fairly complicated, real-
world problems.

Consider the following scenario: You are a systems analyst and a tasking has just come across your desk to
evaluate a new Vehicle Identification System (VIS) in terms of its reliability. The main purpose of this new
system is to reduce the number of false identifications among friendly troops by keeping the Main Tanks (MT)
from firing on Bradley Vehicles (BV) when engaged in close combat. The three major subsystems are the MT,
the Thermal Imaging Subsystem (TIS) mounted on the MT, and specially treated Heat Emitting Panels (HEP)
mounted on the BV as shown in Figure 1. All components and subsystems fail independently of one another
and all component failure times are exponentially distributed with daily failure rates as shown. The goal is to
compute the overall reliability of the VIS, denoted R~Y~ (1).
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Figure 1: Block diagram used to evaluate new VIS.

Component Reliability

Let us define a random variable T to be the time until failure of a particular system component. The probability
that the ccmponent  fails at or before time t is

vhere F([) is the cumulative distribution function (ccif) of T. In determining the reliability of a component, we
are interested in the probability that it does not fail before time ~. We define the reliability function, R(i). as
follow’s:

uhere  j(r) is the probability density function (pdfl  for T. The exponential distribution is often used to predict
the useful life of equipment components. If T is exponentially distributed with failure rate k >0, then

The mean time between failure (MTBF) for the component is E(T). which is given by 1 /?~ for exponentially
distributed T.

Series Subsystems

Suppose that we have a subsystem of n components which are arranged in series as shown in Figure 2. For a
series subsystem to fimction  properly, each component must function properly. Let T denote the time until
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failuraEthe  subsystem and Ti denote the time until failure of the ith component, with reliability function
R i (t). NO W, the event that the subsystem lifetime is greater than t is the intersection of the events that the
lifetim~  of each of the n components is greater than t. If we assume that the components fail independently,
then we have

Figure 2: Series subsystem containing n components.

Parallel Subsystems

Suppose that we have a subsystem containing two components where only one of the components must function
in order for the subsystem to function. A subsystem of this type is shown in Figure 3. Once again let T denote
the time until failure of the subsystem. Furthermore, let TA and T~ represent the time until failure of

components A and B, respectively, with associated reliabilities RA (t) and R ~ (t). Now, if we assume that the
components fail independently, then the reliability of the parallel subsystem, R(t), is given by

Figure 3: Parallel subsystem containing two components.

Active Redundant Subsystems

Consider the situation in which a subsystem has n components, all of which begin operating (are active) at time
t = O. The subsystem will continue to function properly as long as at least k of the components do not fail. In
other words, if (n - k + 1) components fail, the subsystem fails. This type of component subsystem is called an
active redundant subsystem. The active redundant subsystem can be modeled as a parallel system of
components as shown in the Figure 4.
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Figure 4: Active Redundant subsystem containing n components.

We will assume that all n components are identical and will fail independently. If we let Ti be the time until

failure of the ith component, then the Ti’s are independent and identically distributed (iid) random variables for i

=1,2, ..., n. Thus, Ri (t), the reliability at time t for component i, is identical for all components.

Recall that this subsystem operates if at least k components function properly. If we define the random variable
X to be the number of components functioning at time t and the random variable T to be the time until failure of
the subsystem, then we have

We have n identical and independent components with the same probability of failure by time t. This situation
corresponds to a binomial experiment, where X is a binomial random variable with probability mass function
(pmj)

The cd~for  X is given by

We can solve for the subsystem reliability using the binomial distribution with parameters n and p = Ri(t) as

follows

since X is a discrete random variable. The HP 48 calculator has programs available to compute both b(k; n, p)
and B(k; n, p) for arbitrary k, n, and p.
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Standby Redundant Subsystems

Operfiing active redundant subsystems can sometimes be inefficient, since all components in excess of the k
required are not necessary for the subsystem to operate. Another alternative is the use of spare components.
Suppose our subsystem requires k operational components and we have (n - k) spares available. When a
component in operation fails, a decision switch causes a spare or standby component to activate (becoming an
operational component). The subsystem will continue to function until (n - k + 1) components have failed. We
refer to this type of subsystem as a standby redundant subsystem. We will consider only the case where one
operational component is required (the special case where k = 1 ) and there are (n - 1) standby (spare)
components available. We will assume that a decision switch (DS) controls the activation of the standby
components as shown in Figure 5:

Figure 5: Standby Redundant subsystem containing n components.

We further assume that the decision switch is 100 % reliable and instantaneously switches to a standby
component. If we let Ti be the time until failure of the ith component, then the Ti’s are independent and

identically distributed for i = 1, 2, . . . . n. Thus, Ri(t) is identical for all components. If we let T be the time until

failure of the entire system, then we have

Furthermore, if we define the random variable Y to be the number of components that fail before time t in a
standby redundant subsystem, then the reliability of the subsystem is given by

where P( Y < n ) is the probability that less than n components fail during the time interval (O, t). This situation,
where we are counting the number of component failures up until time t, corresponds to a Poisson process with
the following pmf
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wher~j~ the failure rate per unit time.

The cd~for  Y is given by

The TIS is composed of two
redundant system in which at

R~(l) = P(TM > 1) = exp(–1  / 24) = 0.9592

subsystems, the Power Supply (PS) and the Sight (S). The PS is an active
least one of the three battery-converter-distributor series must work to ensure

power. Let TP~ be the time  until failure of the PS and X be the number of battery-converter-distributor series

functioning at time t. We have

RP~(l)= P(TP~ >1)= P(X>l)= 1-P(X <1)

where X is binomially  distributed with parameters n=3 and p= O.4925. This value of p corresponds to the
battery-converter-distributor series reliability. To solve for the reliability of the PS, we can use a HP 48
calculator program called BINC, which computes cumulative binomial probabilities, as follows:

RP~(l)  = 1- P(X< 1)= l- BINC(p, n,k)

where n and p are as given above and k = O. The BINC program takes as input the parameters n and p, along
with a value for k and computes the associated cumulative binomial probability. Note that the calculator
programs for both the exact and cumulative binomial and Poisson distributions are given in Appendix
HP 48 calculator. We have RP~(l)  = 0.8693. The reliability for the Sight for one hour is given by

R~(l) = RE(l)RF~(l)

A for the
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wher= lk~ (l), R FS (1) are the reliabilities for the Emitter and Filter-Sensor subsystems, respectively. The
Emitter subsystem is a standby redundant system in which there are three standby emitters. If a functioning
emitt~r  fails, a decision switch allows a standby emitter to activate, thus permitting continued service. Let Y be
the number of emitters that fail before time t. Since Y follows a Poisson distribution, we have

RE(t) = P(Y < 4) = POIC(ctt,  n- 1)

where at is the failure rate of the emitters, n is the number of emitters and POIC is the HP 48 calculator
program, much like BINC, which takes as input the parameter at, along with an appropriate value for n, and
returns the cumulative Poisson probability. The reliability for the Emitter subsystem for one hour is computed
as

RE(l) = POIC(10 / 24, 3)= 0.9991

The Filter-Sensor subsystem, like the PS subsystem, is an active redundant system where at least two of the
Filter-Sensor series must operate for the subsystem to operate. Let Z be the number of Filter-Sensor series
operating at time t. We have

RFS(l)  = 1 – P(Z < 2) = 1- BINC(O.6592, 4, 1) = 0.8821

The reliability for the Sight subsystem then is given by 0.8813, from which the reliability of the TIS is
computed as 0.7661. Finally, in a manner similar to the active redundant systems above, we solve for the
reliability of the HEP subsystem as .9750. As a result we can calculate the overall system reliability as follows:

R~Y~(l)  = (0.9592)(0.7661)(0.9750) = 0.7165

Discussion and Conclusion

The HP 48 plays a key role in
allow the student to compute

the completion of this problem. Both the BINC and POIC calculator programs
the probabilities associated with the active redundant and standby redundant

subsystems without the tedious computation involved with a direct application of the cumulative binomial and
cumulative Poisson formulations. Additionally, the use of these calculator programs permits the student to
dispense with binomial and Poisson tables of cumulative probabilities, which, in general, only give probabilities
for a limited set of parameters. Also, the student is able to easily modify the existing system by adding or
removing components in the active and standby subsystems and see the effects on the overall system reliability.
As a result, the calculator gives the student the ability to solve problems with many subsystem components
quickly and with real-world parameters assigned to the components.

Appendix A - Calculator Programs

Exact Binomial Probabilities: BINX Program

<<-> pNX’ COMB(N,X)*p  AX* (l-p) A(N-X) ’>>

BINX returns the probability of x successes out of n trials, given a probability p of success.
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Cumulative Binomial Probabilities: BINC Program

<<-> PNY<<OOYFORX PNXBINX+ NEXT>>>>

BINC returns the cumulative binomial probability P( Xs x ).

Exact Poisson Probabilities: POIX Program

<<-> Lx’ Exp(-L)*~Ax  /x!’>>

POIX returns the probability of exactly x successes given a rate L,

Cumulative Poisson Probabilities: POIC Program

<<-> LY<<()()YF()RXLX  POIX+ NEXT>>>>

POIC returns the cumulative Poisson probability P( Xs x ).
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