
Paper ID #13301

Software Engineering Learning in HFOSS: A Multi-Institutional Study

Heidi J. C. Ellis, Western New England University

Heidi Ellis is Chair and Professor in the Computer Science and Information Technology department at
Western New England University. Dr. Ellis has a long-time interest in software engineering education
and has been interested in student participation in Humanitarian Free and Open Source Software (HFOSS)
since 2006.

Dr. Gregory W Hislop, Drexel University (Eng. & Eng. Tech.)

Gregory Hislop is a Professor and Senior Associate Dean in the College of Computing and Informatics
at Drexel University. His scholarly interests span computing education research, information technology
for teaching and learning, and software engineering. Prior to coming to Drexel, Dr. Hislop spent eighteen
years working in government and industry where his efforts included software development and support,
technology planning and evaluation, and development and delivery of technical education.

Dr. Sarah Monisha Pulimood, The College of New Jersey

S. Monisha Pulimood is on the faculty of the Department of Computer Science at The College of New
Jersey. She has been successfully incorporating immersive learning experiences and multidisciplinary
collaborative projects into her courses for several years; has published on undergraduate research, col-
laboration, project management, and diversity; is PI of ”Collaborating Across Boundaries to Engage
Undergraduates in Computational Thinking” (NSF-DUE Award #1141170) and co-PI of ”Scholarships
for Success in Computational Science” (NSF-DUE Award #1356235, PI Thomas Hagedorn).

Dr. Becka Morgan, Western Oregon University

Becka Morgan takes great joy in teaching students computing languages, a subject she has been passionate
about since she learned to program in 2006 as a non-traditional student. She is driven to create an inclusive
environment. Consequently Dr. Morgan was drawn to teaching FOSS and HFOSS development based on
work that is being done that suggests underrepresented groups are attracted to HFOSS participation. She
teaches a one term HFOSS course to both senior and graduate level students. The goal of the course is
to engage all students in participation that ranges from improving documentation to submitting patches.
Learning to teach students how to participate in HFOSS is an ongoing process. As part of the continuing
efforts to pursue that knowledge Becka is a graduate of the 2013 POSSE workshop.

Dr. Ben Coleman, Moravian College

Ben Coleman is a member of the Department of Mathematics and Computer Science at Moravian College,
a small, liberal arts college in eastern Pennsylvania. His research interests are in software engineering,
particularly in areas related to pedagogy and bringing real-world, hands-on experience to undergraduates.

c©American Society for Engineering Education, 2015

P
age 26.1379.1

Software Engineering Learning in HFOSS: A Multi-Institutional Study

Heidi J. C. Ellis
Dept. of CS & IT

Western New England
University

Springfield, MA 01119
ellis@wne.edu

Becka Morgan

Dept. of Computer Science
Western Oregon

University
Monmouth, OR 97361

morganb@wou.edu

Gregory W. Hislop
College of Computing and

Informatics
Drexel University
Philadelphia, PA

hislop@drexel.edu

Ben Coleman
Dept. of Mathematics and

Computer Science
Moravian College

Bethlehem, PA 18018
coleman@cs.moravian.edu

S. Monisha Pulimood
Dept. of Computer Science
The College of New Jersey

Ewing, NJ 08628
pulimood@tcnj.edu

Abstract

Real-world projects are frequently used to provide students with professional software
development experience. Involvement in Humanitarian Free and Open Source Software
(HFOSS) projects allows students to learn about a complex software project within a community
of professionals. In addition, the humanitarian aspect of HFOSS provides students with the
motivation of developing software that will “do good”. The opportunities for learning in such an
environment range from technical topics to communication to professionalism and more. This
paper reports on the results of a multi-institution study of student perceptions of learning within
an HFOSS project. The study expands an earlier study1 and involves four different institutions
with courses offered between fall 2013 and fall 2014. Students were involved in projects
including GNOME MouseTrap, a project to provide alternative input for users with disabilities,
and OpenMRS, an electronic medical record system used extensively in developing countries.
Results generally support the outcomes of the early study, but provide stronger evidence that
student involvement in HFOSS promotes student learning in the areas of tools and techniques
and technical knowledge about the process and tools used to develop an HFOSS project.

1. Introduction

Software engineering programs as well as most computer science programs desire to provide
students with experience working on a real-world project in order to supply students with an
understanding of professional practice including such skills as teamwork, communication, work
ethic, self-confidence and more. In fact, the SE 2004 curriculum guidelines2 emphasize the need
for including professional practice in the education of software engineers. A common way to
provide this experience is through instructor and/or student defined projects3-7. However this
approach lacks a professional community from which students can learn. Alternatively, faculty
can engage an industry partner to provide professional interaction8-10. While this approach has
the advantage of providing students with industry experience, the disadvantages include that
most of the development artifacts are protected and students typically cannot use their project as
evidence of their accomplishments to potential employers.

P
age 26.1379.2

Student involvement in Free and Open Source Software (FOSS) provides the opportunity to
participate in the development of a sizeable real-world project while interacting with a
professional community. FOSS projects are characterized by community development, openness
to contributions, transparency and accessibility of artifacts, distributed and global development,
and meritocratic decision-making. As a result, students have the opportunity to observe and
participate in many aspects of software development, which provides excellent educational
opportunities11-13. Through FOSS projects, students can learn new tools and programming
languages, gain professional experience, and create a professional network14. Specifically,
students can engage the full range of software engineering activities through documentation,
design, coding, testing, maintenance, etc.15

Humanitarian FOSS (HFOSS) is FOSS that somehow improves the human condition, with
applications ranging from healthcare to education to disaster management and more. Similar to
FOSS projects, involvement in HFOSS allows students to advance a range of technical skills16
and improve professional skills.17 HFOSS also provides students with a variety of learning
approaches including active learning, problem-based learning, and collaborative learning18.
Other benefits include exposure to a project of significant complexity, increased awareness of the
benefits that can be provided by computing, and the advantage of having open source experience
on a student’s resume. HFOSS holds the added attraction of allowing students to “do good”
which studies have shown is motivating to students1, 19, 20.

However, these benefits come with some cost. The learning environment within an HFOSS
project is less structured than the typical classroom and some students may have difficulties
adjusting to this more flexible learning approach. HFOSS also presents a series of learning
curves for both faculty members and students including tools, approaches, domain knowledge,
FOSS culture, and professional interactions. Faculty members may face challenges as they
negotiate communication and support with the HFOSS community to select an appropriate
project, identify student contributions, and fit course schedules with project release schedules.
FERPA, intellectual policy rules, and institutional requirements may place additional constraints
on student participation in HFOSS projects.

Despite these challenges, there are multiple instances of successful student involvement in
HFOSS. Liu21 is one of the earliest published reports of an effort to involve students in HFOSS
projects via service learning. Ding22 discusses a virtual service learning model that involves
students in FOSS projects to aid in learning of professional communication and documentation,
and Jacobs23 presents an approach to involve students in the development of games for the One
Laptop Per Child project. Finally, a multi-institutional effort to developing real-world HFOSS
projects is presented by MacKellar, Sabin, and Tucker24.

Student involvement in HFOSS projects has been tracked since 200625. Initial studies indicate
that benefits from involvement in HFOSS projects include greater student motivation to pursue
computing careers and an increase in software engineering knowledge1, 26. In fact, involvement
in HFOSS is increasingly being utilized as a way to educate software engineering students and
there are a growing number of faculty members who are involving students in HFOSS projects
(foss2serve.org).

P
age 26.1379.3

This paper expands on an earlier effort1 to report on a multi-institutional study on the impact of
student participation in HFOSS.

2. The Institutions
Table 1 below outlines the four institutions involved in the study. These institutions are a mix of
public and private institutions and are small to medium in size. The remainder of this section
provides a brief overview of the institutions involved in the study to provide context for
understanding the study.

Institution ID Institution Size Department Department Size
A 1,500 undergrads Math & CS 25 CS and 40 Math majors

B
6,100 undergrads,
800 grad students CS & IS

245 CS and IS majors
58 MIS graduate students

C
2,500 undergrads, 1,000 grad
students CS & IT 100 CS and IT majors

D 6,100 undergrads CS 125 CS majors
Table 1. Participating Institutions

Institution A is a small, private liberal arts college with approximately 1,500 undergraduate
students. The department of mathematics and computer science has approximately 25 CS majors,
and the CS major is designed to offer students hands-on experience on real-world projects while
providing a grounding in theoretical ideas. The course used in the survey is a senior-level
software engineering capstone course that used OpenMRS as a project base. Students addressed
bug reports to learn the system and then designed and implemented a new add-on module.

Institution B is a public liberal arts university serving approximately 6,100 undergraduate
students and 800 graduate students. Founded in 1980, the Computer Science program is
software-oriented and follows the ACM Curriculum Guidelines. The Computer Science program
is also closely aligned with the current needs of industry. The course used in this study is a senior
level software engineering elective course that applies toward the software engineering track
within the CS major. The course uses an existing FOSS project with the goal to engage students
in a real world project that will provide job skills that pertain to the “real” world. Although the
focus was on the entirety of the project, including documentation, bug triage, activism, and
translation, students focused on fixing bugs, testing, or coding to fulfill the software engineering
elective requirement.

Institution C is a small, private institution with approximately 2,500 undergraduates. The
Computer Science and Information Technology department has around 100 students and offers
BS degrees in Computer Science and in Information Technology. Both degree programs are
fashioned after the ACM Curriculum Guidelines for those degrees. The course used for the study
is a Software Engineering course that is taken by all computer science majors in the fall of their
senior year. The course is organized around an ongoing HFOSS project and is intended to
expose students to the major software development activities including requirements, design,
implementation, test and maintenance.

Institution D is a public, residential, primarily undergraduate institution with approximately
6,100 students. The Department of Computer Science currently has about 125 students and
provides a comprehensive learning environment through a rigorous curriculum designed to meet

P
age 26.1379.4

the needs of students interested in both careers in the industry and graduate school. The main
course used in this study was Software Engineering, which is required for all majors and is
typically taken in the junior or senior year. In this course, students collaborate on a large project
in teams, where they apply concepts learned. In recent semesters, students have been working on
an HFOSS, web-based system that manages data on brownfields and legislation related to
pollution and the environment, for Habitat for Humanity and citizens of the area.

3. The Study

Student participation in HFOSS has been studied since 200625. However, the investigation of
student opinion of involvement in HFOSS started with a handful of small, liberal arts
institutions. In recent years, student involvement in HFOSS has expanded to a larger number of
colleges and universities as institutions understand the benefits of students learning within the
environment of a real-world project that improves the human condition27. The study discussed in
this paper expands an existing study into the impact of student participation in HFOSS projects1,

28 and includes three institutions which have recently incorporated student involvement in
HFOSS, in addition to one institution from the previous study. The larger study investigates three
aspects of the impact of student participation in HFOSS:

1. The impact of participation in an HFOSS project on student attitude towards computing.
2. The degree of perceived learning related to software engineering knowledge and skills.
3. The impact of participation in an HFOSS project on major selection and career plans.

This paper reports on the results across four different institutions for the second aspect on
software engineering. Table 2 below summarizes the courses that were involved in the study.

Course Term Offered
Number of
Students Length of Term

Senior Capstone Spring 2014 10 15 weeks
Open Source Software
Development Winter 2014 20 10 weeks

Software Engineering
Fall 2013,
Fall 2014

6
8 15 weeks

Software Engineering Fall 2013 19 15 weeks
Table 2. Courses in the Study

The courses used in the study were relatively similar in being upper-level, team project courses
focused on software engineering topics. One institution has 10 week quarter terms and the others
have 15 week semesters.

The study presented in this article focuses on whether participation in HFOSS projects impacts
student perception of software engineering learning. The hypotheses for the study are:

Ho: Student involvement in an HFOSS project has no impact on perceived learning of
software engineering knowledge
Ha: Student involvement in an HFOSS project has a positive impact on perceived
learning of software engineering knowledge

P
age 26.1379.5

The study instrument includes background information such as student age and experience as
well as a five-point Likert scale survey with response values “strongly disagree”, “disagree”,
“neutral”, “agree”, and “strongly agree.” “Don’t know” and “Not applicable” options were also
included. The survey contains three sections of Likert items, one section for each of the three
aspects under study. Note that Likert scale items allow for both agreement and disagreement.
Table 3 below contains sample survey items for the three aspects under study. The “H6” item
relates to student motivation (aspect 1), the “SE2” item relates to perceived software engineering
learning (aspect 2) and the “G2” item relates to impact on major and career plans (aspect 3). The
survey items are worded so that the positive outcome, Ha, will be reflected by student agreement
(“agree” or “strongly agree”) with each statement.

ID Item
H6 Working with an H-FOSS community to develop a project has increased my interest in computing.
SE2 I am comfortable that I could participate in the planning and development of a real-world software

project.
G2 Participation in an H-FOSS project has positively reinforced my decision to make computing my

major.
Table 3. Example Survey Items

This paper focuses on the software engineering aspects of the results. Table 4 below contains the
software engineering related survey items.

ID Item
SE1 I am comfortable that I could participate in the planning and development of a real-world software

project.
SE2 I can list the steps in the software process we used in HFOSS project.
SE3 I can use a software process to develop an HFOSS project.
SE4 I am sure that I can actively participate in an HFOSS community to develop a software project.
SE5 I have gained some confidence in collaborating with professionals from a variety of locations and

cultures.
SE6 I can describe the impact of project complexity on the approaches used to develop software.
SE7 I can describe the impact of project size on the approaches used to develop software.
SE8 I am confident that I can maintain an HFOSS project.
SE9 I can describe the drawbacks and benefits of FOSS to society.
SE10 I can use all tools and techniques employed in my HFOSS project.
SE11 I can participate in an HFOSS development team’s interactions.
SE12 Participation in an HFOSS project has improved my understanding of how to behave like a computing

professional.
Table 4. Software Engineering Post-Course Survey Items

There are some differences in how the surveys were administered as one site only included
questions SE4, SE5, and SE8-SE12 and another site had a fewer number of post-course
responses than pre-course responses. The Likert items in the surveys were converted to an
ordinal number from one to five with one representing the “strongly disagree” response, five
representing the “strongly agree” response, and three representing the “neutral” response.

4. Results and Discussion
This section presents and discusses results of the survey. The section begins with a summary of
basic demographic data for the student population. This is followed by an analysis of pre- and

P
age 26.1379.6

post-course results, as well some consideration of gender and the impact of prior programming
ability.

Student Population

The students in the study samples are fairly typical of the population of computing majors in
U.S. degree programs. These programs serve primarily traditional-age undergraduate students,
with 86% in the sample being aged 18-23 and 14% older than 23. 81% of the students are male
and 75% are white. While a variety of majors are represented in the classes, 80% are computer
science majors, and 96% are majoring in some computing discipline (CE, CS, IS, IT, or MIS).

Pre- and Post-Course Software Engineering Capability

Likert scale items SE1 – SE12, shown in Table 4, gather student self-perception about their
software engineering knowledge and skill. The data show significant shift in student response
when comparing the pre- and post-course surveys. To provide an overall summary of this shift,
Figure 1 presents the pre- and post-course responses. Because the number of responses on each
survey is different, the data is presented using percentages. The height of each bar represents the
percent of students who either agreed or strongly agreed with each item. For example, for SE2,
only 29% of students agreed pre-course that they could list the steps in the software process used
to develop an HFOSS project, and 71% agreed post-course.

Figure 1. Percentage of Students Agreeing with

Each SE Survey Item Pre- and Post-course

Figure 1 shows some very substantial changes in the percent of students agreeing with many of
the 12 SE survey items. In general these large changes are associated with the items that had the

P
age 26.1379.7

lowest percent agreement pre-course. Overall, these shifts provide strong initial evidence of
positive outcome from the HFOSS experience.

Table 5 below provides a different perspective on the pre- and post-course results. The column
labelled “Net %” shows the difference between the pre- and post-course agreement responses for
each item. That is, the difference in the height of each pair of bars in Figure 1. For example, for
SE2, the 29% agreement pre-course, and 71% agreement post-course result in the 42 in Table 5
(71% - 29%).

ID Item Net % p-Value
SE1 I am comfortable that I could participate in the planning and

development of a real-world software project.
10 0.24

SE2 I can list the steps in the software process we used in HFOSS
project.

42 < 0.01 **

SE3 I can use a software process to develop an HFOSS project. 33 < 0.01 **
SE4 I am sure that I can actively participate in an HFOSS community to

develop a software project.
-8 0.29

SE5 I have gained some confidence in collaborating with professionals
from a variety of locations and cultures.

-10 0.05 **

SE6 I can describe the impact of project complexity on the approaches
used to develop software.

35 0.01 **

SE7 I can describe the impact of project size on the approaches used to
develop software.

37 0.01 **

SE8 I am confident that I can maintain an HFOSS project. -10 0.13
SE9 I can describe the drawbacks and benefits of FOSS to society. 42 <0.01 **
SE10 I can use all tools and techniques employed in my HFOSS project. 24 0.01 **
SE11 I can participate in an HFOSS development team’s interactions. 19 0.02 **
SE12 Participation in an HFOSS project has improved my understanding

of how to behave like a computing professional.
4 0.39

Table 5. Software Engineering Survey Items, Pre- and Post-Course Comparison

The “p-Value” column of Table 5 provides a significance measure of the difference between the
pre- and post-course surveys. Since there is always a question as to the validity of treating Likert
scale items as interval or ratio data, this analysis treats the data as ordinal and uses the non-
parametric Mann-Whitney U to compare the two survey results and compute the significance
measure. Items where the difference between pre- and post-course surveys is significant at the
0.05 level or better are marked with “**” for convenience. As can be seen, 8 of the 12 items
show a significant difference. Note that the Mann-Whitney U was based on the full set of
responses, ordered as 1, “strongly disagree,” though 5, “strongly agree,” and not on the
percentage data shown in Figure 1 or the “Net %” column of Table 5.

Figure 1 and Table 5 in combination present a strong case that there is a significant positive
outcome from the HFOSS courses, supporting research hypothesis Ha: Student involvement in an
HFOSS project has a positive impact on perceived learning of software engineering knowledge.
In addition, these results present stronger evidence for the results found in the initial work1.
There are interesting aspects in the details of these data. First, in looking at the survey items that
show significant results, some of the largest net % changes are found in items that tend to
represent more specific skills or lower levels in the Bloom taxonomy. For example, SE2, (“I can
list”), and SE6, SE7, and SE9, (“I can describe”), all fit that observation.

P
age 26.1379.8

However, large net changes for some statements also offer evidence related to more advanced
abilities. For example, the response to SE3, I can use a software process to develop an HFOSS
project, SE10, I can use all tools and techniques employed in my HFOSS project, and SE 11, I
can participate in an HFOSS development team’s interactions, in combination provide strong
evidence that students have confidence in their ability to plan and develop a real-world software
project after participating in an HFOSS project.

Second, it is important to note that the pre- to post-course change was not in the direction of
increased agreement for all survey items. Recall that the items were all worded so that
agreement was the desirable post-course outcome. Three items, SE4, SE5, and SE8, show lower
agreement post-course than pre-course. For two of those items, the change is not significant at
the 0.05 level, and the third is right at the 0.05 significance level. Even so, it seems worth
considering what these items may have in common. While only one had significance in showing
lower student agreement, all three represent cases of no significant change in the positive
direction – that is, toward more student agreement with the item post-course. In this sense, these
items are like SE1 and SE12, which showed positive change, but not significant at 0.05.

Looking at these 5 items, SE1, SE4, SE5, SE8, and SE12, in Figure 1 is instructive. It turns out
that four of the five (SE1, SE4, SE5, and SE12) were the four survey items with the highest
agreement pre-course, with all four registering over 70% agreement pre-course. Given these
high pre-course values, it seems unsurprising that the post-course value would not show
significant change. This may also account for the drop in agreement with items SE4 and SE5
post-course. It seems possible that the students were actually over-confident of their ability pre-
course, and that the HFOSS experience gave them a more realistic perspective on the
collaboration and participation requirements of a large, distributed project.

Of the 5 items, SE8 fits the ideas above least well. The same effect of relatively high confidence
pre-course could be part of the explanation here too, given that SE8 has the sixth highest pre-
course agreement. But the SE8 pre-course value (56%) is considerable below the 70+% of the
other four. Also, SE8 is the one item where the drop in agreement is significant at the 0.05 level.
It may be that the work involved with maintaining an HFOSS project simply seemed more
daunting to students after exposure to an HFOSS project than before. It may also be that students
have a more realistic view of what is required to participate in and maintain an HFOSS
application at the end of the course than at the beginning. Such maintenance is a major
responsibility, and the wording of the statement places that burden on the individual, compared
to some of the other statements that address broad responsibilities, but are phrased in terms of
participating or collaborating and imply a team effort more clearly.

Finally, the significant results are consistent with an earlier, smaller study that indicated
significant increase in agreement for items SE2, SE3, SE6, SE7, and SE101. The present study,
with a wider range of institutions, and larger sample sizes adds to the set of survey items
showing significantly more post-course agreement than in the initial study.

Gender Comparison

An investigation into the impact of gender on the results found one significant difference using a
Mann-Whitney U: item 11 I can participate in an HFOSS development team’s interactions (p =

P
age 26.1379.9

0.001). This supports prior results1 that indicate that females had a stronger response to items
related to ability to participate in the planning and development of a real-world software project.

Programming Ability

An investigation of differences based on programming ability resulted in some interesting
findings. Students with “low” programming skills were considered to have self-assessed a
programming ability between one and three (67%). Students with “high” programming skills
were considered to have self-assessed a programming ability of either four or five (32%). Two
items showed a significantly stronger response for the high programming ability students: item
SE4 I am sure that I can actively participate in an HFOSS community to develop a software
project (p = 0.02) and item SE8 I am confident that I can maintain an HFOSS project (p = 0.06).
These results represent a subset of the results found in the initial study which indicated that
students with a “high” programming ability showed significantly more agreement to a greater
number of survey items. It should be noted that the percentage of students who self-assessed a
“low” programming ability in the initial study was much lower (53%) when compared to the
current study.

Perhaps the more interesting result is that there was no significant difference in student
perception of ability to collaborate, ability to identify drawbacks and benefits of HFOSS, use of
tools and techniques and understanding of professional interactions. This provides some
evidence that success in software development is not dependent on programming ability alone.

5. Conclusion
The results of the study presented in this paper support research hypothesis Ha: Student
involvement in an HFOSS project has a positive impact on perceived learning of software
engineering knowledge. Results indicate that students feel that they gain considerable software
engineering knowledge from participation in an HFOSS project ranging from tools and
techniques to software process to understanding the impact of project size and complexity.
Interestingly, some of the knowledge gained is related to learning on the higher levels of
Bloom’s taxonomy. Results indicate a perceived increase in ability to use a software process to
develop an HFOSS project and an increase in ability to participate in an HFOSS development
team’s interactions. These results suggest that student participation in HFOSS has the potential
to provide students with a holistic learning experience where learning ranges from factual recall
to creation and evaluation.

Future work includes analysis of the humanitarian and career aspects of the data as well as
investigation into direct measures of student learning via participation in HFOSS projects.

Acknowledgement

This material is based on work supported by the National Science Foundation under Grant Nos. -
DUE-1225708, DUE-1225738, and DUE-1225688. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation (NSF).

P
age 26.1379.10

Bibliography

1. Heidi J. C. Ellis, Gregory W. Hislop, Josephine Rodriguez, and Ralph A. Morelli. 2012. Student Software

Engineering Learning via Participation in Humanitarian FOSS Projects. In Proceedings of the 119th Annual
ASEE Conference and Exhibition, San Antonio, TX.

2. Software Engineering 2004 – Curriculum Guidelines for Undergraduate Degree Programs in Software
Engineering. IEEE-CS/ACM. http://sites.computer.org/ccse/SE2004Volume.pdf 2004.Accessed 1/4/12.

3. Catherine Stringfellow and Divya Mule. 2013. Smartphone applications as software engineering projects. J.
Comput. Sci. Coll. 28, 4 (April 2013), 27-34.

4. Sarah Monisha Pulimood and Ursula Wolz. 2008. Problem Solving in Community: A Necessary Shift in CS
Pedagogy. In Proceedings of the 39th SIGCSE Technical Symposium on Computer Science Education
(Portland, OR, USA, March 12 – 15, 2008). SIGCSE ’08. ACM, New York, NY, 210-214.

5. Ursula Wolz and Sarah Monisha Pulimood. 2007. An Integrated Approach to Project Management through
Classic CS III and Video Game Development. In Proceedings of the 38th Technical Symposium on Computer
Science Education (Covington, Kentucky, March 7 – 10, 2007). SIGCSE ‘07. ACM, New York, NY, 322-326.

6. Tom Rishel. 2012. An innovative project structure for teaching software engineering. J. Comput. Sci. Coll. 28, 2
(December 2012), 232-237.

7. Samuel Mann and Lesley Smith. 2007. Software engineering class eating its own tail." Proceedings of the ninth
Australasian Conference on Computing Education-Volume 66. Australian Computer Society, 115-123.

8. Adrian Rusu, Amalia Rusu, Rebecca Docimo, Confesor Santiago, and Mike Paglione. 2009. Academia-
academia-industry collaborations on software engineering projects using local-remote teams. SIGCSE Bull. 41,
1 (March 2009), 301-305. DOI=10.1145/1539024.1508975 http://doi.acm.org/10.1145/1539024.1508975

9. Christopher K. Hobbs and Herbert H. Tsang. 2014. Industry in the Classroom: Equipping Students with Real-
World Experience A reflection on the effects of industry partnered projects on computing education. In
Proceedings of the Western Canadian Conference on Computing Education (WCCCE '14). ACM, New York,
NY, USA, Article 7, 5 pages. DOI=10.1145/2597959.2597967 http://doi.acm.org/10.1145/2597959.2597967

10. Claudia Szabo. 2014. Student projects are not throwaways: teaching practical software maintenance in a
software engineering course. In Proceedings of the 45th ACM technical symposium on Computer science
education (SIGCSE '14). ACM, New York, NY, USA, 55-60. DOI=10.1145/2538862.2538965
http://doi.acm.org/10.1145/2538862.2538965

11. Robert Marmorstein. 2011. Open Source Contribution as an Effective Software Engineering Class Project. In
Proceedings of the 16th Annual Joint Conference on Innovation and Technology in Computer Science
Education, ITiCSE ’11, ACM, New York, NY, USA, 268-272.

12. Heidi J. C. Ellis, Gregory W. Hislop, Mel Chua, and Sebastian Dziallas. 2011. How to Involve Students in
FOSS Projects, The 2011 Frontiers in Education Conference, IEEE. T1H-1,T1H-6, (Oct. 2011), 12-15, doi:
10.1109/FIE.2011.6142994

13. Stephanie Ludi. 2011. The benefits and challenges of using educational game projects in an undergraduate
software engineering course, In Proceedings of the 1st International Workshop on Games and Software
Engineering. ACM, New York, NY, USA. 13-16. 2011.

14. Eleni Stroulia, Ken Bauer, Michelle Craig, Karen Reid, and Greg Wilson. 2011. Teaching distributed software
engineering with UCOSP: the undergraduate capstone open-source project. In Proceedings of the 2011
Community Building Workshop on Collaborative Teaching of Globally Distributed Software Development
(CTGDSD '11). ACM, New York, NY, USA, 20-25. DOI=10.1145/1984665.1984670
http://doi.acm.org/10.1145/1984665.1984670

15. Clif Kussmaul, Heidi J. C. Ellis, and Gregory W. Hislop. 2012. 50 ways to be a FOSSer: simple ways to involve
students & faculty (abstract only). In Proceedings of the 43rd ACM technical symposium on Computer Science
Education (SIGCSE '12). ACM, New York, NY, USA, 671-671. DOI=10.1145/2157136.2157393
http://doi.acm.org/10.1145/2157136.2157393

16. Marisa Exter. 2014. Comparing educational experiences and on-the-job needs of educational software
designers. In Proceedings of the 45th ACM technical symposium on Computer science education (SIGCSE '14).
ACM, New York, NY, USA, 355-360. DOI=10.1145/2538862.2538970
http://doi.acm.org/10.1145/2538862.2538970

17. Rüdiger Glott, Andreas Meiszner, Sulayman K. Sowe, 2007. Report to FLOSSCom - Using the Principles of
Informal Learning Environments of FLOSS Communities to Improve ICT Supported Formal Education: Phase
1 - Analysis of the Informal Learning Environment of FLOSS (Free/Libre Open Source Software)

P
age 26.1379.11

Communities, http://www.academia.edu/2723574/FLOSSCom-
Using_the_Principles_of_Informal_Learning_Environments_of_FLOSS_Communities_to_Improve_ICT_Supp
orted_Formal_Education, Retrieved 11/29/2014.

18. Martin Weller, Andreas Meizsner, Sulayman K. Sowe, and Athanasis Karoulis. 2008. A Report to FLOSSCom
- Using the Principles of Informal Learning Environments of FLOSS Communities to Improve ICT Supported
Formal Education: Phase 2 - Report on the effectiveness of a FLOSS-like learning community in formal
educational settings. http://flosshub.org/system/files/FLOSSCOM_Wp4_PHASE2_REPORT_d1.pdf Retrieved
11/29/14.

19. Rick Homkes. 2008. Assessing it service-learning. In Proceedings of the 9th ACM SIGITE conference on
Information technology education (SIGITE '08). ACM, New York, NY, USA, 17-22.
DOI=10.1145/1414558.1414564 http://doi.acm.org/10.1145/1414558.1414564

20. Gregory W. Hislop, Heidi J. C. Ellis, and Ralph A. Morelli. 2009. Evaluating student experiences in developing
software for humanity. In Proceedings of the 14th annual ACM SIGCSE conference on Innovation and
technology in computer science education (ITiCSE '09). ACM, New York, NY, USA, 263-267.
DOI=10.1145/1562877.1562959 http://doi.acm.org/10.1145/1562877.1562959

21. Chang Liu. 2005. Enriching software engineering courses with service-learning projects and the open-source
approach. In 27th International Conference on Software Engineering (ICSE 2005). IEEE. 2005. 15-21. doi:
10.1109/ICSE.2005.1553612

22. Huiling Ding. 2007. Open Source: Platform for virtual service learning and user-initiated research. In
Proceedings of Professional Communication Conference, 2007. IPCC 2007. IEEE International. 1,5 (Oct.
2007), 1-3. doi: 10.1109/IPCC.2007.4464080

23. Steve Jacobs. 2010. Building an education ecology on serious game design and development for the One Laptop
Per Child and Sugar platforms: A service learning course builds a base for peer mentoring, cooperative
education internships and sponsored research, Games Innovations Conference (ICE-GIC), 2010 International
IEEE Consumer Electronics Society's. 1, 6 (Dec. 2010), 21-23. doi: 10.1109/ICEGIC.2010.5716882

24. Bonnie K. MacKellar, Mihaela Sabin, and Allen Tucker. 2013. Scaling a framework for client-driven open
source software projects: a report from three schools. J. Comput. Sci. Coll. 28, 6 (June 2013), 140-147.

25. Heidi J. C. Ellis, Ralph A. Morelli, Trishan R. de Lanerolle, Jonathan Damon, and Jonathan Raye. 2007. Can
Humanitarian Open-Source Software Development Draw New Students to CS? SIGCSE 2007, Ellis, Heidi JC,
et al. "Can humanitarian open-source software development draw new students to CS? ACM SIGCSE Bulletin.
39, ACM, 2007.

26. Heidi J. C. Ellis, Stoney Jackson, Gregory W. Hislop, Darci Burdge and Lori Postner. 2014. Learning Within a
Professional Environment: Shared Ownership of an HFOSS Project. In Proceedings of the 15th Annual
Conference on Information technology education, 95-100. ACM.

27. Becka Morgan and Carlos Jensen. 2014. Lessons Learned from Teaching Open Source Software Development,
Open Source Software: Mobile Open Source Technologies, IFIP Advances in Information and Communication
Technology, 427, 133-142.

28. Heidi J. C. Ellis, Lori Postner, Gregory W. Hislop, and Stoney Jackson. 2015. Team Project Experiences in
Humanitarian Free and Open Source Software (HFOSS). Special Issue of the ACM Transactions on Computing
Education on Team Projects in Computing Education, 15, 2, 2015.

P
age 26.1379.12

