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Scaffolding Student’s Conceptions of Proportional Size and Scale Cognition 

with Analogies and Metaphors 

Abstract 

 

The American Association for the Advancement of Science identifies scale as one of the four 

powerful common themes that transcend disciplinary boundaries and levels. Engineering is one 

of these disciplines that requires a strong spatial ability involving scale, as well as the ability to 

reason proportionally when using scale models. In addition, advancing nanosciences is opening 

new opportunities for engineers to pursue opportunities for designing nanotechnologies. 

However, today’s middle school students do not demonstrate an adequate understanding of 

concepts of scale and size on the micro and the nano level. Students are unable to identify the 

relative sizes between micrometer-sized and nanometer-sized objects. The focus of this study is 

the role of proportional reasoning as one of the cognitive processes behind qualitative and 

quantitative proportional scale cognition. Proportional reasoning is the cognitive process that 

supports our ability to compare two rational expressions; it has also been recognized that 

proportional reasoning deals with one of the most common forms of structural similarity. 

Analogical reasoning involves a process of structural alignment and mapping between mental 

representations. Therefore, this study seeks to answer the following research question: Will 

analogies and metaphors scaffold proportional conceptions of size and scale? Participants for the 

initial study included 150 seventh graders from a science class of a Midwestern middle school. 

For identifying student’s conceptions of the logical and numerical proportional scale cognition a 

mixed method procedure was designed. Data was analyzed by comparing among student’s 

logical and mathematical proportional scale cognition as well as contrasted with similar results 

from the literature. This research was conducted to better understand the cognition associated 

with these skills and to design instructional methods to effectively develop these abilities in 

learners. We believe that the results of this study will inform the design of curricula that 

effectively convey scaling related concepts. Future work related to this area will also be 

discussed.  

 

Introduction 

 

Notions of scale have been identified as one of the four powerful common themes that transcend 

disciplinary boundaries and levels helping learners structuring knowledge (American 

Association for the Advancement of Science [AAAS] 2006) 1 . Scaling related concepts are 

directly applied to the study of phenomena in the micro, nano, and atomic level. As new tools, 

techniques, and instrumentations that allow study of phenomena in the micro and nano world are 

developed, new and complex technologies rise resulting in new fields of science and technology. 

As a consequence, new global markets emerge as well as the need of a workforce to meet them. 

Engineering is one of these disciplines that requires a strong spatial ability involving scale, as 

well as the ability to reason proportionally when using scale models. In addition, advancing 

nanosciences is opening new opportunities for engineers to pursue opportunities for designing 

nanotechnologies. 

 

Therefore, it has increased the importance for young learners to become scale-literate in order to 
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possess the structured knowledge required to understand complex phenomena.  However, by 

analyzing summative evaluation reports and surveys conducted in informal educational settings, 

it was found that the general public have limited knowledge and consistent misconceptions about 

atoms, molecules, DNA, cells, and other things the interviewees cannot see (Edu.Inc, n.d.) 2 ; 

misconceptions such as the smallest thing that they can think of is something they can actually 

see (early elementary students) or objects at the microscopic scale (Holladay, 2005) 3 . Another 

common naive conception is the fact that most of the interviewees had no working concept of 

one billion and did not understand 10
&9

(Edu.Inc) 2 . Tretter, et al. (2006) 4  report that today’s 

middle school students do not demonstrate an adequate understanding of concepts of scale and 

size on the micro and the nano level. Moreover, students are unable to identify the relative sizes 

between micrometer-sized and nanometer-sized objects (Edu.Inc, n.d. 2 , 2004 5 , 2005 6 ; Holladay 

2005
3
; Jones et al. 2004

7
; Waldron, 2006

8
).  

 

The focus of this study is on the role of proportional reasoning as one of the cognitive processes 

supporting scale cognition, and at the same time serving as the bridge between the qualitative 

understanding of size into a quantitative understanding of scale.   Several of our driving 

questions are – How do young learners identify how much an object is bigger than another?  In 

which terms do they express this relationship? What skills are required to answer these 

questions?  How do these skills develop?  How can children reason in a similar way when the 

objects of comparison cannot be seen?  We believe that analogical reasoning plays an important 

role in answering these questions.  Therefore, this study seeks to answer the following research 

question: Will analogies and metaphors serve as a vehicle to scaffold proportional conceptions of 

size and scale? We anticipate that the results of this study will inform the design of curricula that 

effectively convey scaling related concepts.  

 

Defining proportional size and scale 

 

Size and scale are related to each other.  While size refers to a qualitative semantic property of an 

object, scale refers to a quantitative formal property of an object.  The transition from one to the 

other is referred to as scaling.  Rozeboom (1966) 9  explain this relationship as follows: 

 

“Just as every formal variable has an uscaled (natural) counterpart, so is it that to 

every natural variable there corresponds not merely one but a multitude of num-

valued formal variables, and conceptually replacing a natural variable with one of 

its formal equivalents is basically what is meant by scaling” (p. 178). 

 

Where “‘num’ will be a systematically ambiguous term, like an unspecified parameter in an 

algebraic equation, which is to be heuristically understood as ‘number’…” (Rozeboom, p.177) 9 . 

We suggest proportional reasoning as the cognitive process required to bridge a qualitative 

conception of size; namely the logical; to a quantitative conception of scale; namely the 

mathematical. Person, Berenson and Greenspon (2004) 10 , have emphasized that research 

demonstrates that proportional reasoning is at the core of mathematics curriculum; and have 

emphasized it as a good indicator of higher mathematical achievement.   
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Inhelder and Piaget (1958) 11  describe the proportional schema as composed of two aspects; the 

logical and the mathematical. “In its general logical form, a proportion is the equivalence of the 

relations connecting two terms g and く to the relations connecting two other terms け and j.” (p. 

314). The authors also argue that the logical aspect leads to the mathematical one; once the 

learner has acquired the schemata of the logical one, later on, at any point the numerical values 

could be inserted. To exemplify the proportional conceptions of size and scale let’s consider 

some differences in relative sizes among these objects: DNA double strand, bacteria, ant, and 

human. For the logical proportional conception of size an example would be: the difference in 

sizes between the height of a human and the length of an ant is approximately the same 

proportion as the difference in sizes between a bacteria and the diameter of a DNA double 

strand. This relationship was made in qualitative terms, considering the objects’ size. On the 

other hand, an example illustrating the case of the mathematical proportional conception of scale 

would be: the difference in length of an ant compared to the height of a human is that the height 

of a human is a thousand times bigger than the length of an ant as the difference in size between 

a bacteria and the diameter of a DNA double strand is that the length of a bacteria is about a 

thousand times bigger than the diameter of a DNA double strand. In contrast, this relationship 

was made in quantitative terms involving a scaling process; where the ant is the unit of 

measurement mapped then to the DNA double strand. 

 

The mathematical proportional conception of scale has also been identified in other studies such 

as Delgado, Stevens, Shin, Yunker, and Krajcik (2007) 12 , as the quantitative relative conception 

of size, which basically refers to “how many times larger or smaller one object is than another” 

(2007, p.9). Related to this conception of scale is the student’s ability to make comparisons 

between objects; a process that has been identified as a prerequisite to measurement (Delgado et 

al., 2007 12 ; Wiedtke, 1990 13 ). According to Campbell, measurement “... is the process of 

assigning numbers to represent qualities” (p.223 as cited in Rozeboom, 1966 9 ); but “in the tough 

sense of the word, ‘measurement’ is assessment of quantity” (Rozeboom, p. 224 9 ).  Therefore, 

the only difference between the absolute and the quantitative proportional sizes is what Delgado 

et al. 12 , describe as the process when the unit used is another object (for the case of the 

quantitative proportional) rather than a conventional measurement unit (for the case of the 

absolute size).  

 

Proportional Reasoning: the Cognitive Process behind the Proportional Conceptions of 

Size and Scale 

According to Lesh, Post, and Behr, (1988) 14 , proportional reasoning is a form of mathematical 

reasoning involving multiple comparisons, inference and prediction, as well as both qualitative 

and quantitative methods of thought. In their work, Lesh et al.14  examined it from the 

perspective of proportional reasoning as a capstone of elementary arithmetic, number, and 

measurement concepts. Proportional reasoning is the cognitive process behind the ability to 

reason about the relationship between two rational expressions. Therefore, our first inference is 

that proportional reasoning is the required cognitive process in order to attain the proportional 

size and scale cognition. We have identified that scale cognition is composed by the logical 

proportional and numerical proportional conceptions of size and scale; these conceptions and the 

cognitive processes behind them are explained below.  
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For describing the logical proportional conception of size we referred to the work conducted by 

Tretter et al. (2006) 4 . Tretter et al. 4  describe unitizing as the first required cognitive process in 

order to attain scale cognition. Unitizing refers to the process of creating new meaningful units 

from the existing objects. Tretter et al. 4  suggest that students must create scale conceptions 

focusing on relative sizes and not much on exact size information. These conceptions could be 

based on everyday uses of size with relations based on experience, organized into categories and 

containing prototypes as exemplars of categories; such as well known landmarks and reference 

points. For example, a well known unit for a novice learner can be the relationship in sizes 

between two objects from the macro scale that will serve as a landmark or reference size for 

objects in the microscale, atomic scale and nanoscale. (E.g. the difference in sizes between the 

height of a human and the length of an ant is approximately the same–proportional as the 

difference in sizes between a bacteria and the diameter of a DNA double strand).  

 

The numerical proportional conception of scale, on the other hand, point us to consider the 

mathematical relationships with pairs of rational expressions; such as ratios, proportions, rates, 

quotients, and fractions. For the case of ratios and proportions, Hart, (1988) 15  and Behr, Lesh, 

Post, and Silver, (1983) 16  agree that a ratio is a comparative index between two entities that 

conveys the notion of relative magnitude. On the other hand, a proportion refers to the 

equivalence of two ratios, “When two ratios are equal they are said to be in proportion to one 

another. A proportion is simply a statement equating two ratios.” (Behr et al., p.95 16 ). For the 

case of rates, and as explained by Lesh et al. (1988) 14 , it refers to a single quantity (e.g. 30 

miles/hour), while ratios involve two quantities. Fractions include percentages, decimal 

expressions, and operations or points on the number line (Person, Berenson, and Greenspon, 

2004 10 ) and finally, a quotient is simply an operation of indicated division (Karplus, Pulos, and 

Stage, 1983 17 ).  

 

The proportional mathematical conception of scale would be considered then as the comparison 

of two equivalent ratios; namely a proportion (e.g. the difference in length of an ant compared to 

the height of a human is that the length of an ant is about a thousand times smaller than the 

height of a human; therefore, the difference in size between a bacteria and the diameter of a 

DNA double strand is that the diameter of a DNA double strand is about a thousand times 

smaller than the size of a bacteria).  

 

To better understand proportional reasoning and at the same time infer instructional strategies 

that will address this cognitive process, research related to this area was analyzed. For this 

purpose three authors and their research were considered: perspectives proposed by Piaget, 

Karplus, and Lesh. Piaget’s perspective was selected because he and his colleagues conducted 

the first attempts to measure proportional reasoning in their experiments for clarification of 

young people’s development of the logico-mathematical concept (Lesh et al., 1988 14 ). But 

because the designs of their tasks were not designed specifically to illustrate proportional 

reasoning, more specialized studies were consulted. Robert Karplus, in contrast, focused on 

proportional reasoning by trying to minimize the need for knowledge of physical principles 

(Lesh et al., 1988 14 ). Finally, the research conducted by Lesh was also considered because of his 

attempts to contrast and compare prior research in this area.  
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Piaget (1968, as cited in Lesh et al., 1988 14 ) describes the development of adolescent’s 

proportional reasoning in three stages. The first one is the global compensatory strategy which 

focuses on additive strategies, the second is based on a multiplicative strategy, and the third one 

is based on a formulation of a law of proportions. In contrast, Karplus focused on categorizing 

the responses of children as demonstrative of a level of understanding of proportion (Hart, 

1988 15 ). Karplus et al., (1983) 17  argue that Piagetian tasks were not selected exclusively for 

characterizing subjects’ proportional reasoning, leaving unanswered many questions related to 

how proportional reasoning is applied in problem solving in different contexts and numerical 

relationships. Instead Karplus et al. and the research group at the Lawrence Hall of Science at 

Berkeley, focused on assessing children’s proportional reasoning using tasks in which 

knowledge of the physical principles was minimized. They found that ”academically upper-track 

or upper middle-class students used proportional reasoning increasing after about age 12 years, 

only a small fraction of urban low-income and academically lower track-students used 

proportions at age 14 or even 17 years” (Karplus, 1981 as cited in Karplus et al., 1983, p. 47 17 ).  

Compared to the results obtained by Karplus et al., as well as Inhelder and Piaget; Lesh et al.14  

concludes that in mathematics education research, proportional reasoning is characterized by a 

gradual increase in local competence; not by a global ability related to a cognitive structure. 

These results point us to consider that environmental interactions are a very influential factor for 

the development of proportional reasoning.  

 

Singer-Freeman and Goswami (2001) 18  also investigated children’s intuitive approach to 

proportions, arguing that their intuitions of proportional reasoning were based on their ability to 

recognize relational similarity. This idea is consistent with Lesh et al. (1988) 14  remark that 

“proportional reasoning deals with one of the most common forms of structural similarity” 

(p.95). This recognition of structural similarity is what points us to consider analogies and 

metaphors as a way to scaffold proportional reasoning in young learners for the following 

reasons. First, although similarity and analogy are not the same, Gentner and Markman (1997)19  

suggest that the process of carrying out a comparison is the same in both cases, concluding that 

similarity is like analogy involving a process of ”structural alignment and mapping between 

mental representations” (Gentner and Markman, 1997, p.45 19 ).  

 

Second, classical or conventional analogies take the form of A:B::C:D (English, 2004 20 ), where 

the A and B can be termed as the base or source, and C and D can be termed as the target 

(Gentner, Holyoak, & Kokinov, 2001 21 ). These analogies are basically proportional or relational 

problems (English 20 ; Gentner and Markman 19 ).   In our context, an example of a classical 

conventional analogy can take the form of: the difference in sizes between the height of a human 

(A) and the length of an ant (B) is approximately the same--proportional as the difference in 

sizes between a bacteria (C) and the diameter of a DNA double strand (D); where the height of a 

human is mapped with the size of the bacteria, and the length of an ant with the diameter of a 

DNA double strand. 

 

Finally, we rely on the fact that it has been identified that one reasonable way to convey 

proportions is through means of existing conceptual knowledge as a basis for teaching (Singer-
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Freeman & Goswami, 2001 18 ), as well as on the fact that children’s ability to recognize 

relational similarity, namely the capacity for analogical thinking, may be present as early as 

infancy; (Goswami, 2001
22

; Holyoak and Thagard, 1997
23

).  

 

Analogies and Metaphors for Attaining Proportional Scale Cognition 

 

Analogies are a fundamental cognitive mechanism that people use to map processes by 

identifying relevant information from a more familiar domain to a less familiar one (Mason, 

2004). Since early times it has been well recognized the powerful role of analogies in enabling 

people to communicate, explore, and infer about novel phenomena, as well as to transfer learning 

across subject domains (English, 2004 20 ; Gentner and Markman, 1997 19 ; Goswami, 2001 22 ; 

Richland, Morrison, and Holyoak, 2006
25

).  

 

While analogy is a sophisticated process used in creative discovery, similarity is, as described by 

Gentner and Markman, (1997) 19 , a brute perceptual process. Gentner (1983) define an analogy 

as “a device for conveying that two situations or domains share relational structure despite 

arbitrary degrees of difference in the objects that make up the domains. This promoting of 

relations over objects makes analogy a useful cognitive device, for physical objects are normally 

highly salient in human processing” (as cited in Gentner and Markman, 1997, p.46 19 ). They 

emphasize the importance of common relations to analogy and not common objects. In contrast, 

English, (1997) 26  describes metaphors as characterized by cross domain mappings. She explains 

that reasoning by metaphor implies conceptualizing the phenomena in terms of another mental 

domain by finding a mapping between the target domain and the source domain. ”Like 

analogical reasoning, metaphorical reasoning can generate new inferences and lead to the 

construction of mental models based on the relational structure shared by the source and target” 

(English, p.7
26

).  

 

Although Piaget concludes that reason by analogy must depend on the development of 

categorization skills and therefore developed in the formal operations stage; recent research 

provides insights that the ability to reason by analogy has been shown by young children 

(Vosniadou, 1995 27 ). Vosniadou argues that in the Piagetian perspective the focus was on “how 

the development of analogical reasoning could be explained in the context of his [Piaget’s] 

theory of intellectual development, rather than how analogical reasoning might contribute to 

intellectual development” (p.300) 27 . Supporting this idea Goswami (1992) 28  and her colleagues 

found no support for the claims made by Piaget in his theory of analogical development, 

including the idea that reasoning about relational similarity requires the ability to reason about 

proportional equivalence (as cited in Vosniadou, 1995 27 ). Goswami also concludes that “domain 

knowledge is the primary constraint in children’s analogical reasoning” (p.250, as cited in 

Richland et al., 2006
25

).  

 

We conclude that due to the facts that a) analogical reasoning does not depend on the ability to 

reason about proportional equivalence, b) young children have the ability to reason by analogy, 

and c) analogies and metaphors are powerful tools in enabling people to communicate, explore, 

infer about novel phenomena, and to transfer learning across subject domains; we therefore 
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suggest that proportional analogies may be a sense-making way to unitize and at the same time 

serve as a scaffold that will emphasize relative sizes of objects in different scales. These analogs, 

as explained by Tretter et al. (2006) 4  could be based on everyday uses and conceptions of size 

with categorical relations, and these conceptions of scaling must be based on experience 

containing prototypes as exemplars of categories; such as landmarks and reference points.  

Method 

Participants  

The subjects for the study included the entire population of seventh graders from the science 

classes of a Midwestern middle school. According to SchoolMatters (2006) 29  the student 

population of the school in 2005 was composed by 89% White, 6.7% Hispanic, 4% African 

American and 0.3% Asian/Pacific Islander.  

 

From the eight classes of seventh graders, six groups and about 110 students were exposed to 

instruction based on analogies and metaphors for conveying proportional scale cognition, and the 

two remaining groups formed by approximately 40 students were taught by means of the 

traditional science and math curriculum. In addition, this last group was exposed to an informal 

learning environment (i.e. a museum exhibit) focused on nanotechnology related concepts.  

Instrument  

The metaphor presented to the students was a logarithmic scale that represents powers of ten, 

that is, powers of ten were considered as points on a line (see Figure 1). This scale was used to 

display number sequences and scales: nanoscale, microscale, and macroscale.  

 
Figure 1. Scale metaphor and proportional analogy 

 

Together with this scale, a proportional analogy was used as a way to explicitly compare two 

things in which their relational structure; namely their proportional sizes were emphasized. The 

analogy presented was intended to create new meaningful units at the micro and nano level from 

the existing objects at the macro level, emphasizing their proportional relationship (e.g. the 

difference in sizes between the height of a human and the length of an ant is approximately the 

same proportion as the difference in sizes between a bacteria and the diameter of a DNA double 

strand).  
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For evaluating the learning strategy, a mixed method procedure was designed (See Appendix A). 

The quantitative component was composed by a questionnaire which required the students to 

locate the diameter of a DNA strand given that its scale is 1 x 10&9. Student’s understanding of 

the scale metaphor was considered correct if he/she was able to locate correctly the object of the 

first task.  For the second task, they were given the following analogy: the difference in size 

between the ant and the human (displayed on the scale) was similar to the difference in size 

between the diameter of a DNA strand and bacteria. Then it was required that given the analogy, 

they should locate the bacteria on the scale. If students were able to identify the location of the 

second object on the scale given the analogy at the macroscale (E.g. the proportional relationship 

between the human and the ant to the DNA strand and the bacteria), it was considered that they 

were able to identify the logical proportional relationship between both pairs of objects.  

The third task consisted of asking the students about the difference in the length of an ant 

compared to the height of a human. The fourth task required them to report the difference in 

diameter of a DNA strand compared to the size of bacteria. The mathematical proportional 

relationship was assessed by asking the students the approximate difference between the two 

pairs of objects. This means that the solution to the third task, the difference in length of an ant 

compared to the height of a human, was equal to the solution of the fourth task, the difference in 

diameter of a DNA strand compared to the size of bacteria.  The qualitative part of the study was 

presented in the fifth task. It requested the students to explain the strategy they used in finding 

the difference between the sizes of the objects. The aim of the fifth task, an explanation of their 

strategy in finding the difference between the sizes of the objects, was used as an attempt to 

identify their thinking process.  

Design and procedure  

The middle school in which the materials were tested was identified by the school corporation 

who provided all the permissions to conduct the study.  

Two science teachers participated in the study. One teacher delivered the instructional materials 

based on analogies and metaphors. A total of 110 students were exposed to these materials. The 

instruction was delivered during two days during consecutive one hour classes. The first day of 

instruction was conducted by the teacher explaining the concepts and the students participated in 

the discussion. Four analogies were presented together with the scale metaphor. The teacher 

scaffolded each of the four analogies and students participated by answering the verbal cues the 

teacher presented. With each and every analogy the teacher emphasized the relative sizes of the 

objects and students were elicited to say how many times an object was smaller or bigger than 

the other. For the second day of the instruction students worked in small group teams of 

approximately 5 students each in creating their own analogies. While working in teams, the 

instructor would join their conversations to provide feedback if required. After interacting for 

about 20 minutes, the full class reassembled and each team shared their work with the rest of the 

class.  They presented the results by each member of the team pointing in the scale projected on 

the blackboard, different positions of their set of objects that composed their proportional 

analogy. Immediately after that, the instrument was administered. The researchers carried out the 

corresponding analysis and evaluation.  

The other science class did not received additional formal training other than that delivered as 

part of the common instruction based on measurements and powers of ten. In addition, these 44 
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students were exposed to the informal learning environment; namely a museum exhibit focused 

on teaching nanotechnology related concepts.  

Analysis and Results 

Descriptive statistics were used to describe and summarize the data. In addition, patterns were 

used to identify students’ strategies for solving the given tasks.  The results of the study are 

summarized in Figure 2:  

 

 

Figure 2. Summarized results  

Scale metaphor  

From the group of students who were not exposed to the instructional materials based on 

analogies and metaphors, 75% were able to read and understand the metaphor of the logarithmic 

scale, and were able to successfully locate the object in the correct position. In comparison, 94% 

of the students exposed to instruction based on analogies and metaphors were able to correctly 

read the scale and locate the object successfully.  

From these results we suggest that a logarithmic scale may serve as a tool to convey scale related 

concepts. For this study, students did not have to devote cognitive load in order to read and use 

the scale.  

Logical proportional conception of size  

From the group of students who were exposed to the traditional curriculum and the museum 

exhibit, 48% of the students were able to identify the proportional logical relationship between 

the human and ant and the bacteria and the DNA double strand. This 48% was further divided 

into those who were able to correctly map the size of the human as the size of the bacteria and 

the size of the ant as size of the DNA double strand (75%), and those who although were able to 

identify the proportional relationship of sizes between the objects, were not able to make the 

correct mapping (23%). In contrast, 90% of the students exposed to the instructional materials 

based on analogies and metaphors were able to correctly identify the proportional relationship 

between the pairs of objects and were able to correctly map the size of the human as the size of 

the bacteria and the size of the ant as size of the DNA double strand.  
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Mathematical proportional conception of scale  

For this item to be considered correct, students had to recognize that the difference in sizes 

between the pairs of objects was approximately 1000 times bigger or smaller accordingly. From 

the group of students who were not exposed to analogies and metaphors we can see that only 9% 

of the students were able to identify the mathematical proportional relationships between the two 

pairs of objects. In comparison, 70% of students who were exposed to the instruction in 

analogies and metaphors correctly identified this relationship.  

 

Results suggest that there is a clear level of difficulty between the logical and the mathematical 

proportional relationship of size and scale among all students, but with an adequate scaTold, in 

this case the analogies and metaphors; we can leverage student’s understanding of these abstract 

concepts.  

Conclusions and Recommendations 

In the final analysis, we conclude that scaling related concepts have been identified as one of the 

important unifying topics in science, engineering, and technology education. We have also 

identified that today’s middle school students do not demonstrate the adequate understanding of 

concepts of scale and size on the micro and the nano level.  

We characterized the proportional scale cognition into two components; logical proportional, and 

mathematical proportional. We have also suggested that proportional reasoning is the cognitive 

process supporting the proportional conceptions of size and scale. We identified the process of 

unitizing as the first required cognitive process in order to attain the logical proportional scale 

cognition and mathematical relationships of ratios as a comparative process for attaining the 

mathematical proportional conception of scale.  

 

We suggested that classical or conventional analogies facilitated the logical aspect of the 

proportional schema of scale cognition. These same analogies, together with a scale metaphor, 

also facilitated the mathematical aspect of the proportional schema of scale cognition. We 

conclude that analogies and metaphors may serve as a scaffold for the learners. Proportional 

analogies in which two pairs of objects that students were familiar with and visible to the naked 

eye served as the source, and two other objects that are in the micro, nano, and/or atomic scale 

served as the target by students mapping the structural similarity of the objects; namely their 

difference in sizes.  
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Appendix A 
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