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Introduction 

Evolutionary computation was conceived and articulated in the 1960's as a method of solving 

otherwise intractable problems.  Computer programs based on evolutionary techniques typically 

consume lots of computer resources and until the 1990's the technique was implemented only by 

the few who had access to those resources.  Over the last ten years, computers have become fast 

enough and enough memory has become cheaply available that evolutionary computation is now 

a workable technique for a typical desktop computer running a program for several hours or over 

a weekend.   

 

Evolutionary computation is a powerful technique and has been applied to a variety of problems 

including electric circuit design, time-optimal control circuits, quantum computer algorithms, 

robotics and many others
1
.  The algorithms used to implement evolutionary computation are not 

complex and are accessible to the typical undergraduate engineering major.   

 

This paper describes the fundamentals of evolutionary computation as it is applied to the DSP 

problem of designing a digital filter.  It describes a computer program
7
 which presents the user 

with a graphical user interface (GUI) for selecting filter parameters and other restraints on the 

algorithm.  The program runs with a background priority and can be set to run for a few minutes 

up to several days.  The evolutionary techniques of fitness, mutation, crossover, and growth are 

used. 

 

Terminology 

Evolutionary computation is based on Darwinian evolution and much of the terminology 

originates with terms defined in biological systems.  The field is still very new and many of the 

definitions used here do not rigidly apply but are instead "consensus" definitions gleaned from 

other sources. 

Evolutionary Algorithm – (EA) a generic term used for all programming methods which rely 

on evolution to achieve a stated goal. 

Evolutionary Computation – (EC) any computation that makes use of evolutionary 

algorithms. 

Evolutionary Programming – (EP) an evolutionary algorithm which uses mutation but not 

crossover to achieve a goal.  

Evolutionary Strategy – (ES) an evolutionary algorithm which uses mutation and crossover 

to achieve a goal.  

Genetic Algorithm – (GA) a generic term often used interchangeably with evolutionary 

algorithm.   Some use the term "genetic algorithm" to mean those evolutionary 
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algorithms which rely most heavily on crossover, and in which mutation is not used or 

plays a minor role. 

Genetic Programming – (GP) evolutionary techniques are applied to a problem to create a 

program.  In genetic programming the output is a program, typically in Lisp, that has 

evolved to solve a particular problem. 

Fitness – a measure or assessment of the quality of an individual item in a population as 

compared to an ideal.  In an evolutionary algorithm, only the fittest individuals survive to 

the next generation. 

Mutation – a random change in some portion of an individual's make up. 

Growth – a small change in an individual directed toward a better fit to a goal.   

Crossover – similar to biological reproduction.  Characteristics of two or more parent 

individuals are combined by some algorithm to form a new individual. 

 

How It Works 

An evolutionary algorithm works in the following manner: 

• An original population is selected.  This is typically done in a random fashion so that each 

member of this population represents a solution to the problem.  This original population is 

said to be the first generation. 

•  The population is assessed to determine each member's fitness.  In a typical program the 

population is sorted with the best at the top.   

• After sorting, parents are selected from the population.  The parents are those members 

which are most fit.  For example the top 30% may be chosen as parents.   

• Crossover is performed using the parents to generate children.  For example, two randomly 

selected parents may be chosen with parts of each going together to form a child.  This 

process continues until all of the desired children are produced.  If, say 30% of the 

population are parents then the remaining 70% may be replaced with new children.   

• Mutation is performed.  Mutation involves small random changes to certain elements of a 

member of the population without regard to whether or not those changes are beneficial.  

Typically some small percentage of the population is involved.   

• Growth operations may be performed.  Growth allows some small group of the population 

to change in a positive fashion.  Growth is similar to mutation except that for growth, 

members are assessed immediately after a change and only positive changes are allowed. 

• The population with the survivors (typically the parents) and the new children become the 

next generation.  

• The process is repeated many times until some time limit expires or until some member of 

the population achieves a desired assessed value. 

 

A Simple Example: Generating Phrases 

As a purely academic example, consider the problem of using an evolutionary algorithm to 

generate a phrase such as "Twas brillig, and the slithy toves".   We begin by selecting an original 

population of say 1,000 randomly generated phrases.  For simplicity we will specify that each 

randomly generated phrase is the same length as the ideal phrase or 33 characters (counting the 

spaces as characters but not the comma).  To assess the fitness of each phrase we sum up the 

differences between each character of a given phrase and the corresponding character in the ideal 

phrase using ASCII values.  A partial list of the population and the error numbers might look like 

that shown in Figure 1.   
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If we choose the top 30% to be parents then we have 300 parents and 700 children.  We choose 

two random parents to generate each child phrase.  For example, referring to Figure 1, if we take 

strings 1 and 5 to be parents the two parents are  
1  OYBV DWRTFJGLRRMFQEM AIDEMZMNUGCY 

5  VCJEHISELMDA GYASODKHIBOFIUMXRJHP 

 

 

  No.  Er r     Str ing 
   1 295  OYBV DWRTFJGLRRMFQEM AIDEMZMNUGCY 

   2 337  BUMNKWELEEMGNENJATGGXWVGWHT NRPRU 

   3 338  XABP HPFZIBSGBDQYVAXJRFKYIF QOFUU 

   4 343  ULXSAPQWGLCMHNFU VKIDITVXHXJSNQVW 

   5 350  VCJEHISELMDA GYASODKHIBOFIUMXRJHP 

  ..    ..    ... 

 

 996 649   EE QTLLEDBHDLKPH CDNHFM M NYGHEH 

 997 650   UZOZNTFRYM FDS REETOYYK PQNOO OE 

 998 662  VKHQUSDUGUYIKGHBH V YNPR YTFD E L 

 999 674   BUBLPFQX EZWRUOUEJDHASXYPURVC SB 

1000 678  V WMGM BDAHLKKPXRWHVN VSCWKUSU  U 

Figure 1 
The original population of 1,000 randomly generated strings.  The 

error number is generated by subtracting ASCII values of each 

string from those of the ideal string and summing up the absolute 

value of the differences.  The character set consists only of the 

capital letters plus the space character. 

 

Next we randomly choose a substring from each parent.  Suppose we take the substring YBV 

DWRTFJGLRR from parent 1 and the substring BOFIUM from parent 5.  We then choose an existing 

child, say string 999 in Figure 1, and substitute the two substrings from the parents in a 

corresponding positions as shown in Figure 2. This forms a new child string.  This process is 

continued until all 700 children are generated. 

 

 
Figure 2 

Substrings from parent strings 1 and 5 are chosen to fit into child string 999 to form a new child 

string. 

 

After all of the children are generated by the crossover operation we select a small population for 

mutation.  In mutation we change a small subset of letters in a child in a random fashion.  The 

mutation may result in the child having a better or worse fit and there is no attempt made to do 

assessment of the mutation results at this time.  Typically mutation is done to less than 5% of the 

population.   
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The process of growth is similar to mutation.  Mutation is done to children but growth is applied 

to the surviving parents (the parents that have reproduced and will go on to the next generation).  

In growth we make a random change but we immediately assess its impact by determining 

whether the error became larger or smaller.  The result of the growth is kept only if it leads to a 

smaller error value for the parent string.   

 

The operations of fitness sorting, crossover, mutation, and growth are applied to the population 

in a given generation to form the next generation.  The process is repeated for thousands (or 

perhaps millions) of generations.  The operations stop when a given amount of time has passed 

or when the error is sufficiently small. 

 

Applying Evolutionary Algor ithms to Digital Filter  Design 

The design of a digital filter using evolutionary algorithms is analogous to the problem in the 

example above which creates a phrase.  The output of the algorithm will be a transfer function 

made up of poles and zeros.  The poles and zeros are analogous to the letters in the phrase 

creation problem.  The objective is to create a filter which minimizes the error between itself and 

some idealized filter.  An evolutionary algorithm has been implemented to achieve this objective.  

The processes of fitness sorting, crossover, mutation, and growth are described below: 

• Fitness – for each filter that is created, an error is calculated which is typically the discrete 

root mean square (rms) error between the filter and the ideal filter.  The error function 

can be weighted by the user as a function of frequency.   Thus, the user can specify that 

error in the transition band, for example, is twice as important as error in the stop band.  

A data structure has been created to store the filter description and the error.   

• Crossover – to do crossover, two parents are selected from the parent population.  A pole or 

zero pair is selected at random from each filter.  These parent pole or zero pairs replace 

corresponding terms in the child filter.   

• Mutation – mutation is performed on a small subset of the children by moving a pole or 

zero term in a random fashion.  Care is taken so that randomly chosen terms do not cause 

instability.  Most often, this movement increases the error for the filter but occasionally it 

leads to good results.   

• Growth – the growth operation is performed on a subset of the parent terms.  This operation 

is considerably more complex than it is for the phrase problem.  Each pole or zero can 

move in two dimensions.  Effectively four new filters are created.   Two new filters are 

created by incrementing or decrementing the magnitude of a pole or zero term by a small 

amount;  Two other filters are created by moving the original pole or zero term by a small 

amount in the theta dimension.  One of these four new filters is chosen at random and 

tested against the original filter.  If the new filter is an improvement it is retained and the 

program proceeds.  If the test fails the next filter is tried and so forth until all four new 

filters are tested against the original or one of them is found to have less error than the 

original.  If the error is reduced the pole or zero term is allowed to stay in its new 

position; otherwise it is restored and no growth takes place.  For this particular program 

design, only one pole or zero term is allowed to grow per parent per generation.   

 

Program Descr iption  
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The program is written in C# using the Windows .NET framework.   (The program as a source 

project file and as an executable is available on the author's web site.
7
 )  It features a Graphical 

User Interface (GUI) and allows the user to determine the following items: 

• The number of generations to run. 

• The number of transfer functions (filters) per generation.  This is the population size. 

• The filter maximum order.  The order of each transfer function can vary between 3 and the 

maximum number set by the user. 

• The number of sample points.  The error calculation, the filter magnitude data, and the 

frequency plot are all discrete and use this number of points (typically 256). 

• The type of ideal filter.  Two types are provided.  In the first type an ideal filter is specified 

as a line plot and no ripple is specified.  The error is the difference between this line and 

the calculated filter at a particular frequency.  The second type allows the user to specify 

ripple bands and to adjust the weighting factor for each of those bands for the error 

function.   

• The sample frequency.  This is specified on the ideal filter selection window. 

• The filter's normalization.  The user can set the normalization so that the maximum 

magnitude plot value is unity or the user can specify that the filter be normalized to an 

arbitrary value at an arbitrary frequency.   

 

The opening window for Evolution is shown in Figure 3.  After entering the parameters the user 

clicks on Begin to start a run.  For every 10 generations the filter status is displayed in the status 

window and for every 100 generations a frequency plot, pole/zero plot, and a pole/zero list is 

generated.  The filter runs with background priority so that the computer on which it runs is not 

completely tied up.   

 

A run completes when the error is reduced to zero or when the number of generations specified 

by the user is achieved.  After a run is complete the user can graph the filter status or view all of 

the filters for the current generation and plot any one of them.  The graph status shows how the 

error decreases with time as the generations progress.   

 

 
Figure 3 

The opening screen of the Evolution program.   
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A Sample Run 

To begin a sample run, we click on the "Use Filter Specs" button and select the "Set Filter Specs" 

button to get a window similar to that shown in Figure 4.  Here we enter the ideal filter 

specifications from which the error will be determined.  Exiting this window and going back to 

the main window (Figure 3) we set the "Number of generations" to 5,000,  the "Filters per 

generation" to 100, the "Maximum filter order" to 6, and the "Number of sample points" to 256.  

Click on "Begin" to start the run. 

 
Figure 4 

The setup screen for entering filter specifications for the ideal filter.  The sample frequency has been set to 44,100 

Hz.  The filter has a pass band from 0 to 5,500 Hz and a stop band from 6,050 Hz to 22,100 Hz.  The pass band 

ripple is ±0.005 (40db) and the stop band ripple is 0.01(40db).  The filter normalization has been set such that the 

gain at 0 Hz is unity. 

 

As the program runs, the frequency plot and the pole zero plot are refreshed every 100 

generations with the current best filter.  The status which includes the current error is displayed 

in the status window every 10 generations.  After a few minutes,
*
 the run completes its specified 

5,000 generations and the final display is presented as shown in Figure 5. 

 
Figure 5 

The results of a short run with the specifications set up as shown in Figure 4. 

Note that the system selects pseudorandom numbers based on the start time so every run will produce a slightly 

different result.  The final rms error for this run was about 0.0079. 

 
*The run took about 3 minutes and 50 seconds on a 2.6 GHz P4 with 512 MBytes of RAM. 
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Click on "Graph Status" to see a plot of the error vs. the generation number as shown in Figure 6.  

This figure is typical.  The error tends to drop off rapidly at first but as the filter improves, the 

error tends to level off and further improvement is slow. 

 

 
Figure 6 

The error vs. Generation number plot for the sample run filter. 

 

 

More Extensive Testing and Results 

A standard low pass filter specification was created by creating specs that could be met by a 

sixth order elliptic filter.  The cutoff and sample frequency was arbitrary.  The filter specification 

is shown in Figure 7. 

 

Sample frequency 44100Hz 

pass band 0Hz to 5500Hz 

pass band ripple ±0.005 

stop band 6500Hz to 22050Hz 

stop band ripple 0.01 

Figure 7 
Specifications for a standard low pass filter which can be met by a sixth order elliptic filter.  This filter spec is 

shown graphically in Figure 4. 

 

Twenty two lab machines were available for a run of 200,000 generations with 1,000 filters per 

generation.  A typical 2.6 GHz Pentium 4 computer with 512 Mbytes of RAM required about 

170 hours of run time to complete 200,000 generations.  At the end of 200,000 generations none 

of the machines had generated a filter which fully met specifications.  The error was considered 

to be zero when specifications were met; otherwise, the rms error was determined by using the 

discrete differences between the actual value of the filter and the specified value.  The minimum 

rms error for all machines was 0.0047 and the maximum was 0.012.  Figures 8, 9, and 10 show 

the frequency and pole/zero plots for the best filter and for an elliptic filter which meets all 

specifications.   

 

Use in the Classroom 

This program is used in an introductory class on digital signal processing as a supplement to a 

section in the text on direct design of IIR filters.  Students are given access to the source code 
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and are able to use multiple lab machines for long periods overnight and on weekends.  Students 

are asked to do a filter design to specifications and are able to modify such parameters as the 

number of parents, the number of mutations, the filter-weighting factors, and the method by 

which crossover is done.     
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Figure 8 

Linear plot of the best filter after 200,000 generations.  The red plot is that of an elliptic filter which meets 

all specifications.  The blue plot is that of the filter generated by a genetic algorithm.  Exploded views on 

the right show the pass and stop bands. 
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Figure 9 

Decibel plot of the best filter after 200,000 

generations.  The red plot is an elliptic filter which 

meets all specifications.  The blue plot is that of the 

filter generated by a genetic algorithm. 

Figure 10 
Pole/zero plot for the best filter (left) and an elliptic 

filter which meets all specifications (right). 

 

 

Conclusions and Future Directions 

Genetic algorithms rarely provide ideal solutions or solutions that are truly optimal.  But they do 

provide solutions that are statistically optimal which means the solution found is the best in a 

very large sample.  In this paper a genetic algorithm was applied to find the design of an elliptic 

filter, which is a problem that has already been solved in an optimal manner.  This was done to 

gain a sense of how good a solution the genetic algorithm will produce in a reasonable time on a 

desktop computer.  This program has produced results that are usable for some applications and 
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if the program were applied to a design problem for which no optimal solution yet exists, the 

output would be useful.   

 

From a classroom perspective the program provides a mechanism to solve otherwise intractable 

problems.  The genetic algorithm solution is not only applicable to dsp problems, but it is 

generally applicable to a wide range of problems in the engineering discipline.
1,2,4,5

   

 

For the future there are three significant problems to be addressed that make use of this program 

and genetic algorithm. 

1. What is the best arrangement of the number of parents in a population and the number of 

mutations that are allowed per generation?  Empirical evidence from this program 

suggests that the number of parents should be about 10% and the number of mutants 

permitted per generation should be about 1%.  But more study needs to be done in this 

area.  These numbers provide a good solution for the early generations but growth seems 

to stagnate or stop altogether in later generations (> 200K).   

2. Can the error-weighting for the specified filter be chosen in a manner such as to make the 

program converge on a solution more quickly?  Some of the tests done with this program 

suggest that an error-weighting that changes as the generations progress might be useful.  

Due to the long run times, the author has had little chance to explore this area. 

3.  Interactive evolution
5
 has been considered by others and may be applicable to this 

problem.  
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