
Paper ID #23409

Structured Programing Methodology and Its Role in Cognitive Development
in Problem Solving Skills

Prof. Omer Farook, Purdue University Northwest

Omer Farook is a member of the faculty of Electrical and Computer Engineering Technology at Purdue
University, Nothwest. Farook received the diploma of licentiate in mechanical engineering and B.S.M.E.
in 1970 and 1972, respectively. He further received B.S.E.E. and M.S.E.E. in 1978 and 1983, respec-
tively, from Illinois Institute of Technology. Farook’s current interests are in the areas of embedded
system design, hardware-software interfacing, digital communication, networking, image processing, and
biometrics, C++, Python, PHP and Java languages. He has a keen interest in pedagogy and instruction de-
livery methods related to distance learning. He has a deep commitment to social justice and in achieving
economic and educational equity.

Dr. Jai P. Agrawal, Purdue University Northwest

Jai P. Agrawal is a professor in electrical and computer engineering technology at Purdue University,
Calumet. He received his Ph.D. in electrical engineering from University of Illinois, Chicago, in 1991,
dissertation in power electronics. He also received M.S. and B.S. degrees in electrical engineering from
Indian Institute of Technology, Kanpur, India, in 1970 and 1968, respectively. His expertise includes
analog and digital electronics design, power electronics, nanophotonics, and optical/wireless networking
systems. He has designed several models of high frequency oscilloscopes and other electronic test and
measuring instruments as an entrepreneur. He has delivered invited short courses in Penang, Malaysia and
Singapore. He is also the author of a textbook in power electronics, published by Prentice-Hall, Inc. His
professional career is equally divided in academia and industry. He has authored several research papers
in IEEE journals and conferences. His current research is focused on renewable energy technology, smart
energy grid.

Prof. Ashfaq Ahmed P.E., Purdue University Northwest

Ashfaq Ahmed is a Professor of Electrical and Computer Engineering Technology at Purdue University
Northwest. Ahmed received his bachelor’s of science degree in electrical engineering from the University
of Karachi in 1973 and master’s of applied science degree in 1978 from University of Waterloo. He is
the author of a textbook on power electronics, published by Prentice-Hall. He is a registered Professional
Engineer in the state of Indiana. He is a senior member of IEEE. Ahmed’s current interests include
embedded system design, electric vehicle, and VHDL design.

Dr. Wangling Yu, Purdue University Northwest

Dr. Wangling Yu is an assistant professor in the Electrical & Computer Engineering Technology De-
partment of the Purdue University Northwest. He was a test engineer over 15 years, providing technical
leadership in the certification, testing and evaluation of custom integrated security systems. He received
his PhD degree in Electrical Engineering from the City University of New York in 1992, specializing in
control theory and electronic technology.

Mr. Hassan Abdullah Alibrahim, Purdue University Northwest

I’m Hassan Alibrahim. A graduate teaching assistant at Purdue University Northwest Since August 2017.
An active member in the national honor society for engineering technology, Tau Alpha Pi. Recognized as
an outstanding student by the College of Technology at Purdue University Northwest for the 2015 -2016
academic year.

Dr. Ahmed S. Khan, Academic Platform, Lombard, IL

Dr. Ahmed S. Khan has more than thirty-five years of experience in research, instruction, curricula design
and development, program evaluation and accreditation, management and supervision.

c©American Society for Engineering Education, 2018

Paper ID #23409

Dr. Khan received an MSEE from Michigan Technological University, an MBA from Keller Graduate
School of Management, and his Ph.D. from Colorado State University. His research interests are in the
areas of Nanotechnology, Fiber Optic Communications, Faculty Development, and Social and Ethical
Implications of Technology. He is the author of many educational papers and presentations. He has
authored/coauthored the following books:

• Nanotechnology: Ethical and Social Implications (2012) • Technology and Society: Issues for the
21st Century and Beyond 3E, (2008) • The Telecommunications Fact Book and Illustrated Dictionary 2E
(2006) • Fiber Optic Communication: An Applied Approach, Prentice Hall, N.J. (2002) • Technology
and Society: A Bridge to the 21st Century (2002) • Technology and Society: Crossroads to the 21st
Century (1996) • Technology and Society: A Spectrum of Issues for the 21st Century (1994) • The
Telecommunications Fact Book and Illustrated Dictionary (1992)

Dr. Khan is a senior member of the Institute of Electrical and Electronics Engineering (IEEE), and a
member of American Society of Engineering Education (ASEE), and has been listed in Who’s Who
among America’s Teachers. Dr. Khan also serves as a program evaluator for the Accreditation Board for
Engineering and Technology (ABET).

Dr. Qudsia Tahmina, The Ohio State University

Dr. Qudsia Tahmina, The Ohio State University at Marion

Dr. Qudsia Tahmina is an Assistant Professor of Practice at The Ohio State University at Marion and
teaches first year engineering courses.

c©American Society for Engineering Education, 2018

Structured Programing Methodology and Its Role in Cognitive

Development in Problem Solving Skills

Abstract

The paper expounds the practices utilized in teaching a two course sequence for the

undergraduate curriculum, 1) Introductory C++ Software Design course and 2) An Embedded

Systems Design course. This two course sequence is exclusively based on Structured Programing

Methodology (SPM). The pedagogical underpinning for these courses is in strict adherence to the

Structured Programing model, and is based on the interdependence among problem solving,

cognition, and program (software design) development [1].

Presented is a learning model that these courses adhere to for the purpose of Problem Solving

both in general and specific to Engineering and Technology. Cognitive skills are developed,

honed, and enforced by practicing the SPM. The model aptly taps into the innate nature of C and

C++ language syntax which requires every design application to begin and have a minimum of a

single function. The SPM model relies on utilizing pseudo code design as the first step, as it is

natural to human cognition and problem solving. This approach displays auto-morphism, as

source and target are indistinguishable at several levels: 1) between pseudo code and language

specific syntax code, 2) between software model and hardware model, 3) between physical

model and virtual model in memory. The model specifically utilizes pointers structure

exclusively for Inter Functional Data Communication.

As practiced in this SPM model, the authors begin with exploiting memory both directly and

indirectly (with pointer). The remainder of the process is learning Program Flow Control

language constructs and their appropriate usage. The model presents language constructs as an

extension to physical hardware’s attributes, thereby leading practitioners in the discipline of

software hardware integration.

The paper serves as the pointer to fellow academicians for adopting this approach in their

classrooms.

I. Introduction

The role of software in Electrical Engineering and Technology over the years has been

increasing. Many of the disciplines of Electrical Engineering and Technology cannot be

conceived without having a solid foundations in the discipline of software design. Our program

focuses on two such courses in software design. The languages chosen for software design plays

a crucial role in its application for the purpose of what it is used for. In our program we find

C/C++ to be languages of choice for this purpose. The success of a program is to be the measure

of how well the students it produces perform in the market place. C/C++ by design is meant to be

both operating at low and high levels. Operating at low level, it is able to interface with physical

hardware and memory. It operates data streams either with physical devices or with memory.

Operating at very high level it has the language constructs to deal in very abstract manner,

thereby making virtual models of the physical objects. As practiced in our curriculum we are

presenting a very novel pedagogical approach to software design, which is Functional Oriented

view rather than Object Oriented view.

II. Learning Model Discussed is based on Structured Programing Methodology

Here the subject is briefly introduced for the purposes of relevance with the discussion at hand.

Structured programing Methodology was proposed and is being practiced as a solution to the

classical problems of spaghetti code. This provides economy, reusability, and security of code.

In short avoid 1) goto statements, 2) global variables and 3) monotony of huge formless code,

instead 1) break code into well-defined tasks into functions, 2) replace goto statements with

function calls, 3) use local variables, and 4) use inter-functional data communication with the

pointers. Inter-functional data communication with the pointers provides autonomy to functions,

without writing straight jacketed code specific to memory location references, instead it makes

the functions more abstract and lends them versatility to operate without specific reference to

specific memory location.

Structured programming Methodology as taught in our class and discussed here lends very well

to embedded applications, hardware software interacting, control applications, robotics and DSP

applications to name a few. Granted there is Object Oriented Programing (OOP) Methodology

the choicest approach but that requires more course work in OOP, which many of Engineering /

Technology students lack [1].

The authors model presented in the paper here takes a unique perspective, at looking at the

Software Design (problem Solving) with a unique interpretive outlook for the C/C++ language

construct in interpreting them from a utilitarian point of view. The utilitarian understanding of

C / C++ constructs provides a systematic top down approach of software design. This provides a

direct cognitive mapping in problems solving.

III. Interdependence among problem solving, cognition, and software design

Designers tend to use solution conjectures as the means of developing their understanding of the

problem. Since ‘the problem’ cannot be fully understood in isolation from consideration of ‘the

solution’, it is natural that solution conjectures should be used as a means of helping to explore

and understand the problem formulation [2]. Based on scores of Protocols and other formal

Studies of Design Activity and their impact on Human Cognition, the authors of the paper have

developed a learning model that these courses adhere to for the purposes of Problem Solving

both in general and specific to Engineering and Technology. Cognitive skills are developed,

honed, and enforced by practicing the SPM.

IV. Problem Solving and Creativity

Every problem has its unique way to arrive at its solution. Many problems lend themselves to

algorithmic approach and they are popular as they guarantee a correct solution. But all problems

do not lend themselves to algorithmic approach that requires using heuristic techniques, such as

working backwards or splitting the problem into sub-problems. So becoming familiar with

multiple approaches increases the chances of success. (Expressed differently through the saying,

"If your only tool is a hammer, you tend to treat every problem like a nail!"). Creativity has been

defined as the new ideas that work. Creativity has elements of uniqueness associated with it.

Software Application Design as a discipline is unique in providing so many ways to solve the

problem. Ideas influenced from the article on, “The Cognitive Approach” [3].

V. Basic C/C++ Language Constructs and Key Words

The basic language constructs of C/C++, provides the outermost shell with which the software

designer be honing the cognitive skill sets. In their 1991 paper, Feuerstein and his colleagues

note that cognitive operations may range from purely perceptual and reproductive ones, such as

the operation involved in “recognition,” to more formal and abstract operations involved in

inferential, inductive, and deductive reasoning. [4] The next eight items provides the software

designer the operations involved in inferential, inductive, and deductive reasoning.

V.1. C++ keywords

The following are the reserved keywords in C++. Since they are used by the language, these

keywords are not available for re-definition or overloading and they are case sensitive.

alignas (since C++11)

alignof (since C++11)

and

and_eq

asm

atomic_cancel (TM TS)

atomic_commit (TM TS)

atomic_noexcept (TM TS)

auto(1)

bitand

bitor

bool

break

case

catch

char

char16_t (since C++11)

char32_t (since C++11)

class(1)

compl

concept (since C++20)

do

double

dynamic_cast

else

enum

explicit

export(1)

extern(1)

false

float

for

friend

goto

if

import (modules TS)

inline(1)

int

long

module (modules TS)

mutable(1)

namespace

register(2)

reinterpret_cast

requires (since C++20)

return

short

signed

sizeof(1)

static

static_assert (since C++11)

static_cast

struct(1)

switch

synchronized (TM TS)

template

this

thread_local (since C++11)

throw

true

try

typedef

typeid

http://en.cppreference.com/w/cpp/keyword/alignas
http://en.cppreference.com/w/cpp/keyword/alignof
http://en.cppreference.com/w/cpp/keyword/and
http://en.cppreference.com/w/cpp/keyword/and_eq
http://en.cppreference.com/w/cpp/keyword/asm
http://en.cppreference.com/w/cpp/language/transactional_memory
http://en.cppreference.com/w/cpp/language/transactional_memory
http://en.cppreference.com/w/cpp/language/transactional_memory
http://en.cppreference.com/w/cpp/keyword/auto
http://en.cppreference.com/w/cpp/keyword/bitand
http://en.cppreference.com/w/cpp/keyword/bitor
http://en.cppreference.com/w/cpp/keyword/bool
http://en.cppreference.com/w/cpp/keyword/break
http://en.cppreference.com/w/cpp/keyword/case
http://en.cppreference.com/w/cpp/keyword/catch
http://en.cppreference.com/w/cpp/keyword/char
http://en.cppreference.com/w/cpp/keyword/char16_t
http://en.cppreference.com/w/cpp/keyword/char32_t
http://en.cppreference.com/w/cpp/keyword/class
http://en.cppreference.com/w/cpp/keyword/compl
http://en.cppreference.com/w/cpp/keyword/concept
http://en.cppreference.com/w/cpp/keyword/do
http://en.cppreference.com/w/cpp/keyword/double
http://en.cppreference.com/w/cpp/keyword/dynamic_cast
http://en.cppreference.com/w/cpp/keyword/else
http://en.cppreference.com/w/cpp/keyword/enum
http://en.cppreference.com/w/cpp/keyword/explicit
http://en.cppreference.com/w/cpp/keyword/export
http://en.cppreference.com/w/cpp/keyword/extern
http://en.cppreference.com/w/cpp/keyword/false
http://en.cppreference.com/w/cpp/keyword/float
http://en.cppreference.com/w/cpp/keyword/for
http://en.cppreference.com/w/cpp/keyword/friend
http://en.cppreference.com/w/cpp/keyword/goto
http://en.cppreference.com/w/cpp/keyword/if
http://en.cppreference.com/mwiki/index.php?title=cpp/keyword/import&action=edit&redlink=1
http://en.cppreference.com/w/cpp/keyword/inline
http://en.cppreference.com/w/cpp/keyword/int
http://en.cppreference.com/w/cpp/keyword/long
http://en.cppreference.com/mwiki/index.php?title=cpp/keyword/module&action=edit&redlink=1
http://en.cppreference.com/w/cpp/keyword/mutable
http://en.cppreference.com/w/cpp/keyword/namespace
http://en.cppreference.com/w/cpp/keyword/register
http://en.cppreference.com/w/cpp/keyword/reinterpret_cast
http://en.cppreference.com/w/cpp/keyword/requires
http://en.cppreference.com/w/cpp/keyword/return
http://en.cppreference.com/w/cpp/keyword/short
http://en.cppreference.com/w/cpp/keyword/signed
http://en.cppreference.com/w/cpp/keyword/sizeof
http://en.cppreference.com/w/cpp/keyword/static
http://en.cppreference.com/w/cpp/keyword/static_assert
http://en.cppreference.com/w/cpp/keyword/static_cast
http://en.cppreference.com/w/cpp/keyword/struct
http://en.cppreference.com/w/cpp/keyword/switch
http://en.cppreference.com/w/cpp/language/transactional_memory
http://en.cppreference.com/w/cpp/keyword/template
http://en.cppreference.com/w/cpp/keyword/this
http://en.cppreference.com/w/cpp/keyword/thread_local
http://en.cppreference.com/w/cpp/keyword/throw
http://en.cppreference.com/w/cpp/keyword/true
http://en.cppreference.com/w/cpp/keyword/try
http://en.cppreference.com/w/cpp/keyword/typedef
http://en.cppreference.com/w/cpp/keyword/typeid

const

constexpr (since C++11)

const_cast

continue

co_await (coroutines TS)

co_return (coroutines TS)

co_yield (coroutines TS)

decltype (since C++11)

default(1)

delete(1)

new

noexcept (since C++11)

not

not_eq

nullptr (since C++11)

operator

or

or_eq

private

protected

public

typename

union

unsigned

using(1)

virtual

void

volatile

wchar_t

while

xor

xor_eq

V.2. The main () Function.

The most basic and central to C/C++ language is the concept of a function. The main function is a

unique function where the code execution starts. The open curly brace ({) indicates the beginning

of main's function definition, and the closing brace (}) the end. Together they form the body of

the main function.

V.3. The C/C++ Expression and Statement.

The statements forms the basic instructions to the underlying machine. The C/C++ syntax is case

sensitive. They are terminated always by a semicolon (;). Every C/C++program comprises of

Statements. Program executes statement by statement. Each statement generally, in turn,

comprises of some expression. And an expression may further comprise of sub-expressions. An

expression by itself is formed by a sequence of operators and their operands that specifies a

computation. The blank line(s) are used for better readability.

V.4. Comments.

The C/C++ provides language constructs that are basically ignored by the compiler and are there

for the benefits of humans and such have no bearing on the code designed and its execution.

There are two such constructs1) // line comments; and /* multiple line comments */

V.5. Compound Statements.

The language construct of pair of curly brackets treats the number of enclosed statements as a

single identifiable entity and treat them as a single block (unit).

V.6. The Preprocessor Directives.

The preprocessor directives are directives to the compilers. Whereas the rest of the code is

translated to the specific underlying machine and are the instructions to the machine. They are

executed at translation phase before the compilation. The result of preprocessing is to have a

single file which is then passed and ready for compilation.

http://en.cppreference.com/w/cpp/keyword/const
http://en.cppreference.com/w/cpp/keyword/constexpr
http://en.cppreference.com/w/cpp/keyword/const_cast
http://en.cppreference.com/w/cpp/keyword/continue
http://en.cppreference.com/mwiki/index.php?title=cpp/keyword/co_await&action=edit&redlink=1
http://en.cppreference.com/mwiki/index.php?title=cpp/keyword/co_return&action=edit&redlink=1
http://en.cppreference.com/mwiki/index.php?title=cpp/keyword/co_yield&action=edit&redlink=1
http://en.cppreference.com/w/cpp/keyword/decltype
http://en.cppreference.com/w/cpp/keyword/default
http://en.cppreference.com/w/cpp/keyword/delete
http://en.cppreference.com/w/cpp/keyword/new
http://en.cppreference.com/w/cpp/keyword/noexcept
http://en.cppreference.com/w/cpp/keyword/not
http://en.cppreference.com/w/cpp/keyword/not_eq
http://en.cppreference.com/w/cpp/keyword/nullptr
http://en.cppreference.com/w/cpp/keyword/operator
http://en.cppreference.com/w/cpp/keyword/or
http://en.cppreference.com/w/cpp/keyword/or_eq
http://en.cppreference.com/w/cpp/keyword/private
http://en.cppreference.com/w/cpp/keyword/protected
http://en.cppreference.com/w/cpp/keyword/public
http://en.cppreference.com/w/cpp/keyword/typename
http://en.cppreference.com/w/cpp/keyword/union
http://en.cppreference.com/w/cpp/keyword/unsigned
http://en.cppreference.com/w/cpp/keyword/using
http://en.cppreference.com/w/cpp/keyword/virtual
http://en.cppreference.com/w/cpp/keyword/void
http://en.cppreference.com/w/cpp/keyword/volatile
http://en.cppreference.com/w/cpp/keyword/wchar_t
http://en.cppreference.com/w/cpp/keyword/while
http://en.cppreference.com/w/cpp/keyword/xor
http://en.cppreference.com/w/cpp/keyword/xor_eq
http://en.cppreference.com/w/cpp/language/translation_phases

V.7. The Input Output Streams

This iostream class inherits all members from its two parent classes, istream and ostream, thus

being able to perform both input and output operations. The class relies on a single streambuf

object for both the input and output operations. This is not part of the language of C++. I/o

streams could be envisioned as data stream that could flow in or out of the application under

discourse. This is simply accomplished by including the preprocessor directive: #include

<iostream>

V.8. The use of namespace std

All the objects of the standard library, and all the elements in the standard C++ library are

declared within what is called a namespace: the namespace std . The most typical way to

introduce visibility of these components is by means of using declaration:

using namespace std;

With the element discussed so far, the simple application that outputs a message is designed. The

code is provided in Figure No 1.

Figure 1. A typical application to output three lines of code

In Figure No. 2. The code for the application that outputs the name and address of an

individual’s is provided. The application outputs 4 lines.

In Figure No. 3. The code for the application that outputs the name and address of an individual

is provided, "Structured Program". This application is the first example of Structured

Programming, which demonstrates the declaration of function, calling of a function and the body

of the function. This application also demonstrate Program flow control method of a function

call.

In Figure No. 4. The code is provided for the application that is interactive program that is

performing all the arithmetic operations on the data provided by the user. Non-structured

example.

// A very simple program in C++

#include <iostream>

int main ()

{

 std::cout << "Hello World! ";

 std::cout << "I'm a C++ program";

 char c1;

 std::cin>>c1;

}

http://www.cplusplus.com/istream
http://www.cplusplus.com/ostream
http://www.cplusplus.com/streambuf

In Figure No. 5. The code is provided for the application that is interactive program that is

performing all the arithmetic operations on the data provided by the user. Structured program

example. The use of pointers for interfunctional communication.

In Figure No. 6. The code is provided for the application that is interactive program that is

performing all the arithmetic operations on the data provided by the user. Structured program

example, same application implemented with more functions. The use pointers for

interfunctional communication.

Figure 2. A Typical application to output your name and address.

/*

 Design an application that outputs your name and address

 Designed by: Omer Farook

 Date: January 12th 2017

*/

#include <iostream>

using namespace std;

int main ()

{

 cout<<"My name is: Omer Farook"<< endl;

 cout<<"My address is: 420 Living Street\n";

 cout<<" Hammond, IN"<<endl;

 cout<<" 46323 \n";

 return 0;

}
/*

 Typical Output:

 My name is: Omer Farook

My address is: 420 Living Street

 Hammond, IN 46323

*/

Figure 3. A Typical application to output your name and address "Structured Program"

/*

Design an application that outputs your name and address

 "Structured Program"

 Designed by: Omer Farook

 Date: January 12th 2017

*/

#include <iostream>

using namespace std;

//1.Function Declaration

void my_address (void);

int main ()

{

//2. Calling the function

my_address();

 return 0;

}

//3. Body of the function

 void my_address (void)

 {

 cout<<"My name is: Omer Farook"<< endl;

 cout<<"My address is: 420 Living Street\n";

 cout<<" Hammond, IN"<<endl;

 cout<<" 46323 \n";

 }

 /*

 Typical Output:

 My name is: Omer Farook

My address is: 420 Living Street

 Hammond, IN

 46323

*/

/*

Lab 4: Design interactive (Use of input - output) application that outputs the

following:

The apllication deals with four numbers: defined by the user. The application

is to output the

(i) the addition of first and fouth numbers,

(ii) the subtraction of 4th and 3rd numbers,

(iii) the multiplication of first and fouth numbers,

(iv) the division of first and 2nd numbers,

(v) the modulo of first and 4th

 "Structured Program"

 Designed by: Omer Farook

 Date: January 19th 2017

*/

#include <iostream>

using namespace std;

//1.Function Declaration

void number_operation (void);

int main ()

{

//2. Calling the function

number_operation();

char c1;

cin>>c1;

 return 0;

}

//3. Body of the function

 void number_operation (void)

 {

 // variable declration and assignment

 int x1 = 0, x2 = 0, x3 = 0, x4 =0;

 int y1 = 0, y2 = 0, y3 = 0, y4 = 0, y5 =0;

 cout<<"Please provide the first number"<<endl;

 cin>> x1;

Figure 4. A Typical application to demonstrate an interactive application

 cout<<"Please provide the 2nd number \n";

 cin>> x2;

 cout<<"Please provide the 3rd number"<<endl;

 cin>> x3;

 cout<<"Please provide the 4th number"<<endl;

 cin>> x4;

 //manipulating in memory data with arithmetic operators

 y1 = x1 + x4;

 y2 = x4 - x3;

 y3 = x1 * x4;

 y4 = x1 / x2;

 y5 = x1 % x4;

 cout<<"Addition of: "<<x1<<'+'<<x4<<'='<<y1<<endl;

 cout<<"Subtraction of: "<<x4<<'-'<<x3<<'='<<y2<<endl;

 cout<<"Multiplication of: "<<x1<<'X'<<x4<<'='<<y3<<endl;

 cout<<"Division of: "<<x1<<"Division"<<x2<<'='<<y4<<endl;

 cout<<"Modulo of: "<<x1<<"Modulo"<<x4<<'='<<y5<<endl;

 }

 /*

 Typical Output:

 Please provide the first number

100

Please provide the 2nd number

50

Please provide the 3rd number

47

Please provide the 4th number

1000

Addition of: 100+1000=1100

Subtraction of: 1000-47=953

Multiplication of: 100X1000=100000

Division of: 100Division50=2

Modulo of: 100Modulo1000=100

 */

/*

 Lab 5: Design interactive (Use of input - output) application

 that outputs the following:

 The apllication deals with four numbers: defined by the user.

 The application is to output the (i) the addition of first

 and fouth numbers, (ii) the subtraction of 4th and 3rd numbers,

(iii) the multiplication of first and fouth numbers,

(iv) the division of first and 2nd numbers,

(v) the modulo of first and 4th

 "Structured Program with pointers"

 "Interfunctional communinication with pointers"

 Designed by: Omer Farook

 Date: January 19th 2017

*/

#include <iostream>

using namespace std;

//1.Function Declaration

void getting_values(int *, int *, int *, int*);

void number_operation (int *, int *, int *, int*,int *, int *, int *, int *, int *);

int main ()

{

// variable declration and assignment

 int x1 = 0, x2 = 0, x3 = 0, x4 =0;

 int y1 = 0, y2 = 0, y3 = 0, y4 = 0, y5 =0;

 //2. Calling the functions

getting_values(&x1, &x2, &x3,&x4);

number_operation(&x1, &x2, &x3,&x4,&y1,&y2,&y3,&y4,&y5);

char c1;

cin>>c1;

 return 0;

}

Figure 5. Structured program example. The use pointers for interfunctional communication

//3. Body of the functions

void getting_values(int *p1, int *p2, int *p3, int *p4)

{

 cout<<"Please provide the first number"<<endl;

 cin>> *p1;

 cout<<"Please provide the 2nd number \n";

 cin>> *p2;

 cout<<"Please provide the 3rd number"<<endl;

 cin>> *p3;

 cout<<"Please provide the 4th number"<<endl;

 cin>> *p4;

}

 void number_operation (int *px1, int *px2, int *px3, int*px4,int *py1, int

*py2, int *py3, int*py4,int *py5)

 {

 //manipulating in memory data with arithmetic operators

 *py1 = *px1 + *px4;

 *py2 = *px4 - *px3;

 *py3 = *px1 * *px4;

 *py4 = *px1 / *px2;

 *py5 = *px1 % *px4;

 cout<<"Addition of: "<<*px1<<'+'<<*px4<<'='<<*py1<<endl;

 cout<<"Subtraction of: "<<*px4<<'-'<<*px3<<'='<<*py2<<endl;

 cout<<"Multiplication of: "<<*px1<<'X'<<*px4<<'='<<*py3<<endl;

 cout<<"Division of: "<<*px1<<"Division"<<*px2<<'='<<*py4<<endl;

 cout<<"Modulo of: "<<*px1<<"Modulo"<<*px4<<'='<<*py5<<endl;

 }

 /*

 Typical Output:

 Please provide the first number

400

Please provide the 2nd number

30

Please provide the 3rd number

5

Please provide the 4th number

60

Addition of: 400+60=460

Subtraction of: 60-5=55

Multiplication of: 400X60=24000

Division of: 400Division30=13

Modulo of: 400Modulo60=40

 */

/*

 Lab 6: Design an interactive (Use of input - output) application

 that outputs the following:

 The application deals with four numbers: defined by the user.

 The application is to output the (i) the addition of first and fourth numbers,

(ii) the subtraction of 4th and 3rd numbers,

(iii) the multiplication of first and fourth numbers,

(iv) the division of first and 2nd numbers,

(v) the modulo of first and 4th

 "Structured Program with pointers"

 "Interfunctional communication with pointers"

 Three functions 1)for input, 2) Computation, 3) outputting the results.

 Designed by: Omer Farook

 Date: January 24th 2017

*/

#include <iostream>

using namespace std;

//1.Function Declaration

void getting_values(int *, int *, int *, int*);

void number_operation (int *, int *, int *, int*,int *, int *, int *, int *, int *);

void my_output(int *, int *, int *, int*,int *, int *, int *, int *, int *);

int main ()

{

// variable declration and assignment

 int x1 = 0, x2 = 0, x3 = 0, x4 =0;

 int y1 = 0, y2 = 0, y3 = 0, y4 = 0, y5 =0;

 //2. Calling the functions

getting_values(&x1, &x2, &x3,&x4);

number_operation(&x1, &x2, &x3,&x4,&y1,&y2,&y3,&y4,&y5);

my_output(&x1, &x2, &x3,&x4,&y1,&y2,&y3,&y4,&y5);

char c1;

cin>>c1;

 return 0;

}

//3. Body of the functions

void getting_values(int *p1, int *p2, int *p3, int *p4)

{

cout<<"Please provide the first number"<<endl;

 cin>> *p1;

 cout<<"Please provide the 2nd number \n";

 cin>> *p2;

 cout<<"Please provide the 3rd number"<<endl;

 cin>> *p3;

 cout<<"Please provide the 4th number"<<endl;

 cin>> *p4;

}

 void number_operation (int *px1, int *px2, int *px3, int*px4,int *py1, int

*py2, int *py3, int*py4,int *py5)

 {

 //manipulating in memory data with arithmetic operators

 *py1 = *px1 + *px4;

 *py2 = *px4 - *px3;

 *py3 = *px1 * *px4;

 *py4 = *px1 / *px2;

 *py5 = *px1 % *px4;

 }

Figure No. 6. Structured program example. The use of pointers for inter functional

communication. More functions to implement.

VI. C/C++ Memory interfacing Language Constructs

The authors present the seven memory interfacing language constructs which provides the

software designer the tools to model virtual map of the physical task or object at hand. This

creates a virtual imagery with that of physical world. Other parameters or dimensions of the

Cognitive Map which are clearly task focused include the content around which the task is

centered, what Feuerstein calls the “universe of content” upon which the mental act is centered,

or in common usage, with the subject matter. [5]

VI.1. A variable is a unique symbolic reference to a physical memory location that has a unique

physical memory address. The teaching model starts with this definition of variable as such is

first language constructs with which memory is accessed. The type of variable indicates how

void my_output(int *ppx1, int *ppx2, int *ppx3, int*ppx4,int *ppy1, int

*ppy2, int *ppy3, int*ppy4,int *ppy5)

 {

 cout<<"Addition of: "<<*ppx1<<'+'<<*ppx4<<'='<<*ppy1<<endl;

 cout<<"Subtraction of: "<<*ppx4<<'-'<<*ppx3<<'='<<*ppy2<<endl;

 cout<<"Multiplication of: "<<*ppx1<<'X'<<*ppx4<<'='<<*ppy3<<endl;

 cout<<"Division of: "<<*ppx1<<"Division"<<*ppx2<<'='<<*ppy4<<endl;

 cout<<"Modulo of: "<<*ppx1<<"Modulo"<<*ppx4<<'='<<*ppy5<<endl;

 }

 /*

 Typical Output:

 Please provide the first number

200

Please provide the 2nd number

500

Please provide the 3rd number

40

Please provide the 4th number

55

Addition of: 200+55=255

Subtraction of: 55-40=15

Multiplication of: 200X55=11000

Division of: 200Division500=0

Modulo of: 200Modulo55=35

*/

many bytes of memory it is referring to and hence determine the data size and data type. In short,

a variable is a memory location that hold data.

Variables have to be declared.

Examples:

int x1;

float y1;

char c1;

VI.2. The assignment operator is the most important available to the application designer there

by the data is placed in a variable.

Variables have to initialize with assignment operator.

Examples:

x1 = 111;

y1 = 25.75;

c1 = ‘z’; //single character has to be enclosed within single quote.

The variables can be utilized from this point on to access or replace with other data.

Examples:

cout << x1 <<endl; // 111

cout<< y1 << endl; // 25.75

cout<< c1 <<endl; // z

VI.3. A Pointer, is a special variable in that it can hold the address of other variable. Pointer has

to be declared, it has to be initialized with the address of other variables. This is referred to as

pointer pointing to. The variable whose address it is holding.

VI.4. The Pointer Operator *, is used to declare pointers

Examples:

int *p1;

float *q1;

char *r1;

VI.5. The Address of operator & is used to get the the address of a variable and then could be

used in initializing the pointer.

Example:

p1 = &x1;

q1 = &y1;

r1 = &c1;

VI.6. The Indirectional or Dereferencing Operator *, is used when used with pointer to

access the variable it is pointing to.

Example:

p1 = *x1; // 111

q1 = *y1; // 25.75

r1 = *c1; // z

VI.7. An Array, is a series of Variables of the same type referred to by a common name placed

in contiguous memory locations that can be individually (element of the array) referenced by

adding an index to a unique identifier.

An array needs to be declared, initialized, and referred to it by its index number;

Example:

/*

 Lab_22

 "Generating random numbers for a particular range

 concept of Aray use to save the random numbers"

 The application will generate a set 100 numbers

 in the range of 23 - 300. Then the application is to

 reproduce all these numbers.

 Designed by: Omer Farook

 Date: March 9th 2017

*/

#include <iomanip>

#include <iostream>

#include <ctime>

#include <stdlib.h>

using namespace std;

//1.Function Declaration

void rand_gen(int *);

 void my_out(int *);

int main ()

{

// declaring an array.

 int aa1[100];

//calling function to populate this arry with random number.

rand_gen(aa1);

//2. Calling function to output the array

 my_out(aa1);

//next two lines are there for keeping output window open

char c1;

cin>>c1;

 return 0;

}

//3. Body of the function(s)

 //function having one single outpit with return statement.

 void rand_gen(int *a1)

 {

 // randomize();

 srand((unsigned)time(0));

 for (int i = 0; i < 100; i++)

 {

 *a1 = (rand()% 278) +23;

 a1++;

 }

 }

 void my_out(int *b1)

 {

 for (int ii = 0; ii < 100; ii++)

 {

 cout<<setw(5)<<*b1 << " ";

 b1++;

 }

 }

Figure 7. Demonstration of Array

VI.h. A data structure is a group of variables, grouped together under one name. These data

structure elements are termed as members, they could be of different types and different sizes.

Data structures can be declared in C++ using the following syntax:

struct type_name {

member_type1 member_name1;

member_type2 member_name2;

member_type3 member_name3;

.

}

A data structure is a group of data elements grouped together under one name. These data

elements, known as members, can have different types and different lengths. Data structures can

be declared in C++ using the following syntax:

struct type_name {

member_type1 member_name1;

member_type2 member_name2;

member_type3 member_name3;

.

.

} ;

struct type_name object_name_01, object_name_02 ;

Examples:

struct card

{

char title[30];

/*

 Typical Output:

 44 257 270 262 167 75 50 253 46 27

 66 73 124 149 142 230 166 130 130 149

 242 48 84 165 61 157 141 126 67 113

 217 118 204 174 284 297 116 294 216 250

 245 140 111 226 61 284 120 168 114 284

 97 270 139 254 277 87 122 239 156 250

 83 152 98 141 205 137 62 236 212 278

 94 173 230 120 170 251 215 128 163 190

 271 107 61 255 201 144 191 141 40 266

 261 174 24 95 72 225 90 150 71 27

 */

char author[20];

int catlog_number;

int year_published;

int number_of_copies;

};

Struct card c1, c2……………..;

VII. C/C++ Program Flow Control Language Constructs

C/C++ provides the following eight language constructs that alter the next statement (or

compound statement’s) execution or the order of execution. They are as follows. This process

of analyzing the cognitive operations of a task is often called “task analysis.” A mediator must be

familiar with each of the key components (cognitive operations) required to carry out the process

of task solution in order not only to mediate this process to the learner, but to encourage the

learner to transfer that learning to new tasks which require similar cognitive operations[4]. The

following eight elements of cognitive operations are required to carry out the process of software

design.

VII. 1. Sequential execution of statement (line after line execution). This is provided by the

language built in nature.

VII. 2. By a Function call. Whenever a function is called, the next execution shifts to the body

of the function called.

Figure 8. A Function Call

VII. 3. Use of if statement. Whenever there is a single statement or compound statement (a

block) of code, and the question lies to either execute the code or skip it as a result of the

condition then if statement is utilized.

Figure 9. Use of if statement

VII. 4. Use of if – else statement. Whenever there are two blocks of code and the question lies

between one or the other block being executed as a result of a condition under the binary output

of the condition, then first block is being executed for condition being evaluated as true and the

second block being executed for condition being false.

Figure 10. Use of if – else statement

VII. 5. The switch statement. If the decision is to execute one block among the many blocks as

a result of expression being evaluated and tying a particular block with the value of the

expression being evaluated. There is a default optional block to be executed in case of no

matching outcome.

Figure 11. Switch statement

 VII. 6. For Loop. The most common of the loops for repeated execution or iteration of the loop

(body of the loop). The iteration of the loop stops with the condition failure.

Figure 12. For Loop

VII. 7. While Loop. The loop with pre testing of the condition; loop iteration continues as long

as condition is true.

Figure 13. While Loop

VII. 8. Do – while Loop. The loop with pre testing of the condition guarantees at least a

minimum of a single iteration.

Figure 14. Do-while Loop

IX. Operators

The C/C++, data operators are the very basic and most primitive of language constructs, and they

are used as leg in the journey of software Application Design. They are simple but elegant as

they provide single point to deviate, control and take decision to go forth in the program flow

control which is critical cognitive outcomes.

 Arithmetic operators

 Bitwise operators

 Assignment operator

 Relational operators

 Logical operators

 Compound assignment operators

 Increment and decrement operators

 Subscript operator

X. Concluding Remarks

The authors have presented essentials of Structured Programing learning models that is

Functional Oriented rather than Object Oriented for ease of implementation. The paper serves as

a pointer to the fellow academicians to pursue and implement this in their respective classrooms.

The paper tried to present with few examples as this is achieved from the onset, the application

of pointers is used for Interfunctional Communication. Throughout the papers cognitive

processing of problem solving that leads to software application design is discussed with

reference to C/C++ language constructs, Program flow control elements, memory interfacing

elements and Operators are discussed. The topics presented in the paper are in the same order as

that of authors practices in the classroom. The authors have witnessed that subject matter of

software design, when practiced in this way, keeps students engaged in this Top-down Design

Approach, and will keep the cognitive process both agile and active.

KEYWORDS

Problem solving, Application (program) design and development, cognitive model, Cognition,

Structured Programing, pseudo code design.

Bibliography

[1] Yu, W., & Farook, O., & Agrawal, J. P., & Ahmed, A. (2017, June), Board # 63 :

Teaching Microcontrollers with Emphasis on Control Applications in the Undergraduate

Engineering Technology Program Paper presented at 2017 ASEE Annual Conference &

Exposition, Columbus, Ohio. https://peer.asee.org/27895

[2] Cross, Nigel (2001). Design cognition: results from protocol and other empirical studies

of design activity. In: Eastman, C.; Newstatter, W. and McCracken, M. eds. Design

knowing and learning: cognition in design education. Oxford, UK: Elsevier, pp. 79–103.

[3] The Cognitive Approach, https://www.ryerson.ca/~glassman/cognitiv.html, Last

accessed, March 19th 2018

[4] https://www.encyclopedia.com/education/applied-and-social-sciences-

magazines/cognitive-map-and-real-life-problem-solving, Last accessed, March 19th 2018

[5] On Feuerstein's Instrumental Enrichment: A Collection. Ben-Hur, Meir. ERIC Number:

ED379069, Publication Date: 1994, ISBN: ISBN-0-932935-76

https://www.ryerson.ca/~glassman/cognitiv.html
https://www.encyclopedia.com/education/applied-and-social-sciences-magazines/cognitive-map-and-real-life-problem-solving
https://www.encyclopedia.com/education/applied-and-social-sciences-magazines/cognitive-map-and-real-life-problem-solving

