
2006-936: SOLVING NONLINEAR GOVERNING EQUATIONS OF MOTION
USING MATLAB AND SIMULINK IN FIRST DYNAMICS COURSE

Ali Mohammadzadeh, Grand Valley State University
ALI R. MOHAMMADZADEH is currently assistant professor of Engineering at School of
Engineering at Grand Valley State University. He received his B.S. in Mechanical Engineering
from Sharif University of Technology And his M.S. and Ph.D. both in Mechanical Engineering
from the University of Michigan at Ann Arbor. His research area of interest is fluid-structure
interaction.

Salim Haidar, Grand Valley State University
SALIM M.HAIDAR is currently associate professor of Mathematics at Grand Valley State
University. He received his B.S. in Mathematics with a Minor in Physics from St. Vincent
College, and his M.S. and Ph.D. in Applied Mathematics from Carnegie-Mellon University. His
research studies are in applied nonlinear analysis: partial differential equations, optimization,
numerical analysis and continuum mechanics

© American Society for Engineering Education, 2006

P
age 11.1141.1

Solving Nonlinear Governing Equations of Motion

Using MATLAB and SIMULINK in First Dynamics Course

Overview

Students in first dynamics courses deal with some dynamical problems in which the governing

equations of motion are simultaneous, second order systems of non-linear ordinary differential

equations. There are no known quantitative methods or closed-form solution to these systems of

non-linear differential equations. To teach students analytic methods and solution techniques to

this category of dynamical problems, the authors devised a model example in which the motion

of a particle on a rough cylindrical surface is considered. The authors then formulate qualitative

and quantitative solution methods and employ both MATLAB and SIMULINK to these analytic

methods and solution techniques to arrive at the stable, numerical solution to the proposed

example.

In the model example provided, the governing equations of motion are first obtained in the state

form. Four different approaches then were adopted to arrive at the stable, numerical solution of

the system of first order, simultaneous, non-linear differential equations of motion.

In the first approach, the governing differential equations were converted to appropriate

difference equations, and then a program was written in MATLAB to solve the resulted system

of nonlinear algebraic equations. The second approach employed fourth-order Runge-Kutta

scheme by writing a program in MATLAB to render a stable solution to the system of

differential equations. The third method utilized MATLAB built-in function, “ode45”, to solve

the governing non-linear system of differential equations. Finally SIMULINK, which is an

extension to MATLAB, was used to provide solutions to the governing differential equations.

The results of these different approaches were then compared with each other.

Although MATLAB is recommended as the programming language for some end-of-the-chapter

problems in the recent, well-known text by Tongue
1
, none of the popular dynamics texts in the

market
1, 2, 3, 4, 5

today (including Tongue’s) use SIMULINK in any form or way. The authors

believe that SIMULINK, being a graphical user interface program, has a great potential in

promoting better understanding of dynamics subjects, especially when students do not have a

differential equations course in their background. SIMULINK is also an excellent tool to

reinforce the topics students learn in a typical, undergraduate differential equations course. Last

but not least, SIMULINK is a very powerful tool in analysis and design of dynamical systems.

The authors used SIMULINK in analysis and design of an automobile suspension system
6
 as an

exemplary model in vibrations’ class.

P
age 11.1141.2

This model example, which provided for follow-up homework assignments and a project, helped

students learn about efficient numerical methods, and how to employ technology tools,

MATLAB and SIMULINK, in solving engineering problems, early in the dynamics class. What

students learned here helps them a great deal in the subsequent courses in the curriculum. The

state form of the governing differential equations of motion, introduced to students in the follow-

up homework problems, is certainly subject of further application in studying the dynamical

response of the systems in several subsequent courses, namely dynamic systems, vibrations, and

control. Moreover, this treatment by state form of the governing equations is a novel and

powerful way to treat differential equations in the classroom as all popular undergraduate

differential equations texts in the market today miss out on it.

It should be mentioned that, at our institution, dynamics is taught in the first semester of the

junior year and right after the differential equations class, which is offered in the second semester

of the sophomore year. In other curriculums, where dynamics is taught before students take

differential equations, the method applied here (in the SIMULINK part of this paper) becomes

extremely valuable as it can be introduced and employed in the dynamics course before the

differential equation class (See Appendix D). Appendix D clearly shows that SIMULINK

integration block symbol requires no need for a priori knowledge of differential equations

course. Nonetheless, SIMULINK still can be used in the differential equations course, as we did

in ours.

The authors of this study received positive feedback from students regarding this experience.

Students especially enjoyed using SIMULINK and expressed that this project help them a great

deal in understanding not only dynamics topics but also the subjects covered in their previous

differential equation course.

Problem Statement

In our model example, we propose to evaluate the position, velocity and the time at which the 1

pound block leaves the surface of a cylindrical surface on which it slides. The block is assumed

to have an initial velocity V0 at the top of the cylinder and is subject to a constraint friction force

of kinetic coefficient of friction, µk (See Figure 1). To achieve a stable numerical solution, we

assume, without loss of generality, a specific initial speed of 10 ft/s for the block and consider

the coefficient of kinetic friction between the block and surface to be zero in one case and 0.2 in

the other. The radius of cylinder, r = 5 ft.

 V0

し

 Figure 1

r

P
age 11.1141.3

Formulation

Figure 2 shows the free body and inertia response diagrams of the block, し degrees from the top

of the cylinder.

Adopting the path coordinate and applying Newton’s second law of motion, one obtains:

nn maF :
r

V
mNW

2

cos ?/s (1)

 : tt maF tmaFsinW s (2)

Where m is the mass, W is the weight, V is the speed of the block し degree(s) from the top, r is

the radius of the cylinder, N is the surface normal force, F is the surface friction force and an and

at are the normal and tangential components of accelerations of the block, respectively. However:

 NF ko (3)

2

2

dt

sd
a t (4)

Where s is the path traversed by the block on the cylindrical surface. Solving for N from

equation (1), one obtains:

)
r

V
cosg(mN

2

s (5)

Substituting N from (5) into (3), and the result together with (4) into (2), one gets:

r

V
)cos(sing

dt

sd
kk

2

2

2

osos (6)

The speed of the block can be expressed as:

n

t

mat

man
F

し
W

N

 Figure 2

P
age 11.1141.4

dt

ds
V (7)

Or:
dt

d
rV

s
 (8)

Substituting (7) into (6), and rearranging (8), one arrives at the state form of the governing

equations of motion as:

 V
dt

ds
 (9)

r

V
)cos(sing

dt

dV
kk

2

osos (10)

r

V

dt

d
?

s
 (11)

and subject to the initial conditions:

.)(

s/ftV)(V

.)(s

00

100

00

0

s
 (12)

The problem at hand is clearly a single degree of freedom autonomous system (since s = rs)

and, therefore, it should be governed by two first order state equations. However, we formulated

the problem in the current manner by using equations 9-11 to obtain numerical solutions

separately for both angular and curvilinear positions of the block. The block leaves the

cylindrical surface when there is no contact with it (N = 0) and, at the same time, when the rate

of change of the normal force with respect to s is negative. When N = 0, equation (5) becomes:

 0
2

r

V
cosg s (13)

Equations (9), (10), (11) form a set of nonlinear simultaneous differential equations of motion,

in state form, with initial conditions (12) and subject to condition (13) on angle し, at which the

block leaves the surface of the cylinder.

Solution Methods

A closed-form solution to the system of non-linear, time-dependent, ordinary differential

equations (9), (10), (11) subject to initial conditions (12) and constraint equation (13) is not

possible. Three different numerical approaches are employed in this study to calculate the angle,

velocity, position and time at which the block leaves the surface of the cylinder; namely, an

appropriate difference equations scheme, Runge-Kutta method, and a MATLAB built-in function

ode45. This is the first time that the students try to use numerical methods to solve system of

differential equations in the curriculum. Pedagogically, it is very useful if students try different

P
age 11.1141.5

solution approaches and compare the results of these different ways. We also introduced students

to SIMULINK to teach them a fourth approach to obtain a stable solution to the problem at hand,

in particular, and to this category of simultaneous non-linear differential equations in general.

Approach I- Difference Equations Scheme

In this approach we approximate the variables and their derivatives in equations (9), (10), and

(11) as follows:

t

)tt()t(

dt

d

t

)tt(V)t(V

dt

dV

t

)tt(s)t(s

dt

ds

F
F

F
F

F
F

sss

 (14)

One also approximates the block speed as the average speed value at times t and t + 〉t as:

2

)t(V)tt(V
V

F
 (15)

Substituting (14) and (15) into (9), (10), and (11), one obtains:

r

)tt(V)t(V

t

)tt()t(

r

))tt(V(
))tt(cos)tt((sing

t

)tt(V)t(V

)tt(V)t(V

t

)tt(s)t(s

kk

2

2
2

F
F

F

F
FF

F
F

F
F

F

ss

osos (16)

Solving for the variables, velocity, position and angle し at time t from equations (16), one arrives

at the governing difference equations:

r

))tt(V(
))tt(cos)tt((singt)tt(V)t(V kk

2F
FFFF osos

2

)tt(V)t(V
t)tt(s)t(s

F
FF (17)

r

)tt(V)t(V
t)tt()t(

2

F
FFss

P
age 11.1141.6

The above system of algebraic equations, subject to initial conditions (12), is then solved by

marching through time from initial t = 0, when the block was launched at the top of the cylinder,

until the time t when the block leaves the cylinder surface. The angle し and the velocity V are

substituted into equation (13) at the end of each time step to check whether the block has lost

contact with the surface or not. Without going further into the details, we mentioned to our

students the importance of choosing appropriate time steps to obtain a stable solution. A time

step of Ft = 0.1 ms was adopted in this simulation. Appendix A represent the MATLABł

program used to implement this approach. Although the error of these first order difference

operators is O(〉t), their numerical stability is much better than the higher order ones.

Approach II- Fourth-Order Runge-Kutta Method

A fourth-Order Runge-Kutta7 solution technique is employed to solve the system of non-linear

time-dependent first-order differential equations (9, 10, 11), subject to the initial conditions (12)

and condition (13) for evaluating the kinematics state of the block at the time of loss of contact

with the cylindrical surface. Appendix B shows the detailed MATLABł program to perform this

integration.

Approach III- MATLABł Built-in Function ode45

The MATLABł built-in function ode458, which is an implicit implementation of fourth-order

Runge-Kutta method, is used to solve the system of non-linear differential equations, (9), (10),

and (11), subject to the initial conditions (12) and condition (13). The detail of calling this

function in MATLABł is also shown in Appendix C.

Approach IV- SIMULINK Solution

SIMULINKł, which is an extension to MATLABł, provides its users with a graphical user

interface that is fun to try and much easier to use than MATLABł itself (or Maple
®

) or any other

traditional command-line programs, such as C, FORTRAN or BASIC. It is used to model

complex nonlinear systems, with a relative ease in comparison with these command-line

software programs, and as a result boosts productivity in a significant way.

To employ SIMULINK in solving system of nonlinear simultaneous ordinary differential

equations it is not necessary to convert the system into the state form. Contrary to the above

discussed approaches, we did not use the state form of the equations of motion (Equations 9, 10,

and 11), rather we remodeled our problem using equations (6) (a second order ODE) and (11).

Appendix D shows the detailed SIMULINKł model of the problem at hand. It is seen in the

SIMULINKł model that the left hand side of equation (6), namely, the term (
2

2

dt

sd
), after going

through two integrator blocks (1/s), renders the position of the block. Further elaboration on this

model is presented in the result and discussion part of this document.

P
age 11.1141.7

Results and Discussions

To check the result of simulation, we study the exact solution to the governing differential

equations of motion for the case of no friction (µk = 0). In that case, governing differential

equations of motion reduce to:

 ssing
dt

dV
 (18)

r

V

dt

ds
 (19)

Subject to initial conditions (12) and condition (13). These can be solved by elementary

techniques. Using equation (19) and the chain rule, equation (18) is written as:

 s
s

s
s

sing
d

dV

r

V

dt

d

d

dV

dt

dV
 (20)

Which upon separation of variables and integration we obtain:

 (21))cos(grVV s122

0

2

Upon substituting V from condition (13) into (21) we arrive at the angle at which the block

leaves the surface of the cylinder:

01

2

01 107829
52323

52322100

3

2
.

))(.(

))(.(
cos

gr

grV
coss (22)

Which upon substitution of (22) into (13), we obtain:

8603111078295232 .).cos(.cosgrV os ft/s

We allotted three 50-minutes class periods to acquaint our students with numerical methods such

as Runge-Kutta, finite difference, and state form of differential equations. Moreover, one of

these class periods was devoted to introducing students to SIMULINK by showing them how to

construct simulation model for the problem at hand. Later on in the semester, students used

MATLAB and SIMULINK to do homework assignments and complete a project that was given

to them to reinforce the ideas and methods presented in this paper. We would also like to point

out that students who go on to take vibrations, system and control, or differential equations

courses will certainly reap great deal of benefit from this first experience in the dynamics class.

Our students who took these subsequent courses further acknowledge this point.

Table 1 next compares all the above cases with the exact solution. As it is evident from the table

all approaches clearly predict the kinematics values, for the exact solution, with excellent

accuracy, O(10
-4

).

P
age 11.1141.8

 TABLE 1

Kinematics Properties of the Block When it leaves the Cylindrical Surface

No Friction Case (µk = 0.)

Approach Time

 (s)

Angle し

 (deg)

Position

 (ft)

Velocity

 (ft/s)

Finite Difference 0.2393 29.1095 2.5403 11.8598

Fourth order Runge-Kutta 0.2393 29.1106 2.5404 11.8606

MATLAB ode45 Function 0.2393 29.1107 2.5404 11.8606

SIMULINK Model 0.2392 29.1069 2.5400 11.8603

Exact Solution 29.1078 2.5401 11.8603

Table 2 shows the results for the friction case, where the kinetic friction coefficient µk = 0.4.

Again all the approaches renders basically same values. The differences are mainly due to

numerical truncation error.

Appendix D shows the simulation of the exercise for µk = 0.4. The kinematical values that are

observed in Table 2 for the SIMULINK model are values taken from the Display Blocks in

Appendix D. The Stop Block used in the model is to terminate the simulation when condition

(13) is met. The Logic Block seen in the model is used to implement condition (13). The model

uses three integrator blocks to arrive at position, velocity and the angle し for the block. The

Clock Block on top of the model keeps track of the simulation time. These visual blocks, taken

from block diagram concept
9
, aid students a great deal to simulate a dynamical system in a

relatively short period of time in comparison with a typical command-line program. As we

mentioned before, there is also no need to convert the second order differential equations of

motion into first order (state form), to arrive at a stable numerical solution, in a SIMULINK

model.

 TABLE 2

Kinematics Properties of the Block When it leaves the Cylindrical Surface

No Friction Case (µk = 0.4)

Approach Time

 (s)

Angle し

 (deg)

Position

 (ft)

Velocity

 (ft/s)

Finite Difference 0.2913 34.1204 2.9776 11.5456

Fourth order Runge-Kutta 0.2912 34.1093 2.9766 11.5453

MATLAB ode45 Function 0.2912 34.1093 2.9766 11.5453

SIMULINK Model 0.2912 34.1105 2.9774 11.5456

As it is seen from the results, friction holds the block to the cylinder for a longer time compared

with the no friction case. This is expected as friction lowers the block velocity, which from

equation (13) predicts a bigger contact angle し.

P
age 11.1141.9

Conclusion

It is the authors’ belief that with the availability of powerful programming tools such as

MATLAB and SIMULINK, the students of dynamics and differential equations benefit

tremendously from integrating similar models, as the one in the above, in their course work.

SIMULINK¾software especially looks very promising in dynamics classes, where students do

not have a differential equation course in their background.

This model lead to homework problems and projects which helped students learn how to solve a

system of non-linear, time dependent, governing differential equations of motion in 4 different

ways. It introduced students to the state form of these differential equations, a topic which they

will deal with in their future course work in vibrations and control systems. It also sharpened our

students math and programming skills by extending their differential equation knowledge to new

dimensions; namely, stable numerical methods for solving nonlinear systems. SIMULINK also

helped students to develop block diagram skills. A skill they use in their control course later.

Students’ feedback regarding this model and its follow-up homework assignment and a project,

was very positive. They indicated that the model, homework and project combination helped

them a great deal to further understand the topics learned in the dynamics and differential

equation classes. They enjoyed, in particular, programming with SIMULINK because of its user

graphical interface character and relative ease to use.

Bibliography

1. Tongue, B.H., and S.D., Sheppard: Dynamics: Analysis and Design of Systems in Motion, John Wiley, 2004.

2. Beer, F. P., and J. E. Russell: Vector Mechanics for Engineers- Dynamics, 6th. Edition, McGraw Hill, 2004.

3. Meriam, J.L., and L.G. Kraige: Engineering Mechanics- Dynamics, 5th. Edition, John Wiley, 2001.

4. Riley, W.F., and L.D. Sturges: Engineering Mechanics- Dynamics, 2nd Edition John Wiley, 1995.

5. Hibbeler, R.C.: Dynamics, 10th Edition, Prentice Hall, 2004.

6. Mohammadzadeh, A.R., and S. Haidar: Analysis and Design of Automotive Suspension System, ASEE Annual

 Proceedings, 2006.

7. Ayyub, B.M., and R.H. McCuen: Numerical Methods for Engineers, Prentice Hall, 1996.

8. Chapra, S.C.: Applied Numerical Methods with MATLAB for Engineers and Scientists, McGraw Hill, 2005.

9. Dabney J.B., and T.L. Harman: Mastering SIMULINK, Prentice Hall, 2004.

P
age 11.1141.10

APPENDIX A

MATLAB File FiniteDifferenceFric.m for Finite Difference Approach

% Finite Difference Approach To solve ODE System of Equations
i=1;
% Specifying Constants
r=5; muk=0.4;dt = 0.0001;g=32.2;
% Creating Vectors
Theta= []; V = []; t= [];
% Initializing Vectors
V(i)=10; Theta(i)=0; t(i)=0; s(i)=0;
u=t(1);
% Testing Whether the Block Leaves the Surface and Evaluating
% The New Positions, Angle, and Velocity of the Block
while cos(Theta(i))-(V(i))^2/(r*g)>eps
 i= i+1;
 V(i) = V(i-1)+dt*(g*(sin(Theta(i-1))-muk*cos(Theta(i-1)))+muk*(V(i-

1))^2/r);
 Theta(i)= Theta(i-1)+dt/(2*r)*(V(i)+V(i-1));
 s(i)=s(i-1)+ dt*(V(i)+V(i-1))/2;
 t(i)= u+(i-1)*dt;
end
% Evaluating the angle, Position, and velocity at which the block leaves
% the surface
Theta(i)=((Theta(i)+Theta(i-1))/2);
s2 = r*Theta(i);
Theta(i) = Theta(i)*180/pi;
V(i) = (V(i)+V(i-1))/2;
s(i) = (s(i)+s(i-1))/2;
% Printing the Results
fprintf('Time = %5.4f sec\n',t(i))
fprintf('Theta = %5.4f deg\n',Theta(i))
fprintf('Position= %5.4f ft\n',s(i))
fprintf('Position using r*Theta = %5.4f ft\n',s2)
fprintf('Velocity = %5.4f ft/s\n',V(i))

Running FiniteDifference.m for the case µk = 0.

Time = 0.2393 sec

Theta = 29.1095 deg

Position= 2.5403 ft

Position using r*Theta = 2.5403 ft

Velocity = 11.8598 ft/s

Running FiniteDifference.m for the case µk = 0.4

Time = 0.2913 sec

Theta = 34.1204 deg

Position= 2.9776 ft

Position using r*Theta = 2.9776 ft

Velocity = 11.5456 ft/s

P
age 11.1141.11

APPENDIX B

MATLAB File FrictionIntegRun to call on Runge-Kutta Integration Method

%%Provide the Initial Conditions

y0 =[0;0;10]; r=5; g=32.2;

%Call on Runge-Kutta Function to Perform Integration

[t,y]=rkgen('fric',[0 1],y0,0.0001);

%Test Wether the Block Has left the Surface
for i=1:10001
 s= cos(y(2,i))-((y(3,i))^2)/(r*g);
 if s<eps
 y(:,i)=(y(:,i)+y(:,i-1))/2;
 y(2,i)=y(2,i)*180/pi;

%Print the Result
 fprintf('Time = %5.4f sec\n',t(i))
 fprintf('Theta = %5.4f deg\n',y(2,i))
 fprintf('Position = %5.4f ft\n',y(1,i))
 fprintf('Velocity = %5.4f ft/s\n',y(3,i))
 break
 end
end

MATLAB Function rkgen to Implement Runge-Kutta Integration Method

% Fourth Order Runge Kutta Method for Solving Simultaneous first order
% Differential Equations

function[tvals,yvals]= rkgen(f,tspan,startval,step)

% Creating Coefficient Vectors
b=[];d=[];
b=[1/6 1/3 1/3 1/6]; d =[0 0.5 0.5 1];

% Indicating the Number of Time Steps and Initial values
steps = (tspan(2) -tspan(1))/step +1;
y=startval; t=tspan(1);
yvals=startval; tvals=tspan(1);

% Calculating k1, k2, k3, and k4
for j=2:steps
 k(1,:) = step*feval(f,t,y);
 for i=2:4
 if (i==2 | i==3)
 cc=0.5;
 else
 cc=1;
 end
 k(i,:)= step*feval(f, t+step*d(i),y+(cc*k(i-1,:))');
 end

% Updating Function Values and Time

P
age 11.1141.12

 y1 = y+(b*k)';
 t1=t +step;
 tvals=[tvals, t1]; yvals = [yvals, y1];
 t = t1; y =y1;
end

MATLAB Function fric.m to provide derivatives to Runge-Kutta Integration Method

function ydot = fric(t,y)
muk=0.4; r=5; g=32.2;

% Provide the derivatives
ydot=[y(3); y(3)/r; g*(sin(y(2))-muk*cos(y(2)))+muk*((y(3))^2)/r];

Running Runge-Kutta Approach for the case µk = 0.

Time = 0.2393 sec

Theta = 29.1106 deg

Position = 2.5404 ft

Velocity = 11.8606 ft/s

Running Runge-Kutta Approach for the case µk = 0.4

Time = 0.2912 sec

Theta = 34.1093 deg

Position = 2.9766 ft

Velocity = 11.5453 ft/s

P
age 11.1141.13

APPENDIX C

MATLAB File FrictionInteg.m to call on ode45 Integration Method

%Provide Time Span of Integration
for j=1:10000
 tspan(j)= 0+(j-1)*0.0001;
end

%Provide the Initial Conditions
y0 =[0;0;10]; r=5; g=32.2;

%Call on ode45 to Perform Integration
[t,y]=ode45(@fric,tspan,y0);

%Test Whether the Block Has left the Surface
for i=1:10000
 s= cos(y(i,2))-((y(i,3))^2)/(r*g);
 if s<eps
 y(i,:)=(y(i,:)+y(i-1,:))/2;
 y(i,2)=y(i,2)*180/pi;

%Print the Result
 fprintf('Time = %5.4f sec\n',t(i))
 fprintf('Theta = %5.4f deg\n',y(i,2))
 fprintf('Position = %5.4f ft\n',y(i,1))
 fprintf('Velocity = %5.4f ft/s\n',y(i,3))
 break
 end
end

MATLAB Function fric.m to provide derivatives to ode45 Integration Method

function ydot = fric(t,y)
muk=0.4; r=5; g=32.2;

% Provide the derivatives
ydot=[y(3); y(3)/r; g*(sin(y(2))-muk*cos(y(2)))+muk*((y(3))^2)/r];

Running MATLAB built in Function ode45 Approach for the case µk = 0.

Time = 0.2393 sec

Theta = 29.1107 deg

Position = 2.5404 ft

Velocity = 11.8606 ft/s

Running MATLAB built in Function ode45 Approach for the case µk = 0.4

Time = 0.2912 sec

Theta = 34.1093 deg

Position = 2.9766 ft

Velocity = 11.5454 ft/s

P
age 11.1141.14

APPENDIX D

SIMULINK Model for µk = 0.4

P
age 11.1141.15

