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Solving Nonlinear Governing Equations of Motion 

Using MATLAB and SIMULINK in First Dynamics Course 

 
 

 

 

 

Overview 

 

Students in first dynamics courses deal with some dynamical problems in which the governing 

equations of motion are simultaneous, second order systems of non-linear ordinary differential 

equations. There are no known quantitative methods or closed-form solution to these systems of 

non-linear differential equations. To teach students analytic methods and solution techniques to 

this category of dynamical problems, the authors devised a model example in which the motion 

of a particle on a rough cylindrical surface is considered. The authors then formulate qualitative 

and quantitative solution methods and employ both MATLAB and SIMULINK to these analytic 

methods and solution techniques to arrive at the stable, numerical solution to the proposed 

example. 

 

In the model example provided, the governing equations of motion are first obtained in the state 

form. Four different approaches then were adopted to arrive at the stable, numerical solution of 

the system of first order, simultaneous, non-linear differential equations of motion.  

 

In the first approach, the governing differential equations were converted to appropriate 

difference equations, and then a program was written in MATLAB to solve the resulted system 

of nonlinear algebraic equations. The second approach employed fourth-order Runge-Kutta 

scheme by writing a program in MATLAB to render a stable solution to the system of 

differential equations. The third method utilized MATLAB built-in function, “ode45”, to solve 

the governing non-linear system of differential equations. Finally SIMULINK, which is an 

extension to MATLAB, was used to provide solutions to the governing differential equations. 

The results of these different approaches were then compared with each other. 

 

Although MATLAB is recommended as the programming language for some end-of-the-chapter 

problems in the recent, well-known text by Tongue
1
, none of the popular dynamics texts in the 

market
1, 2, 3, 4, 5  

today (including Tongue’s) use SIMULINK in any form or way. The authors 

believe that SIMULINK, being a graphical user interface program, has a great potential in 

promoting better understanding of dynamics subjects, especially when students do not have a 

differential equations course in their background. SIMULINK is also an excellent tool to 

reinforce the topics students learn in a typical, undergraduate differential equations course. Last 

but not least, SIMULINK is a very powerful tool in analysis and design of dynamical systems. 

The authors used SIMULINK in analysis and design of an automobile suspension system
6
 as an 

exemplary model in vibrations’ class. 
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This model example, which provided for follow-up homework assignments and a project, helped 

students learn about efficient numerical methods, and how to employ technology tools, 

MATLAB and SIMULINK, in solving engineering problems, early in the dynamics class. What 

students learned here helps them a great deal in the subsequent courses in the curriculum. The 

state form of the governing differential equations of motion, introduced to students in the follow-

up homework problems, is certainly subject of further application in studying the dynamical 

response of the systems in several subsequent courses, namely dynamic systems, vibrations, and 

control.  Moreover, this treatment by state form of the governing equations is a novel and 

powerful way to treat differential equations in the classroom as all popular undergraduate 

differential equations texts in the market today miss out on it.   

 

It should be mentioned that, at our institution, dynamics is taught in the first semester of the 

junior year and right after the differential equations class, which is offered in the second semester 

of the sophomore year. In other curriculums, where dynamics is taught before students take 

differential equations, the method applied here (in the SIMULINK part of this paper) becomes 

extremely valuable as it can be introduced and employed in the dynamics course before the 

differential equation class (See Appendix D).  Appendix D clearly shows that SIMULINK 

integration block symbol requires no need for a priori knowledge of differential equations 

course.   Nonetheless, SIMULINK still can be used in the differential equations course, as we did 

in ours. 

 

The authors of this study received positive feedback from students regarding this experience. 

Students especially enjoyed using SIMULINK and expressed that this project help them a great 

deal in understanding not only dynamics topics but also the subjects covered in their previous 

differential equation course. 

 

Problem Statement 

 

In our model example, we propose to evaluate the position, velocity and the time at which the 1 

pound block leaves the surface of a cylindrical surface on which it slides. The block is assumed 

to have an initial velocity V0 at the top of the cylinder and is subject to a constraint friction force 

of kinetic coefficient of friction, µk (See Figure 1). To achieve a stable numerical solution, we 

assume, without loss of generality, a specific initial speed of 10 ft/s for the block and consider 

the coefficient of kinetic friction between the block and surface to be zero in one case and 0.2 in 

the other. The radius of cylinder, r = 5 ft.   

 

 

 

 V0

し 

     Figure 1 
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Formulation 

 

Figure 2 shows the free body and inertia response diagrams of the block, し degrees from the top 

of the cylinder.  

 

 

 

 

 

 

 

 

 

                                                        

 

Adopting the path coordinate and applying Newton’s second law of motion, one obtains: 

nn maF         :       
r

V
mNW

2

cos ?/s              (1) 

                                        :       tt maF tmaFsinW s                 (2) 

 

Where m is the mass, W is the weight, V is the speed of the block し degree(s) from the top, r is 

the radius of the cylinder, N is the surface normal force, F is the surface friction force and an and 

at are the normal and tangential components of accelerations of the block, respectively. However: 

 

    NF ko          (3) 

       
2

2

dt

sd
a t           (4) 

 

Where s is the path traversed by the block on the cylindrical surface. Solving for N from 

equation (1), one obtains: 

               )
r

V
cosg(mN

2

s            (5) 

 

Substituting N from (5) into (3), and the result together with (4) into (2), one gets: 
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V
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The speed of the block can be expressed as: 
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   Figure 2 
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dt
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V                    (7) 

Or:                    
dt

d
rV

s
                 (8) 

 

Substituting (7) into (6), and rearranging (8), one arrives at the state form of the governing 

equations of motion as: 

 

                        V
dt

ds
                       (9) 
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V
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and subject to the initial conditions: 

 

                           

.)(

s/ftV)(V

.)(s

00

100

00

0

s
                      (12) 

 

The problem at hand is clearly a single degree of freedom autonomous system (since s = rs ) 

and, therefore, it should be governed by two first order state equations.  However, we formulated 

the problem in the current manner by using equations 9-11 to obtain numerical solutions 

separately for both angular and curvilinear positions of the block.  The block leaves the 

cylindrical surface when there is no contact with it (N = 0) and, at the same time, when the rate 

of change of the normal force with respect to s  is negative. When N = 0, equation (5) becomes:  

                                                                        

           0
2

r

V
cosg s                            (13) 

 

Equations (9), (10), (11)  form a set of  nonlinear simultaneous differential equations of motion, 

in state form, with initial conditions (12) and subject to condition (13) on angle  し, at which the 

block leaves the surface of the cylinder.  

 

Solution Methods 

 

A closed-form solution to the system of non-linear, time-dependent, ordinary differential 

equations (9), (10), (11) subject to initial conditions (12) and constraint equation (13) is not 

possible. Three different numerical approaches are employed in this study to calculate the angle, 

velocity, position and time at which the block leaves the surface of the cylinder; namely, an 

appropriate difference equations scheme, Runge-Kutta method, and a MATLAB built-in function 

ode45. This is the first time that the students try to use numerical methods to solve system of 

differential equations in the curriculum. Pedagogically, it is very useful if students try different 
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solution approaches and compare the results of these different ways. We also introduced students 

to SIMULINK to teach them a fourth approach to obtain a stable solution to the problem at hand, 

in particular, and to this category of simultaneous non-linear differential equations in general. 

 

 

 

Approach I- Difference Equations Scheme 

 

In this approach we approximate the variables and their derivatives in equations (9), (10), and 

(11) as follows:  

 

                         

t

)tt()t(

dt

d

t

)tt(V)t(V

dt

dV

t

)tt(s)t(s

dt

ds

F
F

F
F

F
F

sss

                     (14) 

 

One also approximates the block speed as the average speed value at times t and t + 〉t as: 

 

                      
2
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Substituting (14) and (15) into (9), (10), and (11), one obtains: 
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Solving for the variables, velocity, position and angle し at time t from equations (16), one arrives 

at the governing difference equations: 
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The above system of algebraic equations, subject to initial conditions (12), is then solved by 

marching through time from initial t = 0, when the block was launched at the top of the cylinder, 

until the time t when the block leaves the cylinder surface. The angle し and the velocity V are 

substituted into equation (13) at the end of each time step to check whether the block has lost 

contact with the surface or not. Without going further into the details, we mentioned to our 

students the importance of choosing appropriate time steps to obtain a stable solution.  A time 

step of Ft = 0.1 ms was adopted in this simulation. Appendix A represent the MATLABł 

program used to implement this approach.  Although the error of these first order difference 

operators is O(〉t), their numerical stability is much better than the higher order ones. 

 

 

Approach II- Fourth-Order Runge-Kutta Method 

 

A fourth-Order Runge-Kutta7 solution technique is employed to solve the system of non-linear 

time-dependent first-order differential equations (9, 10, 11), subject to the initial conditions (12) 

and condition (13) for evaluating the kinematics state of the block at the time of loss of contact 

with the cylindrical surface. Appendix B shows the detailed MATLABł program to perform this 

integration. 

 

 

Approach III- MATLABł Built-in Function ode45 

 

The MATLABł built-in function ode458, which is an implicit implementation of fourth-order 

Runge-Kutta method, is used to solve the system of non-linear differential equations, (9), (10), 

and (11), subject to the initial conditions (12) and condition (13). The detail of calling this 

function in MATLABł is also shown in Appendix C. 

 

 

Approach IV- SIMULINK Solution 

 

SIMULINKł, which is an extension to MATLABł, provides its users with a graphical user 

interface that is fun to try and much easier to use than MATLABł itself (or Maple
®

) or any other 

traditional command-line programs, such as C, FORTRAN or BASIC. It is used to model 

complex nonlinear systems, with a relative ease in comparison with these command-line 

software programs, and as a result boosts productivity in a significant way.   

 

To employ SIMULINK in solving system of nonlinear simultaneous ordinary differential 

equations it is not necessary to convert the system into the state form. Contrary to the above 

discussed approaches, we did not use the state form of the equations of motion (Equations 9, 10, 

and 11), rather we remodeled our problem using equations (6) (a second order ODE) and (11). 

 

Appendix D shows the detailed SIMULINKł model of the problem at hand. It is seen in the 

SIMULINKł model that the left hand side of equation (6), namely, the term (
2

2

dt

sd
), after going 

through two integrator blocks (1/s), renders the position of the block.  Further elaboration on this 

model is presented in the result and discussion part of this document. 
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Results and Discussions 

 

To check the result of simulation, we study the exact solution to the governing differential 

equations of motion for the case of no friction (µk = 0). In that case, governing differential 

equations of motion reduce to: 

 

        ssing
dt

dV
             (18) 

         
r

V

dt

ds
                     (19)        

 

Subject to initial conditions (12) and condition (13). These can be solved by elementary 

techniques.  Using equation (19) and the chain rule, equation (18) is written as: 
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r

V
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d

d
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          (20) 

Which upon separation of variables and integration we obtain: 

 

                         (21) )cos(grVV s122

0
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Upon substituting V from condition (13) into (21) we arrive at the angle at which the block 

leaves the surface of the cylinder: 

 

01

2

01 107829
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3

2
.

))(.(

))(.(
cos
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grV
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Which upon substitution of (22) into (13), we obtain: 

 

8603111078295232 .).cos(.cosgrV os  ft/s 

 

We allotted three 50-minutes class periods to acquaint our students with numerical methods such 

as Runge-Kutta, finite difference, and state form of differential equations.  Moreover, one of 

these class periods was devoted to introducing students to SIMULINK by showing them how to 

construct simulation model for the problem at hand.  Later on in the semester, students used 

MATLAB and SIMULINK to do homework assignments and complete a project that was given 

to them to reinforce the ideas and methods presented in this paper.  We would also like to point 

out that students who go on to take vibrations, system and control, or differential equations 

courses will certainly reap great deal of benefit from this first experience in the dynamics class.  

Our students who took these subsequent courses further acknowledge this point.   

 

Table 1 next compares all the above cases with the exact solution. As it is evident from the table 

all approaches clearly predict the kinematics values, for the exact solution, with excellent 

accuracy, O(10
-4

). 
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                                                                         TABLE 1 

 

Kinematics Properties of the Block When it leaves the Cylindrical Surface  

No Friction Case (µk = 0.) 

 
Approach Time 

  (s) 

Angle し 

   (deg) 

Position 

    (ft) 

Velocity 

    (ft/s) 

Finite Difference 0.2393 29.1095 2.5403 11.8598 

Fourth order Runge-Kutta 0.2393 29.1106 2.5404 11.8606 

MATLAB ode45 Function 0.2393 29.1107 2.5404 11.8606 

SIMULINK Model 0.2392 29.1069 2.5400 11.8603 

Exact Solution 29.1078 2.5401 11.8603 

 

 

 

 

 

 

 

 

Table 2 shows the results for the friction case, where the kinetic friction coefficient µk = 0.4. 

Again all the approaches renders basically same values. The differences are mainly due to 

numerical truncation error. 

 

Appendix D shows the simulation of the exercise for µk = 0.4.  The kinematical values that are 

observed in Table 2 for the SIMULINK model are values taken from the Display Blocks in 

Appendix D. The Stop Block used in the model is to terminate the simulation when condition 

(13) is met. The Logic Block seen in the model is used to implement condition (13). The model 

uses three integrator blocks to arrive at position, velocity and the angle し for the block. The 

Clock Block on top of the model keeps track of the simulation time. These visual blocks, taken 

from block diagram concept
9
, aid students a great deal to simulate a dynamical system in a 

relatively short period of time in comparison with a typical command-line program. As we 

mentioned before, there is also no need to convert the second order differential equations of 

motion into first order (state form), to arrive at a stable numerical solution, in a SIMULINK 

model.  

                                                                    TABLE 2 

 

Kinematics Properties of the Block When it leaves the Cylindrical Surface  

No Friction Case (µk = 0.4) 

 
Approach Time 

  (s) 

Angle し 

   (deg) 

Position 

    (ft) 

Velocity 

    (ft/s) 

Finite Difference 0.2913 34.1204 2.9776 11.5456 

Fourth order Runge-Kutta 0.2912 34.1093 2.9766 11.5453 

MATLAB ode45 Function 0.2912 34.1093 2.9766 11.5453 

SIMULINK Model 0.2912 34.1105 2.9774 11.5456 

 

 

 

 

 

 

 

As it is seen from the results, friction holds the block to the cylinder for a longer time compared 

with the no friction case. This is expected as friction lowers the block velocity, which from 

equation (13) predicts a bigger contact angle し. 
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Conclusion 

 

It is the authors’ belief that with the availability of powerful programming tools such as 

MATLAB and SIMULINK, the students of dynamics and differential equations benefit 

tremendously from integrating similar models, as the one in the above, in their course work. 

SIMULINK¾software especially looks very promising in dynamics classes, where students do 

not have a differential equation course in their background. 

 

This model lead to homework problems and projects which helped students learn how to solve a 

system of non-linear, time dependent, governing differential equations of motion in 4 different 

ways. It introduced students to the state form of these differential equations, a topic which they 

will deal with in their future course work in vibrations and control systems. It also sharpened our 

students math and programming skills by extending their differential equation knowledge to new 

dimensions; namely, stable numerical methods for solving nonlinear systems. SIMULINK also 

helped students to develop block diagram skills. A skill they use in their control course later.  

 

Students’ feedback regarding this model and its follow-up homework assignment and a project, 

was very positive. They indicated that the model, homework and project combination helped 

them a great deal to further understand the topics learned in the dynamics and differential 

equation classes. They enjoyed, in particular, programming with SIMULINK because of its user 

graphical interface character and relative ease to use. 
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APPENDIX A 

 

MATLAB File FiniteDifferenceFric.m  for Finite Difference Approach 

 
% Finite Difference Approach To solve ODE System of Equations 
i=1; 
% Specifying Constants 
r=5; muk=0.4;dt = 0.0001;g=32.2; 
% Creating Vectors 
Theta= []; V = []; t= [];  
% Initializing Vectors 
V(i)=10; Theta(i)=0; t(i)=0; s(i)=0; 
u=t(1); 
% Testing Whether the Block Leaves the Surface and Evaluating 
%   The New Positions, Angle, and Velocity of the Block   
while cos(Theta(i))-(V(i))^2/(r*g)>eps 
    i= i+1; 
    V(i) = V(i-1)+dt*(g*(sin(Theta(i-1))-muk*cos(Theta(i-1)))+muk*(V(i-

1))^2/r); 
    Theta(i)= Theta(i-1)+dt/(2*r)*(V(i)+V(i-1)); 
    s(i)=s(i-1)+ dt*(V(i)+V(i-1))/2; 
    t(i)= u+(i-1)*dt; 
end 
% Evaluating the angle, Position, and velocity at which the block leaves 
%                           the surface 
Theta(i)=((Theta(i)+Theta(i-1))/2); 
s2 = r*Theta(i); 
Theta(i) = Theta(i)*180/pi; 
V(i) = (V(i)+V(i-1))/2; 
s(i) = (s(i)+s(i-1))/2; 
% Printing the Results 
fprintf('Time = %5.4f sec\n',t(i)) 
fprintf('Theta = %5.4f deg\n',Theta(i)) 
fprintf('Position= %5.4f ft\n',s(i)) 
fprintf('Position using r*Theta = %5.4f ft\n',s2) 
fprintf('Velocity = %5.4f ft/s\n',V(i)) 

 

Running FiniteDifference.m for the case µk = 0. 

 

Time = 0.2393 sec 

Theta = 29.1095 deg 

Position= 2.5403 ft 

Position using r*Theta = 2.5403 ft 

Velocity = 11.8598 ft/s 

 

Running FiniteDifference.m for the case µk = 0.4 

 

Time = 0.2913 sec 

Theta = 34.1204 deg 

Position= 2.9776 ft 

Position using r*Theta = 2.9776 ft 

Velocity = 11.5456 ft/s 
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APPENDIX B 

 

MATLAB File FrictionIntegRun to call on Runge-Kutta Integration Method 

 
%%Provide the Initial Conditions 

y0 =[0;0;10]; r=5; g=32.2; 

 
%Call on Runge-Kutta Function to Perform Integration 

[t,y]=rkgen('fric',[0 1],y0,0.0001); 
 

%Test Wether the Block Has left the Surface 
for i=1:10001 
    s= cos(y(2,i))-((y(3,i))^2)/(r*g); 
   if s<eps 
       y(:,i)=(y(:,i)+y(:,i-1))/2; 
        y(2,i)=y(2,i)*180/pi; 
  

%Print the Result 
 fprintf('Time = %5.4f sec\n',t(i)) 
 fprintf('Theta = %5.4f deg\n',y(2,i)) 
 fprintf('Position = %5.4f ft\n',y(1,i)) 
 fprintf('Velocity = %5.4f ft/s\n',y(3,i)) 
 break 
   end 
end 

 

MATLAB Function rkgen to Implement Runge-Kutta Integration Method 

 
% Fourth Order Runge Kutta Method for Solving Simultaneous first order  
%                          Differential Equations 
 

function[tvals,yvals]= rkgen(f,tspan,startval,step) 
 

%       Creating Coefficient Vectors 
b=[];d=[]; 
b=[1/6 1/3 1/3 1/6]; d =[0 0.5 0.5 1]; 
 

% Indicating the Number of Time Steps and Initial values 
steps = (tspan(2) -tspan(1))/step +1; 
y=startval;  t=tspan(1); 
yvals=startval; tvals=tspan(1); 
 

% Calculating k1, k2, k3, and k4 
for j=2:steps 
    k(1,:) = step*feval(f,t,y); 
    for i=2:4 
        if (i==2 | i==3) 
            cc=0.5; 
        else 
            cc=1; 
        end 
        k(i,:)= step*feval(f, t+step*d(i),y+(cc*k(i-1,:))'); 
    end 
  

% Updating Function Values and Time    
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    y1 = y+(b*k)'; 
    t1=t +step; 
    tvals=[tvals, t1]; yvals = [yvals, y1]; 
    t = t1; y =y1; 
end 

 

MATLAB Function fric.m to provide derivatives to Runge-Kutta Integration Method 

 
function ydot = fric(t,y) 
muk=0.4; r=5; g=32.2; 
 

% Provide the derivatives 
ydot=[ y(3); y(3)/r; g*(sin(y(2))-muk*cos(y(2)))+muk*((y(3))^2)/r]; 

 

Running Runge-Kutta Approach for the case µk = 0. 

 

Time = 0.2393 sec 

Theta = 29.1106 deg 

Position = 2.5404 ft 

Velocity = 11.8606 ft/s 

 

Running Runge-Kutta Approach for the case µk = 0.4 

 

Time = 0.2912 sec 

Theta = 34.1093 deg 

Position = 2.9766 ft 

Velocity = 11.5453 ft/s 
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APPENDIX C 

 

MATLAB File FrictionInteg.m to call on ode45 Integration Method 

 
%Provide Time Span of Integration 
for j=1:10000 
    tspan(j)= 0+(j-1)*0.0001; 
end 
 

%Provide the Initial Conditions 
y0 =[0;0;10]; r=5; g=32.2; 
 

%Call on ode45 to Perform Integration 
[t,y]=ode45(@fric,tspan,y0); 
 

%Test Whether the Block Has left the Surface 
for i=1:10000 
    s= cos(y(i,2))-((y(i,3))^2)/(r*g); 
    if s<eps 
        y(i,:)=(y(i,:)+y(i-1,:))/2; 
        y(i,2)=y(i,2)*180/pi; 
  

%Print the Result 
 fprintf('Time = %5.4f sec\n',t(i)) 
 fprintf('Theta = %5.4f deg\n',y(i,2)) 
 fprintf('Position = %5.4f ft\n',y(i,1)) 
 fprintf('Velocity = %5.4f ft/s\n',y(i,3)) 
 break 
    end 
end 

 

MATLAB Function fric.m to provide derivatives to ode45 Integration Method 

 
function ydot = fric(t,y) 
muk=0.4; r=5; g=32.2; 
 

% Provide the derivatives 
ydot=[ y(3); y(3)/r; g*(sin(y(2))-muk*cos(y(2)))+muk*((y(3))^2)/r]; 

 

Running MATLAB built in Function ode45 Approach for the case µk = 0. 

 

Time = 0.2393 sec 

Theta = 29.1107 deg 

Position = 2.5404 ft 

Velocity = 11.8606 ft/s 

 

Running MATLAB built in Function ode45 Approach for the case µk = 0.4 

 

Time = 0.2912 sec 

Theta = 34.1093 deg 

Position = 2.9766 ft 

Velocity = 11.5454 ft/s 
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APPENDIX D 

 

SIMULINK Model for µk = 0.4 
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