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Scaling Analysis as a Pedagogical Tool in 

Teaching Transport and Reaction Processes 

 

Abstract 

 

This paper describes the use of scaling analysis as a pedagogical tool in teaching courses in fluid 

dynamics, heat transfer, mass transfer, transport phenomena, mass transfer with chemical 

reaction, and process modeling. Scaling analysis is a systematic method for nondimensionalizing 

a system of describing equations for transport or reaction processes so that all the dimensionless 

variables as well as their derivatives have a magnitude no greater than approximately one. This 

permits assessing the importance of various terms on the basis of the values of the dimensionless 

groups that multiply them. As such, scaling analysis is an invaluable tool for educators since it 

provides a systematic way to arrive at model approximations. It thereby permits presenting 

disparate topics in transport and reaction processes in a unified and integrated manner. 

Highlights are given of how scaling analysis has been used in teaching graduate-level courses. 

An eight-step procedure is outlined for applying scaling analysis and then is applied to an 

illustrative problem involving interpreting data obtained from a permeation cell used to 

determine the properties of a membrane. This example illustrates how scaling analysis can be 

used to both interpret performance data as well as to extract useful characterization parameters 

from the data. As such, it underscores the advantages of scaling analysis as a learning tool to 

hone students’ intuition.  

 

1. Introduction 

 

Each successive generation of engineering students must learn the essence of what their 

predecessors mastered in addition to an ever-expanding body of new knowledge. This presents a 

pedagogical challenge to engineering educators who must develop effective means for teaching 

more material within essentially the same time frame. Obviously this requires developing 

learning tools that effectively integrate seemingly disparate concepts in our body of engineering 

knowledge. Scaling analysis provides a very effective pedagogical tool to address this challenge. 

 

Scaling analysis is a systematic method for nondimensionalizing a system of describing 

equations for a physical process. The resulting dimensionless system of equations represents the 

minimum parametric representation of the process. By this we mean that the solution for any 

quantity that can be obtained from these equations will be at most a function of the 

dimensionless independent variables and the dimensionless groups generated by the scaling 

process. In conventional dimensional analysis there is no unique set of dimensionless dependent 

and independent variables and associated dimensionless groups; that is, for any system of 

describing equations, one set of dimensionless variables and dimensionless groups can always be 

obtained from any other set. In contrast, scaling analysis involves nondimensionalizing a system 

of describing equations in a unique way to ensure that the relevant dependent and independent 

variables and their derivatives are bounded of order one, denoted by ○(1). By this we mean that 

the magnitude of the particular dimensionless variable or its derivative is bounded between zero 

and approximately one. The utility of the systematic scaling procedure is that when all the 

relevant dependent and independent variables and their derivatives in the resulting dimensionless 

describing equations are bounded of ○(1), one can assess the importance of various terms on the 
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basis of the values of the dimensionless groups that multiply them. Hence, by using ○(1) scaling, 

one can appropriately simplify the describing equations for a transport or reaction process.  

 

Scaling analysis is particularly useful to the educator who is faced with explaining seemingly 

unrelated topics such as creeping flows, boundary-layer flows, film theory and penetration 

theory, etc. Topics such as these often are developed in textbooks in a rather intuitive manner. 

Scaling analysis provides a systematic way to arrive at these model approximations that 

eliminates any guesswork; that is, scaling analysis provides an invaluable pedagogical tool for 

teachers. Disparate topics in transport and reaction processes can be presented in a unified and 

integrated manner. For example, a region-of-influence in scaling provides a means for presenting 

a unified approach to boundary-layer theory in fluid dynamics, Penetration Theory in heat and 

mass transfer, the wall region for confined porous media, and the reaction zone in reactor design. 

 

Scaling analysis also provides a very effective learning tool for the student. Textbooks on 

transport and reaction processes generally justify simplifying assumptions leading to the 

creeping flow, boundary-layer, penetration-theory, plug-flow reactor, etc., equations via ad hoc 

arguments rather than by a systematic approach such as scaling analysis. Hence, the student 

might not see the interrelationship between the various approximations made in describing 

transport and reaction processes such as the analogy between boundary-layer theory in fluid 

dynamics and penetration theory in heat or mass transfer. Moreover, the ad hoc approach to 

simplifying the equations describing transport and reaction processes does not provide the 

student with any basis for simplifying more complex problems that are not described in 

textbooks. 

 

Section 2 of this paper provides a brief overview of how scaling analysis has been used by the 

author in teaching several courses. In Section 3 the implementation of scaling analysis is 

presented as an eight-step procedure. The manner in which each of these steps is carried out is 

described in detail. Scaling analysis then is applied in Section 4 to an illustrative problem 

involving the interpretation of pressure versus time data obtained from a membrane permeation 

cell. This example is interesting in that it involves introducing scales not only for the dependent 

and independent variables but also for a derivative. As such, it demonstrates how scaling analysis 

differs markedly from conventional dimensional analysis. This example indicates how scaling 

analysis can be used to assess the relative importance of the various terms in the model 

equations; how it provides a systematic method for developing approximations such as quasi-

steady-state; how it can be used to interpret process performance data; and how it can be used to 

extract meaningful characterization parameters from performance data. Concluding remarks are 

given in Section 5.  

 

2.  Implementing Scaling Analysis in Courses 

 

The author has used scaling analysis as a pedogogical tool in teaching courses in fluid dynamics, 

heat transfer, mass transfer, transport phenomena, mass transfer with chemical reaction, and 

process modeling. These were graduate-level courses that frequently were taken as technical 

electives by advanced undergraduates. The use of scaling analysis contributed significantly to the 

very high teaching evaluations received by the author based on anonymous student feedback. As 

result, the author has been recognized by several ASEE teaching awards as well as lifetime 
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designation as a President’s Teaching Scholar of the University of Colorado. Student evaluations 

of these courses would consistently comment on the value of scaling analysis in helping to grasp 

subtle concepts and to enhance physical insight. Many former students of the author have told 

him that they continue to use scaling analysis in their professional practice to facilitiate process 

design, data analysis, and model building. The strong encouragement that the author received 

from students who took his courses motivated him to write a book on scaling analysis in 

modeling transport and reaction processes
1
. Highlights of how scaling analysis has been used in  

courses taught by the author are given below. 

 

2a.  Fluid Dynamics 

 

Scaling analysis is used as a systematic method for introducing the following concepts:  fully 

developed flow; creeping flow; lubrication flow; hydrodynamic boundary-layer flow; quasi-

steady-state flow; and incompressible flow. It is used to assess the importance of end and 

sidewall effects, nonconstant physical properties, and boundary effects in modeling flow through 

porous media. It is particularly useful in a modeling free surface flows involving films and jets in 

order to determine the applicability of approximations such as quasi-parallel flow. 

 

2b.  Heat Transfer 

 

In a heat-transfer course scaling is used to provide a systematic method for introducing the 

following concepts: small and large Biot number heat transfer; low and high (thermal boundary-

layer) Peclet number heat transfer; low and high Fourier number heat transfer; quasi-steady-state 

heat transfer; and the Boussinesq approximation in thermally induced free convection. It is also 

used for assessing the importance of end and sidewall effects and temperature-dependent 

physical properties. It is particularly useful in discussing heat transfer involing a moving 

boundary such as occurs in evaporating or condensing liquids, thawing or freezing of liquids or 

liquid-saturated porous media, and in the thermal casting of membranes and thin films. 

 

2c.  Mass Transfer 

 

Scaling is used in mass transfer to introduce many of the same concepts that occur in heat 

transfer. However, mass transfer involves several unique concepts that can be developed 

systematically using the scaling analysis approach such as: the bulk flow contribution to Fick’s 

law; low and high Damköhler number mass transfer with heterogeneous reaction; low and high 

Thiele number mass transfer with homogeneous chemical reaction; low and high Grashof 

number solutally driven free convection; Taylor dispersion; and the uniformly assessible surface. 

Again, scaling analysis provides a very useful tool for assessing the approximations that can be 

made in modeling mass transfer involving moving boundary problems such as corrosion of 

surfaces and the controlled release of pharmaceuticals, cosmetics, herbicides, and insecticides. 

 

2d. Transport Phenomena 

 

When teaching transport phenomena it is particularly helpful to students if they can see the 

analogies between fluid flow, heat transfer, and mass transfer. Scaling analysis is used to 

illustrate the following analogies: film and penetration theory models in heat and mass transfer; 
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creeping flows and low Peclet number heat or mass transfer; hydrodynamic boundary layer flows 

and high Peclet number heat or mass transfer; low Biot number heat transfer and low Damköhler 

number mass transfer; steady-state flows and high Fourier number heat or mass transfer; free 

surface flows and moving boundary problems in heat and mass transfer. 

 

2d.  Mass Transfer with Chemical Reaction 

 

Mass transfer with chemical reaction often involves modeling at two vastly different length 

scales; the microscale of a catalyst particle, adsorbent particle, bubble, or droplet and the 

macroscale of the reactor. The heterogeneous nature of chemical reactor design necessarily 

requires some systematic means for integrating the microscale transport and reaction with that 

occurring on the macroscale. Scaling analysis provides a systematic method for developing 

appropriate microscale models that can then be incorporated as a point source or sink of species 

in a macroscale model. Scaling permits identifying the various reaction regimes and domains that 

can occur on both the micro- and macroscale. 

 

2e.  Process Modeling 

 

Scaling analysis is used in teaching a course in process modeling to facilitate the following:  to 

assess what approximations can be made in developing a tractable model for the process; to 

determine the appropriate values of the process parameters in designing either numerical, 

laboratory, or pilot-scale testing of a process; and in determining the optimal minimum 

parametric representation of the describing equations for the process in order to correlate 

numerical or experimental data. 

 

3.  The Scaling Analysis Technique 

 

The ○(1) scaling analysis technique of interest here has been described in a series of publications 

and in a recently published book by the author
1,2,3,4

. The procedure that is involved in ○(1) 

scaling analysis can be reduced to the following eight steps: 

 

1) Write the dimensional describing equations that must include any required initial, 

boundary, and auxiliary conditions appropriate to the transport or reaction process being 

considered. 

 

2) Define unspecified scale factors for the dependent and independent variables as well as 

appropriate derivatives appearing explicitly in the describing equations. 

 

3) Define unspecified reference factors for each dependent and independent variable that is 

not naturally referenced to zero. 

 

4) Form dimensionless variables by introducing the unspecified scale and reference factors 

for the dependent and independent variables and the appropriate derivatives. 

 

5) Introduce these dimensionless variables into the describing equations. 
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6) Divide through by the dimensional coefficient of one term in each of the describing 

equations. 

 

7) Determine the scale and reference factors by insuring that the principal terms in the 

describing equations are ○(1); i.e., they are bounded between zero and of order one. 

 

8) Use the resulting minimum parametric representation of the problem to explore the 

properties of the describing equations, how they can be simplified, and how useful 

information can be extracted from performance data for the process of interest. 

 

The dimensional describing equations involved in step 1 are differential and algebraic equations 

along with any required initial and/or boundary conditions as well as auxiliary conditions to 

determine the location of moving boundaries or free surfaces. These describing equations 

incorporate any simplifications that one is certain are justified. However, one cannot eliminate 

any of the terms whose magnitude scaling analysis is being used to assess. In implementing this 

step one must write down at least formally all the equations necessary to solve the particular 

problem. For example, one might have an elliptic differential equation that requires a 

downstream boundary condition that is not known. Nonetheless, one needs to specify this 

unknown boundary condition at least formally. One also needs to include appropriate equations-

of-state, kinetic relationships, etc., required to insure that the problem is completely determined. 

 

In step 2 one defines scale factors for each dependent and independent variable that appears 

explicitly in the describing equations. However, in addition one might have to define scale 

factors for certain derivatives of the dependent variables that appear explicitly in the describing 

equations. One sees that this procedure in step 2 is a dramatic departure from that used in 

conventional dimensional analysis. The reason for introducing scale factors on derivatives as 

well as dependent and independent variables is to insure that the resulting dimensionless 

derivatives are ○(1). This is a critical step since one would like to have every dimensionless 

variable as well as their derivatives be of ○(1) so that the magnitude of the dimensionless groups 

multiplying the dimensionless variables and/or their derivatives indicates the relative importance 

of the particular term in the describing equations. 

 

Step 3 introduces reference factors for any dependent or independent variable that is not 

naturally referenced to zero. For example, a one-dimensional heat-conduction problem might 

have boundary conditions that involve different constant temperatures at two surfaces. If one 

wants the dimensionless temperature to be bounded between zero and one, it is clearly necessary 

to introduce a reference temperature, which scaling will systematically determine to be the 

lowest known temperature for the process. Reference factors sometimes are needed for 

independent variables as well. For example, in solving a fluid-flow problem in an annulus, the 

‘zero’ for the radial coordinate should be referenced to the inner wall of the annulus, not the axis 

of symmetry for the cylindrical coordinate system. Introducing a reference factor for variables 

not naturally referenced to zero is critical to achieving ○(1) scaling. If this is not done for some 

variable that is not naturally referenced to zero, the parametric representation of the problem will 

involve an additional unnecessary dimensionless group. 
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In step 4 we form dimensionless variables for all dependent and independent variables and their 

relevant derivatives. These are defined by dividing the dimensional value of the particular 

variable relative to the unspecified reference factor by the unspecified scale factor. 

 

Step 5 is involves using the chain-rule of differentiation to recast the dimensional describing 

equations in terms of the dimensionless variables. This is straightforward since the scale and 

reference factors are considered to be constants in the scaling analysis. In some problems 

involving a region-of-influence such as boundary-layer flows, the scale factor might be a 

function of one of the independent variables such as a streamwise spatial coordinate. However, 

in such cases we are considering ‘local scaling’ at a fixed value of the independent variable. 

Hence, the scale factors involving the region-of-influence are still treated as constants in the 

change of variables involved in the nondimensionalization. 

 

In step 6 we divide through by the dimensional coefficient of one term in each of the describing 

equations for the particular transport or reaction process. These dimensional coefficients will 

consist of known parameters of the process as well as the unspecified scale and reference factors 

used to nondimensionalize the variables. In implementing this step one should try to divide 

through by the dimensional coefficient of a term that must be retained in each of the describing 

equations in order to maintain physical significance. If one does not know which terms must be 

retained, one divides through by the dimensional coefficient of some arbitrary term. If in fact this 

is not a significant term for the particular conditions being considered, other terms in the same 

describing equation will be multiplied by dimensionless groups that are significantly greater than 

one, thus indicating that they are the most important terms in the particular equation being 

considered.  

 

In Step 7 one determines the unspecified scale and reference factors by demanding that the 

dimensionless variables and their relevant derivatives in the describing equations be ○(1). In 

order to accomplish this, one sets appropriate dimensionless groups containing the unspecified 

scale and reference factors equal to one for scale factors or zero for reference factors. 

 

Step 8 is the desired end result of the scaling analysis, namely the unique minimum parametric 

representation of the describing equations for the process that insures ○(1) scaling. Since all the 

dimensionless variables and their derivatives are ○(1), the magnitude of each term in the 

describing equations is determined by the magnitude of the dimensionless group that multiplies 

this term. Since we divided through by the dimensional coefficient of one term in each of these 

equations in step 6 above, one is comparing the magnitude of every term in each describing 

equation to one. The procedure in this step depends on what information is being sought in the 

scaling analysis. If one is seeking to determine the conditions required to ignore some particular 

term in the describing equations, then one merely demands that the dimensionless coefficient of 

this term be very small. If one is seeking to determine what approximations are allowed for a 

particular problem for which the process parameters are known, then one evaluates all the 

dimensionless groups in the describing equations to assess their magnitude. If the scaling 

analysis is correct for the particular process conditions, then the magnitudes of all the 

dimensionless groups must be ○(1). If any of the dimensionless groups are much greater than 

○(1), it indicates one of the following: (1) the term containing this group should have been the 

one whose dimensional coefficient was divided through in order to form the dimensional groups 
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in step 6 above; (2) there is a region-of-influence or boundary layer wherein a temporal or spatial 

derivative becomes very large; or (3) the group of dimensionless dependent variables and/or their 

derivatives that the large dimensionless group multiplies is very small.  In the first two situations 

one has to rescale the describing equations either by dividing through by the appropriate 

dimensional coefficient in each equation or by introducing a region-of-influence. One sees that 

scaling analysis is ‘forgiving’ in that if one makes an incorrect assumption, it will lead to an 

apparent contradiction that indicates the scaling was wrong. When one has arrived at the correct 

scaling indicated by having all the dimensionless terms bounded of ○(1), one can determine 

allowable assumptions from the magnitude of those dimensionless groups that are very small. 

For example, if the dimensionless group (i.e., Reynolds number) multiplying the inertia terms in 

the equations-of-motion is ○(0.01), the error incurred in dropping these terms will be on the 

order of 1% or less.  

 

The easiest way to understand the application of these eight steps is to work through an example 

problem in detail. This is done in the following section in which the sequential steps in the 

scaling analysis are indicated via subsections. 

 

4.  Example Problem: Interpretation of Data for a Membrane Permeation Cell 

 

Consider a gas-permeable polymer film, having thickness L  that is placed in a cylindrical 

permeation cell having a circular cross-sectional area cS  as shown in Figure 1. The permeable 

polymer film divides the permeation cell into a lower chamber and an upper chamber whose 

volume is denoted by .uV  Initially both the lower and upper chambers are evacuated so that their 

initial pressure is 0.P =  At time 0t =  a pure gas is introduced at a constant pressure 0P  into the 

lower chamber. The pure gas then begins to permeate through the polymer film eventually 

entering the upper evacuated chamber, thereby causing its pressure, denoted by ( ) ,P t  to 

progressively increase in time. The permeating component is assumed to form a dilute solution 

in the polymer film whose solubility is described by ,A HPρ = where Aρ  is the concentration 

(mass/volume) and H is the Henry’s law constant. 

 

Typical data obtained using this apparatus are shown in Figure 2 in which the pressure in the 

upper chamber is plotted as a function of time. Note that there is a short period of time during 

which the pressure in the upper chamber remains at zero. This is followed by another relatively 

short period of time during which the pressure in the upper chamber increases nonlinearly. 

Finally there is a relatively long period of time during which the pressure in the upper chamber 

increases linearly with increasing time. We will use scaling analysis to explain this interesting 

behavior and to determine useful information that can be extracted from these data. 
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Figure 1:  Membrane permeation cell in which a permeable polymer film separates the lower and 

upper chambers both of which are initially evacuated; the membrane permeability can be 

determined by injecting a permeable gas into the lower chamber and then measuring the change 

in pressure in the upper chamber. 

 

 
 

Figure 2:  Pressure in the upper chamber versus time from the inception of the permeation 

process through the membrane separating the upper and lower chambers. 

 

4a.  Step 1 

 

The appropriate form of the specie-balance equation for the case of a constant binary diffusion 

coefficient ABD  and the corresponding initial and boundary conditions are given by the 

following: 
2

2

A A
ABD

t x

ρ ρ∂ ∂
=

∂ ∂
      (1) 

0     at     0     A tρ = =      (2) 

pressure gauge 

upper chamber at variable pressure 

( )P t  and constant volume uV  

lower chamber at constant pressure 0P  

polymer film of thickness L   

and area cS  

 

( ),  mint  

P
, 
(m

m
 H

g
) 

0 
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0     at     0     A HP xρ = =      (3) 

     at          A HP x Lρ = =      (4) 

The boundary condition given by equation (4) is in terms of the unknown instantaneous pressure 

in the upper chamber. The auxiliary equation needed to determine this pressure can be obtained 

from an integral mass balance on the upper chamber as follows: 

( ) u AB c A
u

x LA

d V dP D S
cV

dt RT dt M x

ρ

=

∂
= = −

∂
     (5) 

where c  is the molar density of the gas in the upper chamber, R  is the gas constant, and T  is 

the absolute temperature. Equation (5) requires an initial condition, which is given by the 

following: 

0      at     0P P t= =       (6) 

where 0P  is the initial pressure in the lower chamber. 

 

4b.  Steps 2, 3, and 4 

 

Define the following dimensionless variables: 

1
;      ;      ;      ;      A

A

s s s s s

P dP dP x t
P x t

P dt P dt x t

ρ
ρ

ρ

∗

∗ ∗ ∗ ∗ 
≡ ≡ ≡ ≡ ≡ 

  &
   (7) 

Note that we have introduced a separate scale, sP&, for the time-derivative of the pressure since 

there is no reason why this should scale with sP  and .st  In this case there is no need to introduce 

any reference factors since the spatial and temporal coordinates as well as the pressure are 

naturally referenced to zero. 

 

4c.  Steps 5 and 6 

 

Introduce these dimensionless variables into the describing equations and divide through by the 

coefficient of one term in each equation: 
2 2

2

s A A

AB s

x

D t t x

ρ ρ∗ ∗

∗ ∗

∂ ∂
=

∂ ∂
      (8) 

0     at     0     A tρ ∗ ∗= =      (9) 

0      at     0     A

s

HP
xρ

ρ

∗ ∗= =      (10) 

 
    at         s

A

s s

HP L
P x

x
ρ

ρ

∗ ∗ ∗= =     (11) 

s

AB c s A

LA u s s x
x

dP D S RT

dt M V x P x

ρ ρ

∗

∗ ∗

∗

=

∂ 
= − 

∂  &
    (12) 

0      at     0
s

P
P t

P

∗ ∗= =      (13) 
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The dimensionless groups in boxes are those that will be set equal to one in order to determine 

the various scale factors for reasons to be discussed in the next step. 

 

4d.  Step 7 

 

The scale factors are determined via the following considerations. The dimensionless 

concentration and pressure can be bounded to be ○(1) by setting the dimensionless groups, 

shown in the boxes, in equations (10) and (13) equal to one to obtain 0s HPρ =  and 0sP P= . 

Since in general this is unsteady-state mass transfer, the time scale is the observation time ,ot  

which can be any time between 0t =  and the end of the permeation process; in the 

transformation from dimensional to dimensionless time, it is considered to be a constant. The 

length scale is obtained by setting the dimensionless group shown in the box in equation (11) 

equal to one to obtain .sx L=  Since the two terms in equation (12) must balance, the 

dimensionless group in the box is set equal to one to obtain ( ) ( )0s AB c A uP D S RTHP M V L=& . These 

choices for the scale factors then result in the following describing equations: 
2

2

1

Fo

A A

m t x

ρ ρ∗ ∗

∗ ∗

∂ ∂
=

∂ ∂
       (14) 

0     at     0     A tρ ∗ ∗= =      (15) 

1     at     0     A xρ ∗ ∗= =      (16) 

   at     1    A P xρ ∗ ∗ ∗= =      (17) 

1

A

x

dP

dt x

ρ

∗

∗ ∗

∗

=

∂ 
= − 

∂ 
      (18) 

1     at     0P t
∗ ∗= =       (19) 

where 2Fom o ABt D L≡  is the solutal Fourier number. Note that the solutal Fourier number arose 

naturally from the scaling process. Its physical significance is that it is a measure of the ratio of 

the contact time, ot , to the diffusion time scale, 2

ABL D . 

 

4e.  Step 8 

 

Now let us consider how our scaled describing equations can be used to interpret the data shown 

in Figure 2. At very short contact times no gas will have permeated completely through the 

membrane to cause any change in the pressure in the upper chamber. The time required for any 

pressure change to occur in the upper chamber can be estimated from the time required for the 

permeating component to penetrate completely through the membrane. This corresponds to 

setting the solutal Fourier number equal to one; that is,  
2

2
Fo 1          AB o

m o

AB

D t L
t

L D
= = ⇒ =      (20) 

Equation (20) then provides an estimate of the dead time for any pressure response to occur in 

the upper chamber for the data shown in Figure 2. Once the permeating component penetrates 

through the membrane, a period of unsteady-state mass transfer will occur during which the 

pressure will increase nonlinearly in time. The duration of this latter period can be estimated 
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from the time required to achieve quasi-steady-state mass-transfer conditions; that is when 

Fo 1.m ?  The latter will be satisfied and generally result in an error less that 1% if  Fo 100.m ≅  

Hence, ot  is obtained as follows: 

2 21 1 100
     or when         

Fo 100
o

m AB o AB

L L
t

D t D
= ≅ ≅    (21) 

Equation (21) provides an estimate of the time required from the introduction of the permeating 

gas to achieve quasi-state mass transfer through the membrane. We now will show that the latter 

condition corresponds to a linear pressure increase in time. For observation times greater than 

that defined by equation (21) the unsteady-state term in equation (14) can be ignored. If in 

addition 1P∗ =  in equation (17), the concentration driving force across the membrane will be 

constant and equation (18) implies that 

0 0

1

1        A AB c AB c
s

A u A ux

dP dP D S RTHP D S RTHP
P P t

dt x dt M V L M V L

ρ

∗

∗ ∗

∗

=

∂ 
= − ≅ ⇒ = = ⇒ = 

∂ 
&   (22) 

That is, the pressure will increase linearly in time as seen in Figure 2 at longer times. Note that 

the diffusion coefficient for permeation through the membrane can be obtained from the slope in 

linear region of the pressure response curve. However, when 0.1P
∗ ≅  the permeation driving 

force across the membrane can no longer be considered to be constant, which implies a 

progressive decrease in the rate at which the pressure increases in the upper chamber. Figure 2 

does not show this behavior since it does not include data for sufficiently long observation times. 

 

For quasi-steady-state conditions equations (14) and (18) can be solved analytically to obtain the 

following solution for the pressure in the upper chamber: 

0 1

AB c

A u

D S RTH
t

M V L
P P e

 
− 
 

 
 = −
  

     (23) 

Note for small values of the exponent, equation (23) reduces to the linear response given by 

equation (22). Hence in summary, scaling analysis of the describing equations not only is 

capable of describing all the features of the pressure-response curve in Figure 2, but also can 

predict the long time response for which no data are shown in this figure. 

 

5. Concluding Remarks 

 

The preceding example indicates the power of scaling analysis as a systematic method for 

nondimensionalizing the describing equations for a physical process. In particular, by employing 

the systematic scaling method to insure that the dependent variables and their derivatives are 

bounded of order one, it is possible to assess the relative importance of the various terms that 

appear in the describing equations. For example, when the solutal Peclet number is very large, 

the first term in equation (14) becomes very small and the quasi-steady-state approximation is 

justified. Scaling analysis in this example also indicates how an experiment can be optimally 

designed to extract meaningful characterization parameters. That is, equation (22) implies that 

the diffusion coefficient for the gas through the membrane can be obtained from the slope of the 

linear region of the pressure response curve. Most importantly, this example hopefully illustrates 

how scaling analysis can be used to hone the students’ intuition for interpreting performance 
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data. Clearly, considerable insight was obtained on the four different regions of the pressure 

response curve. 

 

Unfortunately this paper can provide only an introduction to the ○(1) scaling analysis 

methodology. The interested reader seeking more information on this valuable pedagogical tool 

is referred to the author’s recently published book on the subject, which contains 62 worked 

example problems in fluid dynamics, heat transfer, mass transfer, and reactor design as well as 

165 practice problems
4
.  
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