W MIII//

:*" 2. 121st ASEE Annual Conference & Exposition

° _— Indianapolis, IN

HEEiﬁ.'Eer;;g June 15-18, 2014
Sy 1002222222222222) Paper ID #9875

RT-DSP Using ’See Through”

Dr. Cameron H. G. Wright P.E., University of Wyoming

Cameron H. G. Wright, Ph.D., PE., is an Associate Professor with the Department of Electrical and
Computer Engineering at the University of Wyoming, Laramie, WY. He was previously Professor and
Deputy Department Head in the Department of Electrical Engineering at the United States Air Force
Academy, and served as an R&D engineering officer in the U.S. Air Force for over 20 years. He received
the B.S.E.E. (summa cum laude) from Louisiana Tech University in 1983, the M.S.E.E. from Purdue
University in 1988, and the Ph.D. from the University of Texas at Austin in 1996. Cam’s research interests
include signal and image processing, real-time embedded computer systems, biomedical instrumentation,
and engineering education. He is a member of ASEE, IEEE, SPIE, BMES, NSPE, Tau Beta Pi, and Eta
Kappa Nu. His teaching awards include the University of Wyoming Ellbogen Meritorious Classroom
Teaching Award (2012), the Tau Beta Pi WY-A Undergraduate Teaching Award (2011), the IEEE UW
Student Branch’s Outstanding Professor of the Year (2005 and 2008), the UW Mortar Board " Top Prof”
award (2005 and 2007), the Outstanding Teaching Award from the ASEE Rocky Mountain Section (2007),
the John A. Curtis Lecture Award from the Computers in Education Division of ASEE (1998, 2005, and
2010), and the Brigadier General Roland E. Thomas Award for outstanding contribution to cadet education
(both 1992 and 1993) at the U.S. Air Force Academy. He is an active ABET evaluator and an NCEES PE
exam committee member.

Dr. Thad B. Welch P.E., Boise State University

Dr. Thad B. Welch, PE., Boise State University

Thad B. Welch, Ph.D., PE. received the B.E.E., M.S.E.E., E.E., and Ph.D. degrees from the Georgia
Institute of Technology, Naval Postgraduate School, Naval Postgraduate School, and the University of
Colorado in 1979, 1989, 1989, and 1997, respectively. He was commissioned in the U.S. Navy in 1979
and has been assigned to three submarines and a submarine repair tender. He has deployed in the Atlantic
Ocean, Mediterranean Sea, and Arctic Ocean.

From 1994-1997 he was an Instructor and Assistant Professor teaching in the Electrical Engineering
Department at the U.S. Air Force Academy, Colorado Springs, CO. During 1996-1997 he was recognized
as the Outstanding Academy Educator for the Electrical Engineering Department.

From 1997-2007 he was an Assistant Professor, Associate Professor, and Permanent Military Professor
teaching in the Electrical Engineering Department at the U.S. Naval Academy, Annapolis, MD. During
2000-2001 he was recognized as the Outstanding Academy Educator for the Electrical Engineering De-
partment. During 2001-2002 he received the Raouf outstanding engineering educator award. During
2002-2003 he was recognized as the Outstanding Researcher for the Electrical Engineering Department.
He was an invited scholar at the University of Wyoming, fall 2004, where he was recognized as an emi-
nent engineer and inducted into tau beta pi. In 2006 he co-authored “Real-time Digital Signal Processing,
from MATLAB to C with the TMS320C6x DSK.”

From 2007-2010 he was Professor and Chair of the Electrical and Computer Engineering Department at
Boise State University, Boise, ID. From 2011-2012 he was the inaugural Signal Processing Education
Network (SPEN) Fellow. In December of 2011 the second edition of their real-time DSP book was
released. From 2012-2014 he and his wife lived with 20 engineering students in the engineering residential
college (ERC) on the Boise State campus.

His research interests include real-time digital signal processing (DSP), the implementation of DSP-
based systems, communication systems analysis, efficient simulation of communication systems, spread-
spectrum techniques, and ultra-wideband systems.

Mr. Michael G. Morrow, University of Wisconsin - Madison

Michael G. Morrow, M.Eng.E.E., P.E., is a Faculty Associate in the Department of Electrical and Com-
puter Engineering at the University of Wisconsin, Madison, WI. He previously taught at Boise State

(©American Society for Engineering Education, 2014

12907 72 obed

Wi >

.*'ﬁ/ Z 121st ASEE Annual Conference & Exposition
H.En:lﬂ : Indianapolis, IN

Engineering June 15-18, 2014
Education

2222222222222222222)

Paper ID #9875

University and the U.S. Naval Academy. He is the founder and President of Educational DSP (eDSP),

LLC, developing affordable DSP education solutions. He is a senior member of IEEE and a member of
the ASEE.

(©American Society for Engineering Education, 2014

22907 ¢ obed

Real-Time DSP Using ‘‘See-Through”

Abstract

Engineering educators teaching digital signal processing (DSP) have found that using hands-on ex-
ercises for students can smooth the transition from theory to practical real-time DSP. However, before
significant learning can begin using such exercises, students must build their confidence in the hardware
and software platforms. When using audio signals, a “talk-through” project accomplishes this. For intro-
ducing more complicated signals such as video, the authors propose the use of a “see-through” project.
This paper provides a description of a see-through project on a high-performance real-time DSP plat-
form, discusses how such a project can lead to better follow-on learning using more advanced projects,
and provides some initial results of classroom use.

1 Introduction

Digital signal processing (DSP) is now considered one of the “must know” topics by most employers of
new electrical and computer engineering (ECE) graduates. While DSP may be taught in various ways, it is
generally agreed by engineering educators that a solid understanding of many fundamental DSP topics is
more fully realized when students are required to implement selected DSP algorithms in real-time (typically
in C).! While non-real-time (i.e., off-line) algorithm implementations with tools such as MATLAB or
LabVIEW are easier to include in courses, and require more modest hardware and software, experience
has shown there is significant benefit for students to including real-time DSP in the curriculum.

The best approach seems to be one that uses both types of exercises: non-real-time and real-time. With
regard to non-real-time exercises, it’s clear that interactive learning, exercises, and demonstrations to stu-
dents using off-line methods are very useful for helping them to build an initial mental model.>® However,
taking the next step by requiring students to make the transition to real-time DSP implementations has been
shown to cement a more complete understanding of DSP topics.”

Since the late 1990’s, the authors of this paper have reported on proven DSP teaching methodologies,
hardware and software solutions, and various DSP tools that have helped motivate both students and faculty
to implement real-time DSP-based systems, and thereby improve education in signal processing and related
topics.®!° This support to educators teaching DSP includes a textbook (now in its second edition) and a
web site that specifically helps both professors and students (along with working engineers) master a variety
of real-time DSP concepts.??!

When using real-time DSP in courses, we have observed that there can be an initial stumbling block, which
can greatly impede student progress. Specifically, we have found that when students are first making the
transition from the more “comfortable” world of off-line signal processing (typically using MATLAB) to
the unfamiliar world of real-time DSP, they must quickly establish confidence in the hardware and software
platform before significant learning can begin. Without such confidence, students quickly assume that any
errors or incorrect results from their DSP efforts must be due to the platform. With such a mindset, students
will almost never investigate further to uncover other possible reasons for the flawed outcome, mainly
because they are not yet comfortable with the new platform. To establish such confidence in the platform,
a highly simplified “stripped down” first exercise is used, that merely tests the ability of the platform to
correctly acquire input data samples and provide unmodified samples as output. No signal processing
algorithm is performed by the processor to modify the samples; this exercise is meant to be just “sample
in, sample out.”

€'290T ¢ abed

Correct output thus confirms for the student that proper initialization and configuration of all the hardware
has taken place, that a correct interrupt vector table is being used, that the appropriate interrupt service
routines (ISRs) are executing, that proper operation of the ADC and DAC of the intended codec is taking
place, that correct execution of the compile-link-load software development chain was performed, and even
verifies the correct connection of all the necessary cables and wires. A problem with any of these items
would cause this first exercise to fail, at which point the instructor can guide the student toward a resolution
of the problem. Once the first exercise is successfully completed, students are considerably more likely
to take an appropriately critical and investigative approach to any errors they may encounter in the more
sophisticated exercises that follow. With such confidence in the platform established, real learning can
proceed. Some professors may consider such a “do nothing” program to be a trivial exercise, but we have
been convinced by our own and our colleagues’ experiences that skipping such a step significantly impedes
learning.

2 The Talk-Through Real-Time DSP Exercise

When dealing with signals in the audio range, this first exercise has been called ralk-through. In talk-
through, an analog audio signal is acquired by codec’s ADC channels at the desired sample frequency, and
(assuming correct operation) the same audio signal is output from the codec’s DAC channels (within the
limitations imposed by factors such as quantization error, of course). Very simple modifications to the talk-
through exercise can introduce basic concepts such as aliasing, quantization, left+right versus left-right
channel combinations, and so forth. Despite the fact that the audio signal used is often not speech, and is
most often some kind of music, the generic name “talk-through” has stuck.

Audio signals provide a rich source of inputs for a wide variety of real-time DSP exercises. When students
hear the result of given algorithm, they tend to remember more than if they just looked at “before and after”
plots of the signal. There may come a time, however, when the professor wants to introduce the students to
a more complicated signal than audio, perhaps one at a higher frequency and wider bandwidth. One such
signal that is readily available using low-cost equipment and one that also seems to excite students even
more than audio is a video signal. When making the transition to video signals, the authors propose the use
of a logical extrapolation of talk-through that we call a see-through project.

3 The See-Through Real-Time DSP Exercise

The authors’ current preference for high-performance real-time DSP hardware to be used in the classroom
is the relatively new, and surprisingly inexpensive, OMAP-L138 Low Cost Development Kit (LCDK) by
Texas Instruments.?>?*> One of the many advantages of this real-time DSP platform is the plethora of I/O
choices. Most germane to this discussion about “see-through” is the video input and video output capability
of the board, as shown in Fig. 1.

3.1 The NTSC Video Standard

The video input of the LCDK is intended for a standard definition television-quality composite video signal
such as NTSC, PAL or SECAM. NTSC, for example, is an analog baseband signal with a nominal 6 MHz
bandwidth.?*#? Note that historically, NTSC has also been called RS-170A and EIA-170A, where the “A”
suffix denotes a color-capable signal (RS-170 is monochrome only). The video display format defined by
NTSC is interlaced, with two fields (sometimes called the odd and even fields) of every other scan line
required to create one complete frame. The rate defined by NTSC is approximately 60 fields per second
and thus 30 frames per second.” Each NTSC field consists of 262.5 scan lines; two fields per frame results
in 525 scan lines per frame, of which a maximum of only 483 lines can be visible on the display screen due
to factors such as synchronizations and vertical blanking/retrace. A comparison of progressive scan versus
interlaced scan video display format is shown in Fig. 2. The “scan” aspect of progressive and interlaced

*More precisely, NTSC is 59.94 fields/sec and 29.97 frames/sec.

¥'290T ¢ abed

—EE e
X
MCASP| Stereo Audio ” “
12 Codec o % TS0 >
L320AIC
101100 (LY AUDIO OUT N
——ot e e oo PP
— UAne7108) :
CAMERA c
HEADER
¥y o (=) T K
DDR-II > Video Digital Com R
SDRAM v Decoder <T% ‘m _—
128MB (TVP5147M1) <0
(K4T1G164QF -
» VPIF_DIN
-BCE7) SOR > i
OMAP-L138/ = Micro SD/
C6748 SD/MMCO | MMC Connector
NAND Flash o o LCDC
4Gb EMIF-A
MT29F4G16 * o Video DAC
ABADAH4 5 (THS8135) VGA
A
USB 1.1
! R
T;JSBA USB | Dual Voltage
- e B LCD Headers
Transceiver
DIP STATUS SPi1 E B
SWITCH LEDs ingerprint Sensor
SAT, AES850

Figure 1: Block diagram of the LCDK from Texas Instruments. Note the video input and output capability
indicated by the red arrows on the right side of the figure.

1 /7 > Y 263
2| e e ——— — — —t———— 1
-
3| = - ———— 2 264
I p——— 3 2
T 265
525 Line Non-Interlaced Raster Scan 525 Line Interlaced (2 to 1) Raster Scan
Only first and last few scan lines shown for clarity. Only first and last few scan lines shown for clarity.
Line separation not drawn to scale. Line separation not drawn to scale.
42 scan lines "lost" during the vertical retrace. 21 scan lines "lost" during each vertical retrace.
There is one vertical retrace per frame. There are two vertical retraces per frame.
503
482 e 241 503
——————— —.———— 482 504 241
483 | =—==—==——"p 7 00000000 242
G -~/ 483 504

Figure 2: A comparison of progressive scan (left) and interlaced scan (right) video display.

G'290T ¢ abed

display comes from the assumption of a raster scan, which is the “line-by-line”” method used by cathode
ray tube (CRT) displays to present video information. Newer displays such as LCD screens do not use
raster scan per se, but by necessity use preprocessing electronics to be compatible with that type of signal.

The original purpose of interlaced video was to conserve bandwidth for a signal intended for over-the-
air broadcast. However, interlaced video standards such as NTSC became so widespread, and compatible
equipment became so readily available and inexpensive, that such standards are often used even if the signal
is never intended for broadcast. Interestingly, digital video cameras (such as those using CCD or CMOS
focal plan array sensors) do not capture an image as a raster scan (neither progressive nor interlaced), but
for compatibility reasons often covert the image to a signal format such as NTSC. Thus while modern
cameras and displays don’t “need” to employ either type of raster scan format, historical compatibility
reasons (and affordability) keep these types of “older” signals of current interest.

To add color information in a compatible way to the original monochrome RS-170 signal, NTSC has
subcarriers defined for luma, chroma, and audio. Luma is basically brightness, and is equivalent to the
monochrome part of the video signal. Chroma has two components, modulated in quadrature, and encodes
the necessary color information. A basic spectral diagram of the NTSC signal is shown in Fig. 3. From
the preceding discussion and Fig. 3, one can readily see that the NTSC video signal is a significant step
up in complexity from a typical 20 kHz bandwidth audio signal sampled at 48 kHz, and the pitfalls for the
student are that much greater.

3.2 Video Input and Output on the LCDK

On the LCDK board, the analog video input is digitized, decoded, and formatted by the TVP5147M1
digital video decoder. This chip includes a high performance ADC stage (sampling at up to 30 Msps)
and the necessary circuitry for extracting and providing at the decoder chip output the separated luma and
chroma information as individual 10-bit data streams (using the intermediate steps of YUV — YCbCr —
luma (Y) and chroma (C) format). The chroma data stream uses 5 bits/sample each for Cb and Cr, in an
alternating interleaved pattern of [CbCrCbCr - - -]; the luma data stream uses the full 10 bits/sample for Y.
No audio demodulation is performed by the TVP5147M1 decoder chip. While the LCDK implementation
of this decoder chip only takes advantage of a small subset of the available modes, the user must still fully
configure the chip via the on-board I2C bus to set the appropriate mode of operation.

The analog video output from the LCDK is formatted and produced by the THS8135 video DAC; this chip

luma chroma audio
carrier carrier carrier
luminance
O
C
@®©
le]
©
©
>
o)
1.25 MHz 1.5 MHz 0.5 MHz
——>>
N P 3.579545 MHz
= 3 4.5 MHz
LO
@V}
Total: 6 MHz

Figure 3: Spectrum of a typical NTSC video signal.

9'290T ¢ abed

accepts digital input in either YCbCr or RGB format, and supplies a standard VGA (incorporating analog
RGB) signal as output. On the LCDK, this output connects to a DB-15 connector.

At first glance, a “see-through” exercise for real-time DSP using an LCDK seems straightforward. Simply
connect an analog video camera that outputs an NTSC signal to the LCDK’s video input, connect a VGA-
compatible monitor to the DB-15 VGA output, write a bare-bones “do nothing” real-time DSP program
to bring in the input and send out the output...but in reality it’s not nearly that easy. The initialization
of the LCDK must include extensive configuration code to set the proper I/O, interrupt enable, interrupt
vector table, initial setup of the TVP5147MI1 digital video decoder, DMA channels, and so forth, which is
not trivial but only needs to be done at start-up. However, the actual real-time frame-to-frame operation
isn’t straightforward either. While the TVP5147M1 digital video decoder outputs YCbCr, and one of the
input modes of the THS8135 video DAC accepts YCbCr, the LCDK board is constructed in such a way
that the configuration pins on the THS8135 chip are hardwired to set the input mode to RGB only. Thus at
a minimum, a conversion from YCbCr to RGB must be included as part of the real-time see-through code.

Conversion from YCbCr to RGB is a simple linear relationship. Defined most basically, independent of
the number of bits per sample, the conversion is

R 1.0 0.0 1.402 Y
G |=| 10 -0.3441 -0.7141 Chp
B 1.0 1.772 0.00015 Cr

where it is assumed that the values are normalized such that the range of the RGB values and the luma
Y values is [0, 1], the range of the chroma Cb and Cr values is [—0.5, +0.5], and any head-room or toe-
room has been removed by rescaling to full-range as needed. Variations incorporating head-room and toe-
room compress the range of allowable quantization levels to compensate for noise and channel distortions
anticipated in a signal to be broadcast over-the-air. Note that there are minor variations on the conversion
coefficients shown above depending upon what version ITU standard is appropriate. The normalized values
shown here are correct for ITU-R BT.601, which are the same ones used for the JPEG and MPEG standards.

The YCbCr — RGB conversion method shown above could be directly implemented in the real-time DSP
code. However, since some processing had to be performed inside the see-through ISR anyway, we took
it as an opportunity to explore certain aspects of the OpenCV library and the TMS320C6748 SYS/BIOS
Software Development Kit (SDK) provided by Texas Instruments (TI); see reference 26. In particular, we
used basic parts of the “Facedetect” and “VPIF Loopback™ example projects from the SDK.

4 Implementation Demo

The TMS320C6748 SYS/BIOS SDK incorporates various TI utility functions and the OpenCV library.
OpenCV is an open source computer vision library originally created by the Intel Corporation in 1999,
then transferred to the non-profit OpenCV.org group in 2012.2” While a see-through exercise, by definition,
should perform minimal processing, we wished to retain the ability to call various OpenCV functions and
utility routines for more complicated follow-on projects that would be based on the see-through project.

The CCS example projects as supplied with the SDK required the full 2 GB SDK, but stripping this down
to only the necessary device drivers and library files dropped this to just under 20 MB (OpenCV itself, once
precompiled by the user, is 18 MB of that total). The original example projects also used the SYS/BIOS
real-time operating system (RTOS) from TI, which we have found is not a good pedagogical choice for
first exposure to students. The SYS/BIOS RTOS adds considerable complexity, overhead, and executable
file size to support functionality that we don’t want or need for projects which are intended for “begin-
ning” real-time DSP students. Therefore, we further stripped down and borrowed from the SDK example
projects, removing the dependence on the SYS/BIOS RTOS, and created a real-time project in the manner
recommended in reference 20.

In the see-through project, main. c initializes the hardware and the video camera, then calls the function

/2907 72 obed

Process_Video in an endless loop. The Process_Video function waits for a frame to be captured
before proceeding. At the end of each incoming frame from the camera, an interrupt is generated.

There are two ISRs, VPIFIsr and LCDIsr. The VPIFIsr ISR brings in the video data and stores it
using separate frame buffers for the luma and chroma; a double buffer (i.e., ping-pong) method is used for
each. At this point, the Process_Video function resumes and performs the YCbCr — RGB conversion
via a call to the cbcr422sp_to_rgb565_c TI utility function. Note that this conversion from YCbCr
to RGB does not occur inside an ISR. The LCDIsr ISR continuously points the appropriate frame buffer
(now containing RGB values) to the output raster buffer for DMA transfer and display on the monitor; this
ISR also has a placeholder where some real-time image processing algorithm can be executed if desired.
Since most standard image processing algorithms assume RGB values as the starting point (not YCbCr),
this is the best location for such a placeholder, since the conversion to RGB has already occurred. As a
simple test, a the cvRectangle OpenCV function is called here to place a small blue rectangle on the
screen over the video data.

It should be noted that, for improved speed, the frame buffers for this project are created in the high-speed
DDR RAM of the LCDK’s L1 cache rather than in the much slower external DDR RAM memory space.

The real-time see-through project provided an excellent demonstration of bringing in a video signal from
a camera and sending it out for display on a monitor, as shown in Fig. 4. Note the blue rectangle displayed
at the lower left of the image, on top of the real-time video image. This “simple” real-time demo is highly
motivating for students, and provides many opportunities to segue into various basic concepts. For example,
sampling and aliasing can be discussed in terms of measuring the frame rate of the system by imaging a
variable-speed rotating disk with a high-contrast marker on it. As the disk speed is steadily increased, it
appears to start slowing down when the rotational rate exceeds half the frame rate (i.e., Fs/2) and aliasing

-

Figure 4: A demonstration of the see-through real-time DSP exercise.

8'290T ¢ abed

occurs. The disk appears to be stationary when the rotational rate equals the frame rate (i.e., Fy). This is
also a good time to show students that, while the fully optimized “Release Build” of the project can run at
the full 29.97 frames/sec rate of NTSC, the non-optimized “Debug Build” can only run at approximately
6.5 frames/sec.

A see-through program can be effectively used as a confidence-building exercise for students, as discussed
previously, and can also be instrumental in the creation of particularly motivating demonstrations.

5 Classroom Results

Having available a video signal and a see-through real-time DSP program proved to be fortuitous. During
the Fall 2013 semester, we spent additional time discussing sampling during our “Digital Signal Process-
ing” class at Boise State University. As always, these discussions included traditional MATLAB simula-
tions augmented by real-time demonstrations using a function generator and a digital sampling oscilloscope
(DSO). Aliasing and bandpass sampling were demonstrated in both the time and frequency domains.

Using the see-through program, visual aliasing and rotation rate measurement were also demonstrated
using a motor-driven, rotating disk and a strobe light. This demonstration, received quite enthusiastically
by the students, also reinforced the parallel concepts of samples per rotation for mechanical systems versus
samples per period for an electrical signal.

Additionally, a collaborative, multidisciplinary educational opportunity, combining the seemingly disparate
fields of Music Education and Electrical and Computer Engineering (ECE), took place. The ECE faculty
member brought his entire Digital Signal Processing (DSP) class with him to the Music Education event.
This combined meeting of the two groups of students with phenomenally different backgrounds led to a
unique learning opportunity for all those present. The ECE students gained an appreciation for the talent
level of the Music Education students and the challenges of sampling live audio signals. This included a
review of the sampling theorem and a discussion of multirate spectral analysis. The multirate portions of
the audio signal analysis dealt with decimation of spectrally compact signals. Aliasing was demonstrated
through both improper sampling and proper sampling with improper decimation.

Finally, a practical sample rate problem was presented as an in-class design challenge. Specifically, even
though we offer a separate “Digital Image Processing” course, the challenge was to determine the frame
rate of a real-time image processing system. This again made use of the see-through program.

In addition to facilitating sampling discussions, the see-through program can provide student motivation
for other DSP topics. For example, after presenting the basic concept of an analog video signal such as the
NTSC signal shown in Fig. 3, we can discuss the details of RGB versus YCbCr and how they represent
color images with two very different encoding strategies. Many other possibilities readily come to mind.

At the end of the semester, student opinions of various topics in the course were measured using a five-point
Likert-scale survey. The survey item most pertinent to this paper was,

“The practical application of signal processing (specifically, the use of real-time imaging hardware) helped
me better understand the underlying concepts.” The allowed responses were,

strongly disagree
disagree
undecided

agree

A e

strongly agree.

The average score of the 20 survey respondents to this statement was 4.30, with a standard deviation of

6'290T ¢ obed

0.733. Of the 20, no students circled the “2 - disagree” response or the “l1 - strongly disagree” response.
See Figure 5 for the complete results. Note that this small sample size is inadequate to draw any statistically
firm conclusions, but we still are confident of the general results.

We have used a “talk-through” program for many years in our DSP courses and workshops, for the reasons
mentioned in this paper. However, we have recently noticed that many students today, for whom video
availability via their mobile phone or via web sites such as YouTube is taken for granted, seem to get
more excited with “see-through” than with “talk-through.” Since this higher level of excitement leads to
greater interest and better student engagement, the additional complexity of implementing a “talk-through”
program may very well be worth it for many educators.

6 Conclusions

Building student confidence in the real-time platform early on by using a bare-bones first project, such
as talk-through or see-through, is a valuable pedagogical approach. Skipping this step can significantly
reduce student motivation to pursue the real cause of incorrect results from a real-time DSP exercise,
because many students are otherwise quick to “blame” the platform. These very basic programs are also
surprisingly helpful for providing motivational demonstrations.

When moving up in signal complexity from audio (i.e., talk-through) to video (i.e., see-through), a host
of additional considerations and complications must be addressed. Not only is the video signal itself
more complicated, but the configuration and use of the input and output chips specific to video are more
challenging to use than a typical audio codec. An additional requirement when using the LCDK for video
see-through is the need for conversion from YCbCr to RGB.

We have built such a see-through project and successfully run it at the full frame rate of NTSC video using
the LCDK. In the future, we plan to more completely remove the reliance on pieces of the original example
projects supplied by TI with the TMS320C6748 SYS/BIOS Software Development Kit. This will provide
more opportunities to more clearly show students how to make use of the video capabilities of the LCDK,
which we hope will encourage them to attempt more advanced student projects that would incorporate
video.

Any faculty members who teach DSP are strongly encouraged to incorporate demonstrations and hands-on
experience with real-time hardware for their students, and to include simple projects such as talk-through
and see-through as confidence-building exercises. To support our colleagues in this endeavor, we have
made various resources available on the web.?!28

Student Survey Item Results

3 4 5

Response

10

Number of Responses
o N B O o

Figure 5: Raw data for student responses to the item, “The practical application of signal processing
(specifically, the use of real-time imaging hardware) helped me better understand the underlying concepts.”

0T°290T 72 obed

Acknowledgment

Adrian Rothenbuhler, an electrical engineer at Hewlett-Packard, in Boise, ID, was instrumental in devel-
oping the initial “see-through” implementation as part of his graduate work at Boise State University.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

C. H. G. Wright, T. B. Welch, D. M. Etter, and M. G. Morrow, “Teaching DSP: Bridging the gap from theory to
real-time hardware,” ASEE Comput. Educ. J., pp. 14-26, July—September 2003.

C. S. Burrus, “Teaching filter design using MATLAB,” in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing, pp. 20-30, Apr. 1993.

R. F. Kubichek, “Using MATLAB in a speech and signal processing class,” in Proceedings of the 1994 ASEE
Annual Conference, pp. 1207-1210, June 1994.

R. G. Jacquot, J. C. Hamann, J. W. Pierre, and R. F. Kubichek, “Teaching digital filter design using symbolic and
numeric features of MATLAB,” ASEE Comput. Educ. J., pp. 811, January—March 1997.

J. H. McClellan, C. S. Burrus, A. V. Oppenheim, T. W. Parks, R. W. Schafer, and S. W. Schuessler, Computer-
Based Exercises for Signal Processing Using MATLAB 5. MATLAB Curriculum Series, Upper Saddle River, NJ
(USA): Prentice Hall, 1998.

J. W. Pierre, R. F. Kubichek, and J. C. Hamann, “Reinforcing the understanding of signal processing concepts
using audio exercises,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 6, pp. 3577-3580, Mar. 1999.

T. B. Welch, M. G. Morrow, and C. H. G. Wright, “Teaching practical hands-on DSP with MATLAB and the C31
DSK,” ASEE Comput. Educ. J., pp. 13-20, April-June 2001.

C. H. G. Wright and T. B. Welch, “Teaching DSP concepts using MATLAB and the TMS320C31 DSK,” in

Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 6, pp. 3573—
3576, Mar. 1999.

M. G. Morrow and T. B. Welch, “winDSK: A windows-based DSP demonstration and debugging program,” in
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 6, pp. 3510-
3513, June 2000. (invited).

M. G. Morrow, T. B. Welch, C. H. G. Wright, and G. W. P. York, “Demonstration platform for real-time beam-
forming,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing,
vol. 5, pp. 2693-2696, May 2001.

C. H. G. Wright, T. B. Welch, D. M. Etter, and M. G. Morrow, “Teaching hardware-based DSP: Theory to

practice,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing,
vol. 4, pp. 4148-4151, May 2002.

T. B. Welch, R. W. Ives, M. G. Morrow, and C. H. G. Wright, “Using DSP hardware to teach modem design
and analysis techniques,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 111, pp. 769-772, Apr. 2003.

T. B. Welch, M. G. Morrow, and C. H. G. Wright, “Using DSP hardware to control your world,” in Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. V, pp. 1041-1044, May
2004. Paper 1146.

T. B. Welch, C. H. G. Wright, and M. G. Morrow, “Caller ID: An opportunity to teach DSP-based demodula-
tion,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. V,
pp. 569-572, Mar. 2005. Paper 2887.

T. B. Welch, C. H. G. Wright, and M. G. Morrow, “Teaching rate conversion using hardware-based DSP,” in
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 111, pp. 717—
720, Apr. 2007.

C. H. G. Wright, M. G. Morrow, M. C. Allie, and T. B. Welch, “Enhancing engineering education and outreach
using real-time DSP,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 111, Apr. 2008.

T. B. Welch, C. H. G. Wright, and M. G. Morrow, “Software defined radio: inexpensive hardware and soft-

ware tools,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing,
pp- 2934-2937, Mar. 2010.

T1°290T g abed

[18]

[19]

[20]

(21]
(22]

(23]

[24]
[25]
[26]
[27]
(28]

M. G. Morrow, C. H. G. Wright, and T. B. Welch, “winDSK8: A user interface for the OMAP-L138 DSP board,”
in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 2884—
2887, May 2011.

M. G. Morrow, C. H. G. Wright, and T. B. Welch, “Real-time DSP for adaptive filters: A teaching opportunity,”
in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, May 2013.

T. B. Welch, C. H. G. Wright, and M. G. Morrow, Real-Time Digital Signal Processing: From MATLAB to C
with C6x DSPs. Boca Raton, FL (USA): CRC Press, 2nd ed., 2012.

“RT-DSP website.” http://www.rt-dsp.com.

M. G. Morrow, C. H. G. Wright, and T. B. Welch, “An inexpensive approach for teaching adaptive filters using
real-time DSP on a new hardware platform,” ASEE Comput. Educ. J., pp. 72-78, October—December 2013.

Texas Instruments, “L.138/C6748 Development Kit (LCDK),” 2013. http://processors.wiki.ti.
com/index.php/LCDK_User_Guide.

K. B. Benson and J. Whitaker, Television Engineering Handbook. New York: McGraw-Hill, revised ed., 1992.
Y. Wang, J. Ostermann, and Y.-Q. Zhang, Video Processing and Communications. Prentice-Hall, 2002.

“Texas Instruments SYS/BIOS real-time kernel,” 2013. http://www.ti.com/tool/sysbios.
“OpenCV website,” 2013. http://opencv.org/.

Educational DSP (eDSP), L.L.C., “DSP resources for TI DSKs.” http://www.educationaldsp.com/.

21°290T v abed

