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Abstract 
 
Frequently in the Computer Science curriculum we introduce topics in an abstract fashion in 
which the abstraction seems perfectly straightforward as well as easily implementable to 
students.  Such is the topic of search.  Generally, the topic of search is introduced to students as 
early as the data structures course where the student is introduced to various algorithms for the 
search of tree structures.  In this light, students understand and are able to implement search as 
an abstract method of  information retrieval. However, in this paper we describe a project in 
which students implement one kind of goal-based agent called a problem-solving agent. The 
development and implementation of this agent required the construction of a search process to 
find solutions to real-world physical problems.4,8 
 
Introduction 
 
A main element in analyzing a problem is the state space in which the problem exists, which 
describes all the possible configurations of the environment.  In robotics, the environment 
includes the body of the robot itself.  Both the configuration of the robot�s body and the locations 
of objects in physical space are defined by real-valued coordinates.  It is therefore impossible to 
apply standard search algorithms in any straightforward way because the numbers of states and 
actions are infinite.  Much of the work in robot planning has dealt with ways to tame these 
continuous state spaces. 
 
The question of moving a robot around successfully can be considered as problems of motion in 
a configuration space.  Algorithms that handle a configuration space directly assume that an 
exact description of the space is available, so they cannot be used where there is significant 
sensor error and motion error.  In some cases, no description of the space is available until the 
robot starts moving around in it.  Russell and Norvig 5 identify five major classes of navigation 
and motion planning algorithms.  We arrange them below roughly in the order of the amount of 
information required at planning and execution times: 
 

Cell decomposition-these methods break continuous space into a finite number of cells, 
yielding a discrete search problem. 

 
Skeletonization- these methods compute a one-dimensional �skeleton� of the 
configuration space, yielding an equivalent graph search problem. 
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Bounded-error planning- these methods assume bounds on sensor and actuator 
uncertainty, and in some cases can compute plans that are guaranteed to succeed even in 
the face of severe actuator error. 

 
Landmarked-based navigation � these methods assume that there are some regions in 
which the robot�s location can be pinpointed using landmarks, whereas outside those 
regions it may have only orientation information. 

 
On-line algorithms � these methods assume that the environment is completely unknown 
initially,  although most assume some form of accurate position sensor. 

 
A Cell Decomposition Problem-Discrete Search as a Function Maximization 
 
Any search problem that is used to search blindly through a space will, generally, grow 
exponentially.  In exploring a large search space, the trick is to use additional information about 
the problem being considered to avoid examining most of the nodes that might conceivably lead 
to solutions.  Instead of selecting the node to expand next in a domain-independent way, we need 
to use domain-specific information for the same purpose. 
 
Of course, the problem of finding the best node to expand next is generally no easier than the 
search problem that we are trying to solve.  So, what is typically done is to apply some sort of 
heuristic, or �rule of thumb,� 6 to decide what to do.  For example, given a list of nodes to be 
expanded, we might simply guess how far each is from a goal node and expand the one thought 
to be closest. 
 
Of course, things may not always work out so easily because our heuristic function estimating 
the distance to the goal may make mistakes in some cases.  Another problem is that we need to 
limit the amount of time spent computing the heuristic values used in selecting a node for 
expansion. 
 
There is no real �solution� to these problems of inaccurate or computationally expensive 
heuristics; the bottom line is that search problems sometimes will take an exponential amount of 
time to solve, and there is simply no way around this.  But there is a third problem with this 
approach that is more tractable. 3 
 
This problem can be best be understood by considering an example.  Suppose that we are 
looking for a solution to a maze, where our estimate of the value of a node is simply the straight 
line distance from the current position and the exit from the maze.  Thus, at any given point we 
do our best to move closer to the exit. 
 
Now consider the maze of figure 1, where a robot enters the maze on the left and exits on the 
right.  As shown there are two solutions; 1. a simple one that begins with a step downward and 2. 
a much more complex one that begins with a step directly toward the exit but is then deflected in 
other directions.  The algorithm that we have described will find the longer of these two paths, 
since it will begin by moving toward the goal and will then be committed to this choice. 
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  Figure 1. A maze with two solutions 
 
 
Let us consider a heuristic search from another perspective, that is,  from a formal point of view.   
Search problems can be simple function maximization problems: we have function f(p) that 
measures the interestingness of a point p on the surface and need to find that value of p for which 
the function�s value is a maximum.2 
 
The functional analog then is to attempt to find the global maximum of a function of many 
variables by always moving in the direction in which the rate of change is the greatest.  This 
technique is known as hill climbing or steepest ascent for the obvious reason.  The search version 
is presented below. 
 

1. Set L to be a list of the initial nodes in the problem, sorted by their expected 
distance to the goal.  Nodes expected to be close to the goal should precede those 
that are farther from it. 

2. Let n be the first node on L.  If L is empty, fail. 
3. If n is a goal node, stop and return it and the path from the initial node to n. 
4. Otherwise, remove n from L.  Sort n�s children by their expected distance to the 

goal, label each child with its path from the initial node, and add the children to 
the front of L.  Return to step 2. 

 
In this version of the algorithm, we always take a step from a child of the previously expanded 
node when possible; this gives hill climbing a �depth first� flavor.  If we drop this restriction we 
get an algorithm known as best-first search.  That is: 
 

1. Set L to be a list of the initial nodes in the problem. 
2. Let n be the node on L that is expected to be closest to the goal.  If L is empty, 

fail. 
3. If n is a goal node, stop and return it and the path from the initial node to n.. 
4. Other wise, remove n from L and add to L all of n�s children, labeling each with 

its path from the initial node.  Return to step 2. 
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Odometry As A Dead-Reckoning Navigation Method 
 
Odometry is the most widely used navigation method for mobile robot positioning.  Odometry is 
based on simple equations that are easily implemented and that utilize data from inexpensive 
incremental wheel encoders.  It is well known that odometry provides good short-term accuracy, 
is inexpensive, and allows very high sampling rates.  However, the fundamental idea of 
odometry is the integration of incremental motion information over time, which leads inevitably 
to the accumulation of errors.  Particularly, the accumulation of orientation errors will cause 
large position errors which increase proportionally with the distance traveled by the robot.  
Despite these limitations, most researchers agree that odometry is an important part of a robot 
navigation  system and that navigation tasks will be simplified if odometric accuracy can be 
improved.  Odometry is used in almost all mobile robots, for various reasons: 
 
• Odometry data can be fused with absolute position measurements to provide better and more 

relieable position estimation. 
• Odometry can be used in between absolute position updates with landmarks.  Given a 

required positioning accuracy, increased accuracy in odometry allows for less frequent 
absolute position updates.  As a result, fewer landmarks are needed for a given travel 
distance. 

• Many mapping and landmark matching algorithms assume that the robot can maintain its 
position well enough to allow the robot to look for landmarks in a limited area and to match 
features in that limited area to achieve short processing time and to improve matching 
correctness. 

• In some cases, odometry is the only navigation information available; for example: when no 
external reference is available, when circumstances preclude the placing or selection of 
landmarks in the enviroment, or when another sensor subsystem fails to provide usable data. 
7 

 
Robotic Platform 
 
Autonomous robot navigation provides an excellent method of providing students with 
interesting search problems.  In the instance described in this paper students are provided with an 
ActivMedia Pioneer 2 Mobile robot platform. 
 
An ActivMedia Pioneer 2 mobile robot is a versatile platform built on the client-server model.  
The robot acts as a server and uses �Saphira� resources.  Saphira is a mobile application 
development environment.  The robot server handles the low-level details of the sensors and 
drive management, such as, collecting range finding information from on-board sensors, 
maintaining individual wheel speeds, positioning, heading and so on requires the client to guide 
it. 
 
The Pioneer�s on-board systems include: An 8 transducer sonar system, that is, 5 in the front 
providing 180 degree coverage, one on each side, and one in the back; A fast-track vision 
system; A radio modem; Electronic compass; and high precision drive wheel encoders and 
decoders. P
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Implementing Best-First As An Autonomous Robot Navigation Algorithm  
 
The problem that was assigned was to have the Robot navigate over a course with starting point 
S and ending point G  using a Best-First Search algorithm.  The course may contain any number 
of intermediate obstacles (Ix).  The Best-First algorithm, described above,  is a goal-directed and 
knowledge-based algorithm, that is, both S and G are defined prior to navigation of the course.  
The objective being to move from S to G through a series of obstacles without colliding with the 
obstacles.  The algorithm is implemented by having the robot traverse the Y component of its 
goal vector first.  Reaching the Y component of its goal the robot then traverses the X component 
of it goal vector. 1 
 
In order to reset and initiate all systems the Robot is placed at S and is pointed to the east or 
along , what has been designated, the positive X axis.  In order to simplify the computation time 
and effort it was decided that the Robot would, after initializing itself, rotate to the north or 
positive Y axis and then proceed to move toward G.  Upon encountering an obstacle it will either 
pass by the obstacle or go around the obstacle depending upon the distance and orientation of the 
robot with respect to the obstacle.  The robot will then perform a search for the next obstacle 
before it progresses in the positive Y direction. 
 
The algorithm was implemented using the Robot�s sonar system to determine the distance to the 
nearest obstacle.  The robot keeps track of both its Y and X coordinates by tracking its precision 
wheel encoders and comparing with its goal X and Y components.  The robot rotates in 10 
degree increments allowing for obstacle orientation recording.  Having surveyed its 
surroundings, the robot orients itself toward the nearest obstacle.  The robot then, based on the 
heuristic that at each position of the robot it will take the shortest path by progressing towards 
the obstacle nearest to it, attempts to go around the obstacle.  
 
When the robot discerns that it is within 200 mm of the Y coordinate of the goal (to provide a 
space buffer for the robot to pass by) it will compare its X coordinate with that of the goal.  If the 
X coordinate is greater than the X coordinate of the goal G, the robot will move toward the west 
(negative X direction) until it reaches its goal.   Utilizing this approach helps in finding the exact 
goal of the robot with the deviations discussed below. 
 
Of course, the robot will reach its goal with the greatest precision, if the X path is unrestricted by 
obstacles.  If, however, there happens to be obstacles in the path of the robot on its way to 
reaching the X coordinate of its goal, G, there could be considerable deviation in the path of the 
robot from the Y coordinate of G, as depicted in Figures 2, 3, and 4. 
 
In some instances a deviation is inevitable, since, if the goal happens to be a point within or 
under the obstacle, it cannot be reached (Figure 2).  In other situations, (Figure 3 & 4), a possible 
solution to refining this deviation would be integrating the algorithm with mapping wherein the 
robot is actually aware of its goal at a certain distance so that it could change its path and head 
toward the correct goal. 
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               Legend: 
                    G � Goal 
                    S � Start Location 
                    F � Final Location 
                                Robot Path
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While heading towards the X coordinate of G the robot           
moves in straight line as long as there are no obstacles in its  
path.  When the robot encounters an obstacle, it tries to  
move around the obstacle rather than stop, hence in moving  
around the obstacle it arrives at the correct X coordinate of  
the goal, but sacrifices its correct Y coordinate. 
 
At this point the algorithm is then recursively repeated until  
the goal is reached or it is determined to be unobtainable  
for the reasons given above. 
 
Implementation Difficulties 
 
Although the algorithm described above appears  
straightforward, robust, and easy to develop, when  
implemented in the real world a number of problems  
where encountered.  The first problem to overcome  
was to simply not run into anything.  Trial and error using several different hallways as well as a 
maze-like obstacle course in a large lab space indicating that it was necessary to keep the robot at 
least 200mm away from walls and other obstacles.  This buffer zone was needed for several 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
reasons.  First, the mobile robot in question is equipped with a gripper on its front, which 
projects several centimeters in front of the sonars.  Second, the real world is full of small 
pebbles, bumps in carpet padding, and so forth that cause a moving robot to wobble.  Third, 
sometimes an object encountered is actually not a chair, but is instead a human leg that moves 
quickly when startled by a robot. 
 
Moving around an obstacle appears to be a simple process - turn left, move along object until it 
disappears from the side sonar, move a distance beyond the object to allow space to turn, turn 

Figure 2.  Sample Path #1 
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Figure 3.  Sample Path #2    Figure 4.  Sample Path #3 
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right, etc.  However, in practice obstacle avoidance is quite difficult.  The first problem to solve 
is how to avoid obstacles while avoiding an obstacle.  A recursive algorithm was the obvious 
solution.  However, while avoiding object A, if object B is found and is avoided leading to object 
C whose avoidance leads back to object A, the algorithm will infinitely recurse.  One innovative 
solution was to randomly traverse clockwise or counterclockwise when an object was 
encountered.  A second obstacle avoidance problem is that is very possible to encounter the point 
G while traversing an obstacle.  Also, traversing clockwise may more likely lead to the goal, 
while counterclockwise traversal may lead the robot even farther away from the goal.  The 
complexity of these interrelated problems, to say the least, caused students to realize the 
importance of problem analysis and algorithm testing over their usual source code development 
technique of immediately sitting down and writing code. 
 
Systematic and Non-Systematic Odometry Errors 
 
Odometry is based on the assumption that wheel revolutions can be translated into linear 
displacement relative to the floor.  Students must learn that this assumption is only of limited 
validity.  One extreme example is wheel slippage: if one wheel was to slip on, say, an oil spill, 
then the associated encoder would register wheel revolutions even though these revolutions 
would not correspond to linear displacement of the wheel. 
 
Along with the extreme case of total slippage, there are several other more subtle reasons for 
inaccuracies in the translation of wheel encoder readings into linear motion.  All of these errors 
fit into one of two categories: systematic errors and non-systematic errors. 
 
Systematic Errors 

• Unequal wheel diameters. 
• Average of actual wheel diameters differs from nominal wheel diameter. 
• Actual wheelbase differs from nominal wheelbase. 
• Misalignment of wheels. 
• Finite encoder resolution. 
• Finite encoder sampling. 

Non-Systematic Errors 
• Travel over uneven floors. 
• Travel over unexpected objects on the floor. 
• Wheel slippage due to: 
v slippery floors. 
v overacceleration. 
v fast turning (skidding). 
v external forces (interaction with external bodies). 
v internal forces (castor wheels). 
v non-point contact with the floor. 

 
Students must also learn that the clear distinction between systematic and non-systematic errors 
is of great importance for the effective reduction of odometry errors.  For example, systematic 
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errors are particularly grave because they accumulate constantly.  On most smooth indoor 
surfaces systematic errors contribute much more to odometry errors than non-systematic errors. 
 
Conclusions 
 
While we have used a very sophisticated robot system provided by a National Science 
Foundation grant, the advent and use of inexpensive, hobbyist robot systems, such as the Lego 
MindStorms robot systems, makes the application of previously abstract computing algorithms 
come to life. 
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