
Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
Copyright , American Society for Engineering Education 

Session 2220 
 
 

Solution of Static and Dynamic Beam Bending and Static Buckling  
Problems Using Finite Differences and MATLAB 

 
 

R. G. Jacquot and B. R. Dewey 
University of Wyoming 

 
 
 

Abstract 
 
The authors present here a way to utilize MATLAB for the solution of a class of static and 
dynamic solid mechanics problems. In particular, the authors demonstrate with simple codes that 
complicated problems of bending, buckling and beam vibration can be solved with high accuracy 
and, in the case of beam vibration, can also be animated. 
 
1. Introduction 
 
The solution of  bending and buckling problems is integral to the study of civil, mechanical and 
aerospace engineering.  The academic introduction to the bending of beams with constant cross 
section is usually given to students of these disciplines early in the engineering curriculum in a 
course in mechanics of materials.  That which is presented here is not meant to supplant the 
fundamental understanding of the bending phenomenon but rather to provide an introduction to 
numerical approximations often needed for real-world applications. It is important for students to 
first gain understanding of the static bending problems from an analytical and physical point of 
view.  Typical courses where static bending problems are encountered are structural analysis, 
advanced mechanics of materials, aircraft structures and design of machine elements.  Dynamic 
bending is a topic commonly introduced in courses in vibrations, structural dynamics and applied 
mathematics. The topic of buckling is often introduced in an introductory structures course. 
Advantageous applications would be to static bending and buckling problems where additional 
stiffnesses are attached at discrete points along the beam or column and dynamic problems where 
lumped mass or stiffness is added to the beam. The technique is also useful when the geometric 
or material properties vary along the beam. 
 
The visualization  of solutions to differential equations has received attention previously in the 
educational literature 1-4.  Moreover computer animation has been employed to clarify solutions 
to such problems so students can understand the nature of such solutions 1,4. 
 
The use of finite differences in the spatial dimension results in linear algebraic equations for 
static bending problems and linear ordinary differential equations for dynamic bending problems.  
MATLAB is particularly attractive for the solution of such problems because of the very robust 
solvers that are intrinsic to MATLAB for linear algebraic equations and ordinary differential 
equations. Similarly the column buckling problem can be solved with  MATLAB as an algebraic 
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eigenvalue problem. In addition to ease of computation MATLAB has powerful two- and three-
dimensional graphics for presentation of the results of such computations.  Much of that material 
included here is included in the excellent text of James, Smith and Wolford5  but the solutions are 
accomplished employing MATLAB as the solution tool instead of FORTRAN. 
 
2. Central Differences 
 
Central differences are commonly employed to approximate derivatives of functions in a wide 
variety of applications. If the spatial independent variable x is discretized with equal increments 
∆x, the approximations for the derivatives of a function w(x) at a point xi are 
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3.  Model Development 
 
To develop a solvable model the beam or column is segmented into an integral number of 
sections of equal length and the Bernoulli-Euler beam equation is approximated at the junctures 
of those sections with the central difference approximation. The two boundary conditions at each 
end of the beam are applied and result in a modification of the corner elements of the associated 
stiffness matrix. 
     
4. Static Bending of a Cantilever Beam 
 
Consider the cantilever beam shown in Figure 1 with the linearly varying load shown.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Cantilever Beam with Linearly Varying Load 
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For small deflections and elastic material the beam is governed by the Bernoulli-Euler equation 
where the right side represents the applied transverse load  
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where EI is the bending stiffness.  If nodes are established as indicated in Figure 1 then using the 
finite difference approximation at each node yields 
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If five nodes are used then the clamped boundary condition at the left end implies that the 
deflection and slope are zero so 
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The zero shear and zero moment condition at the free end implies that the second and third 
derivatives must vanish at node 5 or 
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then the resulting algebraic equations are in matrix form 
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  Figure 2. Approximate and Exact Cantilever Beam Deflection 
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For a beam with variable properties the EI terms would be included in the square matrix. 
Solution of the linear equations is a simple operation using the left divide operator (\) in 
MATLAB.  A simple script file for the problem is given in Appendix A-1 and the a plot of the 
five node solution and the exact solution are shown in Figure2 
 
5.  A Buckling Problem 
 
Consider the clamped-free column illustrated in Figure 3 with x = 0 at the clamped end and axial 
load P. The governing differential equation is  
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 Figure 3. Clamped –Free Column with Axial Load 

  
Approximation of the second derivative with the second of equations (1) the resulting difference 
equation is 
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where wn  is the tip deflection δ. If 5 nodes are employed the boundary conditions are those of 
equations (5). The resulting equations for nodes zero to four in matrix form are 
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where the upper left elements of the matrix reflect the clamped boundary condition at the left 
end.. The goal is to find the value of P(∆x)2/EI which satisfies equation (9). If we premultiply by 
the inverse of the right hand matrix we have an ordinary eigenvalue problem which is easily 
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solved with MATLAB for the eigenvalues and associated eigenvector.  The smallest eigenvalue 
is most often of most interest because it corresponds to the lowest critical load.  The deflection 
shape is shown in Figure 4 in which is also presented the lowest critical load which is in error by 
only 0.8% from the analytical solution.  The script file for he buckling problem is given in 
Appendix A-2. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Buckling Deflection Curve and Critical Load 
 
The techniques just demonstrated are also applicable to beam-columns which involve 
combinations of axial and lateral loads.  Such problems are not eigenvalue problems but rather 
spatial differential equation problems wherein both the second and fourth derivative of the 
deflection are approximated with appropriate differences. 
  
6.  Cantilever Beam Vibration 
 
The free and forced lateral vibration of a uniform, slender beam is governed by the Bernoulli-
Euler equation 
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where EI is the bending stiffness, µ is the mass per unit length and f(x, t) is the lateral forcing 
function. If the derivative with respect to x is approximated with the fourth of relations (1) the 
result is         
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Now scale time to a new temporal variable τ such that 
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then the equations of motion become 
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Now define velocities as vi = dwi/dτ and the column vectors w = [w1 w2  . . .w8]
T and   

v = [v1 v2 . . . v8]
T so the resulting state variable matrix form is 
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where S is a stiffness matrix similar to that of equation (6) except it is 8x8 and I is the 8x8 
identity matrix while f = [f(x1,τ) f(x2,τ) . . . f(x8,τ)]T.  This is ideally suited to the solution of the 
governing differential equations in MATLAB using the very robust solver ode45.  Here the 
authors chose to solve an unforced problem wherein the beam is given an initial deflection and 
zero initial velocity.   It was also decided to solve the equations of motion for a time equal to the 
first mode period. Solutions of PDEs have been previously presented graphically 2,3 and such a 
plot of the beam motion as a function of location and time is presented in Figure 5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 5. Solution to the Beam Equation as a Function of Location and Time. 
 
More recently, the animation of differential equation solutions has been demonstrated in 
MATLAB by employing the handle graphics in MATLAB4 and that has been accomplished here 
to animate the solution to the problem.   Every fifteenth animation frame for one half the first 
mode period is illustrated in Figure 6. The script file is presented in Appendix A-3. 
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7.  Conclusion 
 
The solution of a series of bending problems in MATLAB has been presented and the use of 
graphics for illustration has been presented.  This problem solving methodology provides an 
intuitive introduction to the use of finite difference techniques in the solution of mechanics 
problems. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Half Cycle of Animation Frames for Beam Vibration. 
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Appendix A 
 
A-1 Beam Deflection Problem 
% Cantilever Beam with Linearly decreasing load 
n=5; % Number of nodes excluding root 
j=[0:1:n]; %nodal indices 
% Build matrix 
S=[7 -4 1 zeros(1,n-3);-4 6 -4 1 zeros(1,n-4)]; 
for i=3:n-2 
   S=[S;zeros(1,i-3)1 -4 6 -4 1 zeros(1,n-(i+2))]; 
end 
S=[S;zeros(1,n-4)1 -4 5 -2]; 
S=[S; zeros(1,n-3) 2 -4 2]; 
load=[]; 
%Build load vector 
for i=1:n 
   load=[load;(n-i)/n]; 
end 
w=[ 0 (S\load)’]; %Solve linear equations 
w1=(625*(j.^2)/((n^2)*120)).*(10-(10*j/n)+(5*(j.*j)/(n^2))-
((j.*j.*j)/(n^3))); 
xoverl=j/n; % Dimensionless Distance  
plot(xoverl,w,xoverl,w1) 
xlabel(’Dimensionless Distance, x/L’) 
ylabel(’Deflection, 625wEI/P_oL^4’) 
 

A-2 Column Buckling Problem 
% Cantilevre Buckling Problem 
n=8;% Number of nodes away from origin 
A=[]; 
B=[]; 
d=[1 -2 1]; 
for i=3:n 
   A=[A;zeros(1,i-3) d zeros(1,n-i)]; 
end 
for i=2:n 
   B=[B;zeros(1,i-2) -1 zeros(1,n-i) 1]; 
end 
A=[2 zeros(1,n-1);-2 1 zeros(1,n-2);A]; 
B=[zeros(1,n-1) 1;B]; 
M=inv(B)*A; 
[vec,val]=eig(M); 
v1=[]; 
for i=1:n 
   v1=[v1 val(i,i)]; 
end 
[lam,ind]=min(v1); 
xoverl=[0:1:n]/(n); 
plot(xoverl,[0 vec(1:n,ind)’]) 
xlabel(’Dimensionless Distance From Root, x/L’) 
ylabel(’Deflection’) 
pf=lam*(n^2); 
text(.05,-.6,[’P_cr = ’ num2str(pf) ’*E*I/(L^2)’]) 

 
Appendix A-3 Cantilever Beam Vibration Problem 
% Cantilever vibration 
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clf 
n=8; % number of nodes 
S=[7 -4 1 zeros(1,n-3)]; 
S=[S;-4 6 -4 1 zeros(1,n-4)]; 
for i=3:n-2 
 S=[S;zeros(1,i-3)1 -4 6 -4 1 zeros(1,n-i-2)]; 
end 
S=[S;zeros(1,n-4) 1 -4 5 -2]; 
S=[S;zeros(1,n-3) 2 -4 2]; 
global A 
xoverl=[0:1/n:1]; 
xoverl1=xoverl(:,2:n+1); 
w0=.15*(3*(xoverl1.^2)-2*(xoverl1.^3)); 
x0=[w0 zeros(1,n)]; 
A=[zeros(n,n) eye(n,n);-S zeros(n,n)]; 
tspan=linspace(0,1.787*(n^2),300); 
[t,x]=ode45(’beamrhs’,tspan,x0); 
w=x(:,1:n); 
sz=size(t); 
w=[zeros(sz(1,1),1)w]; 
[T,X]=meshgrid(t,xoverl); 
figure(1) 
clf 
set(gca,’Box’,’on’) 
xp=[ 0  0 -.15 -.13 -.16 -.14 -.15 0]; 
yp=[-.37 .37 .2 .05 -.15 -.2 -.3 -.37]; 
patch(xp,yp,’r’); 
hold on 
plot([0 1.1],[0 0]) 
L=plot(xoverl,zeros(1,n+1),’k’,’EraseMode’,’xor’,’LineWidth’,[2.5]); 
hold on 
text(1.1,-.05,’x/L’) 
hold on 
axis([-.2 1.2 -.4 .4]) 
thandl=text(0.2,-0.35,’Press Enter to Set Initial Condition’); 
pause 
for i=1:sz(1,1) 
   set(L,’YData’,w(i,:)); 
   if i==1 
      set(thandl,’String’,’Press Enter to Animate’);  
      pause 
   end 
   drawnow; 
end 
set(thandl,’String’,’Press Enter to Continue’);  
pause 
figure(3) 
mesh(T,X,w’) 
colormap([0 0 0]); 
view(60,30) 
%axis([0 45 0 1 -.3 .3]) 
xlabel(’Dimensionless Time, \tau’,’rotation’,-31) 
ylabel(’Dimensionless Location, x/L’,’rotation’,12) 
zlabel(’Displacement, w(x/L,\tau)’) 
 
 
function xdot=beamrhs(t,x) 
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global A 
xdot=A*x; 
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