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Abstract 
 
This paper describes a scaling technique that can be used as a teaching tool in engineering 
courses that involve the development of mathematical models for physical processes. This 
scaling technique provides a systematic means for achieving the minimum parametric 
representation of a physical problem. Moreover, since it involves order-of-one scaling, it permits 
assessing the relative importance of the various terms that appear in a mathematical model. As 
such, scaling analysis is of considerable value in engineering practice as well. The scaling 
analysis method is illustrated via an example problem involving Pressure-Swing Adsorption 
(PSA) for producing oxygen-enriched air. Its utility is demonstrated by showing that it can 
provide quantitative criteria for invoking simplifying assumptions that oftentimes are made 
without rigorous justification. Moreover, this example illustrates how scaling analysis can be 
used to assess the performance of novel process innovations, in this case Ultra-Rapid PSA that is 
being proposed for providing a portable device for supplying oxygen to patients suffering from 
Chronic Obstructive Pulmonary Disease (COPD). 
 
 
I. Introduction 

 
 Scaling analysis is a useful technique that involves a systematic method for recasting the 
describing equations for a physical process in dimensionless form. The end result of a proper 
scaling analysis is a set of dimensionless equations that describes a physical process in terms of 
the minimum number of dimensionless parameters. Moreover, a proper scaling analysis insures 
that the dependent and independent variables and their derivatives are scaled to be of order one. 
When the describing equations are scaled in this manner, the magnitude of the dimensionless 
groups that multiply certain terms permits assessing simplifying assumptions that can be invoked 
in solving the physical problem. 
 
Scaling analysis is particularly useful as a teaching tool since it permits quantifying concepts that 
are sometimes presented in an intuitive way. For example, the concept of a hydrodynamic 
boundary layer is often justified using nonquantitative “hand-waving” arguments. It also useful 
as a teaching tool that provides a systematic method for making simplifying assumptions in the 
description of a physical problem that oftentimes are made without justification. A knowledge of 
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scaling analysis can help the engineering educator more effectively teach courses that involve 
modeling. It also is an invaluable aid in helping engineering students learn subtle engineering 
concepts more easily.  
 
Scaling analysis is also quite useful in engineering practice. It permits reducing the describing 
equations for a physical process to their minimum parametric form; that is, in terms of the 
minimum number of dimensionless parameters. These dimensionless parameters are then useful 
in scale-up or scale-down analyses such as are involved in wind-tunnel studies of vehicle 
aerodynamics. The minimum parametric representation also is useful for obtaining generalized 
correlations from experimental data or numerical simulations. Scaling analysis also permits an 
initial assessment of the viability of proposed process innovations and thereby can be used to 
screen alternative methodologies for carrying out physical processes. Finally, scaling can also be 
used to determine optimal process parameters in engineering design. 
 
Various applications of scaling analysis have been discussed in prior publications by one of the 
authors [1,2,3]. This paper considers a novel example problem for illustrating scaling analysis, 
namely Pressure Swing Adsorption (PSA). No scaling analysis has been published for this 
important separations process. This example provides a meaningful basis for illustrating the 
utility of scaling analysis to arrive at the minimum parametric representation, and to assess the 
relative importance of the various terms in a physical model for the PSA process. In particular, it 
permits assessing how the performance of Ultra-Rapid PSA process might be different. 
 
 
II. The Scaling Analysis Technique 
 
The following steps are involved in scaling analysis: 
 

1. Write down the complete set of describing algebraic or differential equations including 
any relevant boundary, initial, and auxiliary conditions. 

2. Introduce dimensionless variables for the relevant dependent and independent variables 
employing arbitrary scale and reference factors; in some cases the relevant dependent 
variable might be a spatial or time derivative. 

3. Introduce the dimensionless variables into the model equations and relevant boundary, 
initial, and auxiliary conditions. 

4. In each equation divide through by the dimensional coefficient of a term that one assumes 
should be retained in order to assure a physically meaningful solution; this will yield 
dimensionless groups in front of other terms in each equation that contain the arbitrary 
scale and reference factors. 

5. Determine the unknown scale and reference factors by setting the resulting dimensionless 
groups equal to one or zero in order to bound the relevant independent variables, and the 
dependent variables and their spatial and time derivatives, to be of order one; by “order 
one” we mean that the maximum magnitude of the dimensionless quantity is 
approximately one; the quantity could in fact be considerably less than one or even zero. 

6. The aforementioned process yields the minimum parametric representation of the 
physical problem; the magnitude of the remaining dimensionless groups permits 
assessing the relative importance of the various terms in the describing equations. The 
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Figure 1: Conventional PSA 

dimensionless groups can be used to correlate experimental or numerical data as well as 
for scale-down or scale-up analyses. 

 
The implementation of scaling analysis will be shown via an example problem, specifically, the 
Pressure Swing Adsorption (PSA) process used for separating gas feed streams into enriched 
product streams. Applying scaling analysis to PSA not only provides a practical example 
problem, but also leads to novel results in terms of innovative modifications of the PSA process. 
 

 
III. Pressure Swing Adsorption 
 
Pressure Swing Adsorption (PSA) is a separations technology that is used to produce a 
concentrated gas product stream from a gas feed mixture. We will use scaling analysis both to 
justify approximations that are oftentimes used in modeling conventional PSA and to assess the 
viability of a proposed innovation in PSA technology that involves rapid cycling on a microscale 
that will be referred to as Ultra-Rapid Pressure Swing Adsorption. 
  
This example is a meaningful practical problem to consider. Conventional PSA is used to 
produce oxygen for both industrial as well as medical applications; indeed, 20% of the world’s 
oxygen production is accomplished by conventional PSA. In particular, conventional PSA is 
used for critical life support for patients suffering from Chronic Obstructive Pulmonary Disease 
(COPD). There is considerable motivation to develop a compact portable oxygenator that would 
greatly improve the quality of life of COPD patients. Ultra-Rapid PSA technology offers this 
promise since it potentially permits very efficient oxygen production via a device that is a small 
fraction of the size and weight of current oxygenators. 
 
The PSA process shown in Figure 1 separates air into an oxygen-enriched product and a 
nitrogen-enriched waste by using a packed bed of particles that selectively adsorb nitrogen 
relative to oxygen. The air feed to the packed bed 
is cycled between a high pressure at which 
adsorption occurs and a low pressure at which 
desorption occurs. Since the nitrogen is held up 
on the adsorbent particles relative to the oxygen, 
the latter passes through the PSA packed bed 
more rapidly than the nitrogen and thereby is 
separated from it. Since the process pressure is 
cycled between high and low values, this process 
is called “Pressure Swing Adsorption” or PSA.  
 
Since the focus of this paper is to illustrate the 
utility of scaling analysis, we will simplify the 
PSA process by assuming that the feed stream consists of pure nitrogen rather than a mixture of 
oxygen and nitrogen. This obviates the need to solve the differential species balance equation in 
addition to the differential overall mass-balance equation. Hence, in the example considered here 
we seek to determine the pressure in the packed bed of adsorbent particles as a function of axial 
position and time. From the pressure one can determine the mass of nitrogen adsorbed in the bed 
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as a function of axial distance and time. We will invoke scaling analysis in order to assess the 
relative magnitude of the various terms in the differential overall mass balance, and to determine 
when simplifying assumptions are justified. We also seek to determine how Ultra-Rapid PSA 
might differ from conventional PSA and how the operating parameters can be chosen to optimize 
its performance. 
 
 
IV. Scaling the PSA Process 
 
In the following we will sequentially apply the six-steps involved in the scaling analysis 
procedure. A subsection will be devoted to each step. 
 
  
Step 1:   
 
An overall mass balance for a differential length of the packed bed of adsorbent particles shown 
in Figure 1 yields the following equation: 
 

    ( ) ( )1
PUP q

RT RTt x
ε ε ε

∂∂ = − − −∂ ∂ �     (1) 

 
where P is the pressure, U is the gas velocity, q�  is the rate of nitrogen adsorption per unit 
volume of adsorbent particles, x is the axial distance, t is time, R is the gas constant, T is the 
absolute temperature, andε  is the porosity of the packed bed. The first term in the above 
equation is the accumulation of total mass in the differential volume element; the second term is 
the advection of mass owing to the pressure-induced gas velocity in the packed bed; the third 
term is the loss of mass owing to adsorption of nitrogen onto the adsorbent particles within the 
differential volume element. 
 
The nitrogen adsorption rate q�  in the above equation is given by one of the two following 
equations: 
 

    ( )Eq k q q= −�        (2) 

or 
Eqq = ��        (3) 

 
where k is an adsorption rate constant (units of reciprocal time), Eq  (a variable) is the 
equilibrium nitrogen concentration at the instantaneous pressure (moles per unit volume of 
adsorbent particles), q  is the actual nitrogen concentration on the adsorbent particles at the 

instantaneous pressure, and Eq�   (a variable) is the equilibrium nitrogen adsorption rate per unit 
volume of adsorbent particles. Equation 2 is called the Linear Driving Force (LDF) 
approximation and allows for a nonzero resistance to nitrogen transfer within the adsorbent 
particles. Equation 3 is an equilibrium adsorption approximation since it assumes a negligible P
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resistance to nitrogen transfer within the particles and therefore that the adsorbed phase 
concentration is in instantaneous equilibrium at the pressure in the bed.  
 
The adsorbed nitrogen concentration as a function of pressure is determined by an appropriate 
adsorption isotherm. Here we will employ the Langmuir isotherm given by the following: 
 

     
0

1
E q lPq

lP
= +

      (4) 

 
where 0q  is the saturation adsorption value (a constant for a specified gas on a particular 
adsorbent) and l (units of reciprocal pressure) is the equilibrium constant (characteristic of a 
specified gas on a particular adsorbent).  
 
The gas velocity in the packed bed of adsorbent particles is determined from Darcy’s law given 
by the following equation: 
 

     b dPU
dxµ

= −       (5) 

 
where b is the Darcy constant (characteristic of the packed bed of adsorbent particles) and µ  is 
the shear viscosity of the gas. 
 
Equation 1 in combination with equation 5 constitute a nonlinear partial differential equation that 
must be solved for the pressure as a function of x and t. This equation is second-order in x and 
hence requires two boundary conditions:  
 

2

2 2 2
sin      for                     for pressurization           (6)

At 0,        
2 2 2

sin      for    for depressurization        (7)

L A

L A

n n
P P P t t

x
n n

P P P t t
π

π π πω
ω ω

π π π πω
ω ω

+ = + ≤ ≤=  + +  = + + ≤ ≤   
  

     
     at                                                         (8)LP P x L= =

 
     
where n is zero or a positive integer. Equations 6 and 7 state that the pressure at the one end of 
the adsorbent bed is periodically pulsated above and below, respectively, some average pressure 
PL depending on whether it is the adsorption or desorption part of the PSA cycle. Equation 8 
states that the pressure at the other end of the bed is held constant. Here we have assumed that 
the average pressure at the upstream end of the packed bed is equal to the constant pressure 
maintained at the downstream end. During pressurization the pressure increases from PL to PL + 
PA at the upstream end of the adsorbent bed. This causes flow of nitrogen into the bed at x = 0 
and adsorption onto the adsorbent particles. During depressurization the pressure decreases from 
PL to PL − PA at the upstream end of the adsorbent bed. This causes flow of nitrogen from the bed 
at x = 0 and desorption from the particles. Since we seek to describe PSA, which involves 
periodic pressure swings, it is not necessary to satisfy any initial condition. Equations 1−8 
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constitute a complete description of the physical process necessary to determine the pressure in 
the packed bed of adsorbent particles as a function of axial distance and time.  
 
 
Step 2:  
 
Introduce the following dimensionless variables: 
 

ˆ ;
s

x
x
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≡  ˆ ;r

s

t t
t

t

−≡  ˆ ;
s

U
U

U
≡  ˆ ;r

s

P P
P
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−≡       ˆ ;
s

q
q

q
≡     ˆ

s

q
q

q
≡
�

�

�
 (9) 

 
where the subscript s denotes a scale factor and the subscript r denotes a reference factor. Scale 
factors are introduced in order to normalize the dimensionless variable to be of order one, 
whereas reference factors are introduced in order to reference the dimensionless dependent or 
independent variable to zero. Note that we have scaled all the dependent and independent 
variables. Note also that we have considered the adsorption rate to be a dependent variable that is 
scaled by sq� . It is not necessarily true that the adsorption rate would be scaled by s sq t , since 

the amount adsorbed might not experience a characteristic change of qs over the characteristic 
time st . Recall here that our goal is to scale all the above dependent and independent variables to 

be of order one. The time scale st  is characteristic of the time over which the pressure swing 

occurs, which is not necessarily the time for adsorption to occur. Note also that we have 
introduced reference factors for the pressure and time since we will see that this permits 
referencing both the dimensionless pressure and time variables to zero. 
 
 
Steps 3 and 4: 
 
Introduce the dimensionless variables defined by equations 9 into equations 1−8 and divide 
through by the dimensional coefficient of a term that one assumes should be retained to insure 
that the model has physical significance in order to obtain the following set of equations: 
 

    ( )1ˆ ˆ ˆ ˆ
ˆ ˆ

s s
s

s s s s

x RT qx P PU q
U t U Pxt

ε
ε

 
 
 

−∂ ∂= − −∂∂
�

�    (10) 

    

    ( )ˆ ˆ ˆEs

s
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q q q

q
= −�
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      (11) 

or 
             

     ( )0 2 ˆ
ˆˆ 1

ˆ
E s

s r s
s s

q lP dP
q q lP P P P
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Note in equation 10 that we have elected to divide all the terms by the coefficient of the 
advection term since this term must be retained if we are to determine the axial dependence of 
the pressure. If the subsequent choice of the scale factors results in obtaining a very large 
dimensionless group in front of one of the other terms, thereby implying that it is larger than the  
principal term, it indicates that one or more of our scales is incorrect. This is the advantage of 
scaling all the relevant variables to be of order one. That is, the dimensionless groups then 
multiply dimensionless variables and their derivatives that are of order one. If a dimensionless 
group is found to be very large, it implies that some assumption in the analysis regarding either 
the principal terms or the scale factors was incorrect. 
 
 
Step 5: 
 
Equations 10, 11 and 13−17 for the case of intraparticle-controlled adsorption, and equations 10 
and 12−17 for adsorption equilibrium contain 12 dimensionless groups that involve 8 
undetermined scale and reference factors. We can set 8 of these dimensionless groups equal to 
one or zero (in the case of determining a reference factor) in order to scale the relevant variables 
and their derivatives to be of order one. However, this cannot be done arbitrarily. One must make 
some assumptions as to the proper groups to set equal to one and then determine if this choice 
was correct by evaluating the remaining dimensionless groups to be if they are also bounded of 
order one. We will make the following choices: 
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Step 6: 
 
The scale and reference factors defined by equations 18−26 can be determined using the 
characteristic values for the physical properties and system parameters given in Table 1 for both 
conventional and Ultra-Rapid PSA. Before preceding any further it is convenient to determine 
whether the intraparticle transfer rate or equilibrium adsorption determines the characteristic 
adsorption rate scale; that is, whether equation 24 or equation 25, respectively, determines sq� .

 
 

 
Table 1: System Parameters for Conventional and Ultra-Rapid PSA

 
  

System Parameters Conventional PSA Ultra-Rapid PSA 
b (m2) 1.33×10-9 2.71×10-15 
k (s-1) 19 1.5×106 

l (m2/N) 5.15×10-7 5.15×10-7 
L (m) 1.0 2.0×10-4 

q0 (mol/m3) 2.7×103 2.7×103 
PA (Pa) 1×105 0.4×105 
PL (Pa) 1×105 1×105 

R (Pa⋅m3/mol⋅K) 8.314 8.314 
T (K) 298 298 

ε  0.35 0.35 
µ (Pa⋅s) 1.83×10-5 1.83×10-5 
ω (rad/s) 0.06 157 
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This can be assessed by dividing equation 25 by equation 24. This ratio is a measure of the time 
scale for intraparticle transfer to that for adsorption equilibrium. The criterion for assuming 
equilibrium adsorption is then given by the following: 
 

      
2

1
k

ω
π

�      (27) 

 
That is, equilibrium adsorption is favored by large intraparticle transfer coefficients and by 
longer cycle times. Table 1 summarizes the characteristic values of the physical properties and 
system parameters for both conventional and Ultra-Rapid PSA. These characteristic values, 
when substituted into equation 27, indicate that both processes operate under conditions of rapid 
adsorption equilibrium. Hence, in the following we will assume that the adsorption rate scale is 
determined by equation 25. 
 
When the scale and reference factors determined by equations 18−23 and 25−26 are substituted 
into equations 10−17, the minimum parametric representation of the problem is obtained: 
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The four dimensionless groups remaining in equations 28−34 are summarized below: 
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       (38) 

 
The group N1 permits assessing the relative important of the unsteady-state term in the overall 
mass balance.  The group N2 permits assessing the importance of mass loss owing to adsorption 
in the overall mass balance. The group N3 permits determining when the Langmuir adsorption 
isotherm reduces to a linear relationship, that is, a Henry’s law type approximation. The group N4 
is a measure of the relative magnitude of the pressure swing. If values of the physical properties 
and process parameters are known, the groups N1, N2, N3, and N4 can be calculated to assess the 
relative importance of various terms in describing equations.  
 
 
V. Discussion and Conclusions 
 
Table 2 summarizes the values of these four groups for both conventional PSA and Ultra-Rapid 
PSA based on the characteristic physical properties and process parameters given in Table 1. 
 

Table 2: Characteristic Dimensionless Groups for Conventional and Ultra-Rapid PSA 
 
 
 
 
 
 
 
One sees that these two processes are markedly different. The magnitude of N1 indicates that 
conventional PSA can be assumed to be quasi-steady-state; that is, one can safely neglect the 
unsteady-state term in the overall mass balance in determining the pressure distribution. 
However, this simplification cannot be made for Ultra-Rapid PSA. The magnitude of N2 
indicates that one can ignore the effect of the gas adsorption in solving the overall mass balance 
for conventional PSA. However, this term is significant for Ultra-Rapid PSA owing to its more 
rapid adsorption rate and the superior properties of the adsorbent material, such as smaller 
adsorbent particle size, the monolith structure of the adsorption bed, and the active binder that 
holds the small adsorbent particles together. For Ultra-Rapid PSA, the absorption term is so 
important that its presence in the total mass balance is essential. The magnitude of the group N3 
indicates that the adsorption equilibrium can be described by a simple linear relationship for both 
conventional as well as Ultra-Rapid PSA. 
 
This example indicates the power of scaling analysis as a systematic method for achieving the 
minimum parametric representation of a physical process. Moreover, by employing the 
systematic scaling method to insure that the dependent variables and their derivatives are of 
order one, it is possible to assess the relative importance of the various terms that appear in the 
describing equations for a physical process. In particular, scaling analysis provides quantitative 
criteria for invoking simplifying assumptions. In the example problem presented here for 
pressure swing adsorption (PSA), scaling analysis was used to develop a quantitative criterion 
for assuming quasi-steady-state, namely 

Dimensionless group Conventional PSA Ultra-Rapid PSA 
N1 0.04 1.35 
N2 0.035 4.3 
N3 0.05 0.02 
N4 1.00 0.40 
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Scaling analysis also provided a quantitative criterion for when the mass loss owing to 
adsorption could be ignored in the overall mass balance used to determine the pressure 
distribution in the PSA device, name 

    
( ) 0 2

2
1

2 1

A

lRT q L
N

bP

ω ε µ
πε

−
= �

    (41) 

Scaling analysis also provides a quantitative way to determine the optimal design parameters for 
PSA. Since the group N2 for Ultra-Rapid PSA is somewhat larger than unity, it suggests that the 
characteristic pressure swing PA does not occur over the full adsorption-bed length L. Rather, for 
Ultra-Rapid PSA the adsorption is so efficient that the pressure undergoes a characteristic change 
over a distance somewhat less than the full bed length. This implies that for the design 
parameters given for Ultra-Rapid PSA in Table 1, the adsorption bed is not being fully utilized. 
Hence, either a larger pressure swing PA or a slower cycle frequency ω could be employed to 
more fully utilize the adsorption bed. Feasible values for either the pressure swing or cycle time 
can be determined by setting N2 equal to one.  More efficient use of the adsorption bed can be 
achieved for Ultra-Rapid PSA by increasing the pressure swing to PA = 1.72 × 105 Pa or by 
decreasing the cycle time to ω = 36.5 rad/s. 
 
In addition, scaling analysis provided a quantitative criterion for when the Langmuir adsorption 
isotherm could be simplified and approximated via a linear relationship, namely 
     

     3 1                                                              (42)AN lP= �
  

       
The approximations of quasi-steady-state, negligible adsorption, linear adsorption equilibrium 
behavior, etc., are well known in the design of conventional PSA [4]. However, these 
assumptions are often made without providing any quantitative criteria to assess their validity. 
Scaling analysis is a systematic method for developing these criteria as shown in this paper.  
 
In practice, the error encountered in making a particular assumption based on scaling analysis is 
on the order of the size of the dimensionless group used to provide the quantitative criterion for 
the approximation; that is, if the dimensionless group is of order 0.1, 0.01, etc., the error 
encountered in making the approximation will be 10%, 1%, etc., respectively. This conclusion 
follows directly from the scaling methodology whereby each term is of order one. Hence, if a 
dimensionless group multiplying a particular term is small, the error encountered when this term 
is ignored is on the order of the discarded term. 
 
Scaling analysis is a valuable tool in engineering teaching. It can be used to justify simplifying 
assumptions such as those considered in the example presented in this paper and in prior papers 
on this subject by one of the co-authors [1,2]. Moreover, it can be used to introduce subtle 
concepts such as creeping flow or boundary layer theory in fluid mechanics and penetration 
theory in mass transfer [1]. Scaling analysis is also quite useful in engineering practice since it 
can be used to achieve the minimum parametric representation of a physical problem and thereby 
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to provide the dimensionless groups that can be used to correlate experimental data or the results 
of a numerical simulation [3]. The dimensionless groups resulting from scaling analysis can also 
be used in scale-up and scale-down analyses such as for wind tunnel studies of aerodynamics. 
Finally, as shown in this example, scaling analysis can be used to estimate the optimal design 
parameters for a process. 
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