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Student Misconceptions in an  

Introductory Logic Design Course 
 

Abstract 

 

In order to improve student learning, instructors should identify concepts that are difficult for 

students to understand.  Instructors can then change course material or teaching methods to focus 

on these difficult concepts.  Researchers can develop assessment tools based on common student 

misconceptions to measure the effects of pedagogical changes. 

 

This paper describes the results of interviews with students who took an introductory logic 

design course in the Spring or Summer of 2005 at the University of Illinois at Urbana-

Champaign.  These interviews revealed many common misconceptions students have after 

completing a sophomore-level course on logic design.  This paper also describes the results of an 

assessment test based on the interviews and administered to students taking an introduction to 

logic design course at the end of the Fall semester of 2005 at the University of Illinois at Urbana-

Champaign. 

 

Introduction 

 

Engineering and computer science faculty have a growing number of reasons to assess student 

learning outcomes.  ABET accreditation requires “a system of ongoing evaluation that 

demonstrates achievement of these objectives and uses the results to improve the effectiveness of 

the program.”
 1
  Faculty interested in improving their teaching require an objective, reliable tool 

to evaluate the effects of different teaching methods.  Education researchers need a standard tool 

to compare pedagogies.  Classroom assessment can be used to achieve institutional, faculty, and 

research assessment objectives.
 2
  One assessment tool that has proven valuable in science and 

engineering fields is the concept inventory, a short, multiple-choice tool used to determine how 

students think about concepts in a field.  In particular, the Force Concept Inventory (FCI), which 

probes conceptual understanding of Newtonian mechanics, has revolutionized how introductory 

physics courses are taught.  Because concept inventories test student misconceptions in a field, 

designing new concept inventories requires an understanding of the important concepts in the 

field and how students understand those concepts. 

 

In this paper, we describe our initial work toward the development of a concept inventory for 

logic design.  In particular, we document student misconceptions that we identified through a 

series of interviews with students who had recently completed an introductory course in logic 

design.  To check whether other students held these misconceptions, we developed and 

administered a multiple-choice assessment test.  While this test has limited coverage and has not 

been validated sufficiently to be considered a concept inventory, both the test and the student 

misconceptions that we have identified represent a promising first step.  Because this work is 

only a first step, we focus primarily on identifying student misconceptions and make no attempt 

at recommending teaching practices to address those misconceptions. 

 

We conducted our research at the University of Illinois at Urbana-Champaign, which offers two 

introductory logic design courses:  ECE290: Computer Engineering I offered by the Department 

P
age 11.1163.2



of Electrical and Computer Engineering and CS232: Computer Architecture I offered by the 

Department of Computer Science.  Both courses are sophomore-level courses that are required 

for the departments’ undergraduate majors.  The two courses cover almost identical material: 

representation of information, both combinational and sequential circuit analysis and design, and 

computer organization and control.  Both courses use the same text
3
, but they are not jointly 

offered, primarily due to their large enrollments of 200 and 120 students per semester 

respectively.  In both courses, students attend three hours of class every week; two hour-long 

lectures are taught by faculty and one hour-long recitation is taught by graduate teaching 

assistants.  Students complete schematic-capture and simulation-based laboratory assignments on 

a bi-weekly basis.  Students submit written homework every other week for CS231 and every 

week for ECE290.  In addition, students complete frequent web-based homework problems and 

receive instant feedback.  During the semester, students take two mid-term exams and a 

comprehensive final exam.  Further information can be found at: 

http://courses.ece.uiuc.edu/ECE290 and http://www.cs.uiuc.edu/class/cs231. 

 

The first section of this paper presents a brief overview of the literature on concept inventories.  

The second section discusses the interview and assessment test experimental method.  The final 

section provides an overview of the results of the interviews and the end-of-semester review and 

detailed discussion of some of the common misconceptions we found. 

 

Background 

 

The FCI was developed to demonstrate the extent to which students were failing to become 

“Newtonian thinkers” in spite of extensive instruction in Newtonian mechanics.
 4-5
  The results of 

initial administrations of the FCI were very disappointing to physics professors because many 

students who received high grades in courses scored poorly on the concept inventory even 

though inventory problems appeared trivial to physics faculty. 

 

The FCI has been shown to be useful for evaluating courses and pedagogical approaches, 

measuring student knowledge gain over a semester, and, when coupled with a math test, placing 

students in honors courses.
4-8
  The FCI has had a pronounced effect on perception of pedagogy 

within physics.
9
  In an attempt to replicate the success of the FCI and produce a similar 

pedagogical change in other disciplines, concept inventories are being developed for other 

science and engineering fields including electromagnetics, thermodynamics, signals and systems, 

circuits, and fluid mechanics.
10
 

 

Previous research in concept inventories for logic design is sparse; we are aware of only one 

prior attempt.  This concept inventory, developed at The University of Massachusetts at 

Dartmouth and The University of Alabama, consists of 13 problems over seven different 

topics.
11
  However, this concept inventory remains incomplete, some questions are outside our 

intended scope, and other questions rely too deeply on formalism or algorithms that can be 

applied without a firm understanding of the underlying concepts. 

 

Concept inventory development relies on knowledge of student misconceptions.  While the FCI 

relied on Hestenes’ prior research on early misconceptions of physics students
12
, such a 

characterization of misconceptions is not readily available in every field.  While instructors often 
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think they know which concepts are the ones that students find the most challenging, concept 

inventory developers generally believe that the best approach to diagnosing the source of student 

misconceptions is through student interviews.
13-14

  In the next section, we describe our interview 

method, based on this prior work. 

 

Methods 

 

We interviewed eight students during the fall semester of 2005; each interview lasted about one 

hour and was videotaped.  Student volunteers were identified through three rounds of email 

solicitation.  In the first round, we contacted students who had taken ECE290 and CS231 during 

the Summer 2005 session, and only students with A grades responded.  To achieve a diversity of 

achievement levels in our interview subjects, we contacted students who had taken these courses 

during the Spring 2005 semester and received course grades of “C and lower” and “B/B-” in the 

second and third solicitations, respectively.  Of the eight students whom we interviewed, three 

had taken CS231 and five had taken ECE290.  Two students were women. 

 

Students were first asked to reflect on their experiences in the course and to share their 

perceptions of the most important, the easiest, and the most difficult topics in the courses.  We 

provide no data on these responses because they did not reveal useful information about 

misunderstandings or difficult topics.  Even when we notified students ahead of time that we 

would ask this question their responses were too general to be useful.  The time between 

instruction and interview may have contributed to the lack of meaningful responses. 

 

For the remainder of the interview, students were asked to explain digital logic concepts and 

perform “think alouds” during which students would solve logic design problems – either on the 

whiteboard or on paper – while verbalizing their thought process.  We asked follow-up questions 

to probe why students chose particular techniques and how they arrived at their answers.  We 

focused on the digital logic concepts described in the course objectives for ECE290 (included as 

Appendix A); computer organization course objectives covered in the courses were not included 

as they are beyond the scope of this work.  We focused on these concepts because the ECE290 

course objectives, written for ABET accreditation, had been specifically developed to capture the 

key concepts of the course.  These concepts are also consistent with important concepts taught in 

CS231 and in the textbook.  Examples of both questions and problems can be found in Figures 1-

3. 

 

What is the complement of wx(y’z + yz’) + w’x’? 
Figure 1 – An example interview problem 

 

Why can we design any combinatorial system using only NAND gates? 
Figure 2 – An example interview question 
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Synthesize the following state diagram using any type of flip-flop. 

 

 
Figure 3 – An example interview problem 

 

Initially, many problems were similar to problems students would encounter in a textbook or 

course problem set.  The initial set of problems consisted of at least one problem testing each 

course objective.  As the interviews progressed, we removed from the problem set the problems 

that students correctly answered most often.  The remaining problems contained some concept 

that students found difficult.  We tuned each of these problems to focus on one misconception, 

sometimes using a context that differed from what students may have seen in the courses. 

  

During the interviews, students voiced some misunderstandings with enough regularity that we 

decided to check whether other students had the same misconceptions.  For these misconceptions 

we developed multiple-choice problems where each problem is intended to test for a “deep”, 

conceptual understanding of a single concept and to require little or no calculation.  Possible 

answer selections were answers common in student interviews (to test for distracting wrong 

answers), non-obvious or non-intuitive (to test for missed correct answers), or the result of our 

experience that the answer could be a significant distracter.  Some problems had more than one 

correct answer, and students were instructed to select all correct answers.  In some cases, we 

provided many possible answers in order to identify which were compelling distracters.  We 

created a test consisting of twelve items and administered this test to 28 students in two recitation 

sections of ECE 290 as an end-of-semester review during the final class period of the semester.  

Examples of test items are shown below in Figures 4 and 5. 

 

A sequential state diagram with n states and requires at least m flip-flops.  If a different state 

diagram has 2*n states, what is the minimum number of flip-flops? 

 

a.) m e.) 2*m + 1 

b.) m + 1 f.) m^2 

c.) m + 2 g.) 2*m + 1 

d.) 2*m h.) None of the above 

Figure 4 – An example test item 
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Which of the following are complete logic families (i.e., all possible combinational logic circuits 

can be implemented using just these gates and the constants 0 and 1). 

 

 
 

There may be more than one right answer. 
Figure 5 – An example multiple-choice problem 

 

Results 

 

Overall, we found that students fully understood many course concepts.  Students correctly 

solved many basic problems such as converting a 2’s complement binary number to decimal, 

completing combinatorial timing diagrams, and converting a logic diagram to a Boolean 

expression.  Most students could accurately describe the functionality and use of basic logic 

gates, medium-scale integration (MSI) components, and flip-flops, although almost uniformly 

students could recall only D- and T-type flip-flops. Furthermore, most students correctly solved 

problems based on simple algebraic identities, basic MSI designs, and designs using two-input 

logic gates.  

 

Nevertheless, we identified the following student misconceptions:  

 

Karnaugh Maps: Because Karnaugh maps are a major topic in both ECE 290 and CS 231, we 

were surprised to find that students were generally reluctant to use them in all but the most 

obvious circumstances.  In particular, it appears that students tend to associate using Karnaugh 

maps with particular problem formulations.  Two questions required the use of Karnaugh maps 

to complete them quickly.  The first question was used in the interviews and is shown in Figure 

6. 

 

Find a two-level multiple-output AND-OR gate network to realize the following functions using 

6 gates. 

a’c + a’d’ + b’c and c’d’ + ab’ + ac’ 
Figure 6 – Interview problem easily solved by Karnaugh maps 

 

Although the problem in Figure 6 can be solved algebraically, it is most easily solved by 

constructing the Karnaugh maps for both functions and selecting loops that overlap.  Students 

presented with this problem usually tried other methods, such as Boolean algebra or truth tables, 
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and generally got stuck.  One student in particular told the interviewers he was looking for 

overlapping terms, but decided that a truth table was a better tool than a Karnaugh map.  Only 

the top students instinctively used a Karnaugh map for this problem, though other students were 

able to find the correct answer after some leading questions suggested a Karnaugh map would be 

a good way to solve this problem. 

 

A closed-form problem is shown below in Figure 7.  This problem was presented to students 

both in interviews and in the assessment test.  The number of students choosing an answer on the 

assessment test is given in parenthesis to the right of the answer choice.  Correct answers are 

marked with an “X” to the right of the number of students choosing that answer. 

 

If you implement the following truth table as a sum of products, what are the minimum required 

number of AND and OR gates.  Assume you have inputs and their complements available as 

inputs to the circuit.      (attempted by 22 students) 
 

 A B C | Output 

-------+-------- 

 0 0 0 |   1 

 0 0 1 |   1 

 0 1 0 |   1 

 0 1 1 |   0 

 1 0 0 |   1 

 1 0 1 |   0 

 1 1 0 |   1 

 1 1 1 |   1 

 

a.) one 2-input gate (0) h) two 2-input gates and one 3-input gate(14 X) 

b.) one 3-input gate (0) i) one 2-input gate and two 3-input gates (0) 

c.) two 2-input gates (0) j) three 2-input gate and one 3-input gate (1) 

d.) two 3-input gates (1) k) one 2-input gate and three 3-input gates (0) 

e.) one 2-input and one 3-input gate (0) l) two 2-input gates and two 3-input gates (2) 

f.) three 2-input gates (0) m) None of the above (3) 

g.) three 3-input gates (1)  

Figure 7 – A test item focusing on Karnaugh maps 

 

This problem more obviously leads to the use of a Karnaugh map as it asks for the minimum 

number of gates, phrasing that is commonly associated with Karnaugh maps in an introductory 

logic design course.  Still, many students did not attempt the question and only half chose the 

correct answer.  Examination of the review sheets showed that some students were not correctly 

identifying minimal loops in their Karnaugh maps.   

 

Since Karnaugh maps are a fundamental tool of logic design, students should know how to use 

them correctly and at the appropriate times.  It is possible that Karnaugh maps are used in these 
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courses primarily in problems that specifically ask for them or in larger design problems that are 

presented close to when students learn Karnaugh maps.  Since students generally see Karnaugh 

maps in only one context, they may find it difficult to know apply Karnaugh maps in different 

kinds of problems.  The ability to use knowledge across different contexts, known as knowledge 

transfer, is well documented in educational psychology research.
15
  We believe that students’ 

reluctance to use Karnaugh maps in unfamiliar situations results from a lack of knowledge 

transfer. 

 

Duality: Students generally had difficulty deriving the dual of an expression.  During the 

interviews, very few students correctly solved this problem the first time.  The types of errors 

varied widely.  Some errors were merely typographical in nature, such as swapping two variables 

in copying from one line to another.  Other students confused taking the dual with 

complementing the expression; they inverted variables in the various steps.  Students also 

misapplied operation precedence.  The expression was complicated enough to require an 

understanding of operation precedence, but did not contain a constant 1 or 0 to see if students 

remembered to complement constants. 

 

What is the dual of wx(y’z + yz’) + w’x’(y’ + x)(y + z’) ? 
Figure 8 – An interview problem on duality 

 

It is unclear exactly why students had so much difficulty with this problem.  Most likely, 

students thought that duality is unimportant.  Also, duality is covered very quickly at the 

beginning of the term and usually is not seen again.  However, there is a fair amount of 

formalism involved in the problem, and students might understand some of the concepts behind 

the dual while not being able to derive it.  While we want students to understand both the 

implications and the derivation of the dual of an expression, we recognized students’ difficulty 

with the derivation and decided to test whether students knew the implications of duality.  The 

problem on the end-of-semester review questions shown in Figure 9 probed for students who 

understood one of the main implications of duality without actually having to derive the dual.   

 

Let F, G, and H be functions of x, y, and z.  The truth tables of F and G are the same. 

Which of the following must be true?  There may be more than one answer.  

(attempted by 26 students) 

 

a.) F = G (26 X) e.) FH = HG (23 X) 

b.) F’ = G’ (26 X) f.) FH = GH (24 X) 

c.) Dual(F) * G = 0 (Dual of F AND G) (3) g.) Dual(F) = Dual(G) (21 X) 

d.) F’G=0 (24 X)      

Figure 9 – A test item examining implications of duality 

 

Specifically, answer choice g tested whether students understood that, if two expressions are 

equal, then the duals of those expressions are also equal.  Most students correctly identified all 

correct statements.  While this apparent understanding of a main idea of duality is encouraging, it 

is possible that students selected answer g because they saw the same operation being performed 

on both sides of the equation and not because they understood duality.  More investigation is 
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needed to understand if students understand duality and just forget the process to derive the dual 

or if they do not fully understand duality. 

 

Non-Trivial Output: In real design applications, it’s not always possible to find devices with the 

exact number of input lines required.  Some input must go into these lines, but students are not 

always confident about what kind of input is needed.  This misunderstanding first came up as 

interviewed students tried to solve a problem with a limited set of devices, shown in Figure 10.   

 

f(x,y,z) = AND(M1, M4, M6) 

g(x,y,z) = OR(m1, m3, m5) 

h(x, y, z) = x XOR z 

 

Draw a circuit which implements the three functions f, g, and h.  You may use only one 3-to-8 

decoder, two 4-input OR gates, and one 4-input NOR gate. 
Figure 10 – An interview question where one gate has an unused input 

 

One student in an interview, needing an additional input to the NOR gate, decided to use a high 

logic value since an OR gate requires a 0 to result in a non-trivial output.  We developed the 

problem in Figure 11 to test students’ knowledge on what inputs to use for particular gates.   

 

Which of the following will result in nontrivial output (not always 0 or 1)? 

There may be more than one right answer. 

(attempted by 26 students) 

 

 a.) (25 X)  b.) (0) c.) (25 X) 

 
  d.) (2) e.) (22 X) f.) (2)  

 

g.) None of the above     (0) 
Figure 11 – A test item on non-trivial outputs 

 

Students correctly solved this problem in the interviews and at the end-of-semester review.  Most 

students misunderstood gates with complemented outputs.  Students were very inconsistent with 

answers e and f.  Three students chose neither, one student chose both, and one student chose f 

instead of e.  With such a small data set, it is not clear if these data points result from 

carelessness or some deeper misunderstanding.  It is clear from both interview results and the 
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review that students do not always understand NOR and NAND gates, sometimes attributing the 

complement to the input instead of the output. 

 

The problem statement in Figure 11 may artificially increase the number of correct answers.  As 

presented, it is very easy for students to draw a quick truth table and get the correct answer.  

While drawing a truth table is a valid way of solving this problem (it may even be the fastest 

way), this method does not expose a real understanding of how complemented gates work.  This 

problem should be examined more closely to see if it can be stated in a way that will elicit 

responses based more on a conceptual understanding than the ability to create a two-input truth 

table.  

 

Minimum number of flip-flops needed in a minimum state diagram: The creation of a 

sequential circuit design from a state diagram is taught in most introductory logic design courses, 

including ECE 290 and CS 231.  This area of the course is open to misunderstandings since 

transforming a state diagram into a sequential circuit design is an algorithmic task and can be 

applied without a firm understanding of why or how the transformation works.  We designed the 

problem shown in Figure 12 to capture a part of students’ conceptions of this process. 

 

A sequential state diagram with n states requires at least m flip-flops.  If a different state diagram 

has 2*n states, what is the minimum number of flip-flops? 

(attempted by 24 students) 

a.) m (0) e.) m
2
 (2) 

b.) m+2 (2) f.) 2*m
2
 (0) 

c.) 2*m (7) g.) None of the above (12 X) 

d.) 2*m + 1 (1)  

Figure 12 – A test item relating number of states to number of flip-flops 

 

This problem probes students’ understanding of the relationship between states and flip-flops.  

Many students remember that the minimum number of flip-flops needed for n states is log2(n), 

but this problem cannot be solved by recalling that fact.  Because the correct answer (m+1) has a 

different form than the distracters, we chose not to list it as an option to avoid students deducing 

it as the correct answer. 

 

As suspected, answers b, c, and e were common distracters.  Students who chose answer b may 

have been trying to apply the log rule, but did not fully understand the log function.  Students 

who chose answers c, d, and e show a fundamental misunderstanding of how states in a state 

diagram are related to flip-flop outputs.  This problem was mostly used in the end-of-semester 

review, so we did not get to ask why students chose answers c or e. 

 

These results should be interpreted carefully.  Because students could not pick the correct 

answer, it is not possible to determine if students chose answer g with the real answer in mind or 

a different incorrect answer.  Further, the process of going from a state diagram to a flip-flop 

design isn’t always taught with the goal of a minimum flip-flop design.  While many of the basic 
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conceptions are the same regardless of the goal, this particular measure may not be appropriate 

for other kinds of instruction. 

 

MSI components: Some students had difficulties explaining MSI components and, somewhat 

surprisingly, we found more confusion with multiplexers than other MSI components.  For 

example, multiple students indicated that multiplexers choose one input to appear as the output, 

but failed to mention a selection input.  In a multiple-choice problem asking students to identify 

correct implementations of an expression, more students identified correct decoder 

implementations than correct multiplexer implementations (92% and 71% for two decoder 

implementations versus 43% and 17% for correct multiplexer implementations).  This is true for 

both decoder implementations (fewer than 65% correctly chose the right answer) using minterms 

and logic gate implementations (63% correct) using a Karnaugh map. 

 

Flip-flops and Sequential Design: Students commonly misunderstood the distinction between 

flip-flops and latches.  On a multiple-choice question, students performed poorly (40% correct) 

on a problem involving characterizing the output waveform of a simple circuit involving two 

latches and two gates, but we need to verify that this poor performance is the result of a lack of 

understanding and not merely due to careless assumption that the circuit elements were flip-

flops. 

 

Furthermore, sequential design is a topic of significant difficulty for many students, but one that 

we have yet to characterize to our satisfaction.  In interviews, students either finished sequential 

design problems quickly or got lost and did not complete the problems.  Because we failed to 

identify students’ misconceptions about sequential design problems, we are conducting further 

interviews. 

 

Conclusions 

 

Our preliminary results revealed some digital logic concepts that many students misunderstand.  

While we anticipated some of these misconceptions, others were very surprising.  Interaction 

with students has been very helpful in understanding which concepts are difficult to understand 

and why they are difficult to understand.  Because our approach has been successful for previous 

inventories, we believe that understanding of student misconceptions requires a high level of 

student interaction, especially if there is little or no research on student misconceptions in a field. 

 

ECE 290 and CS 231 have very similar course objectives, but are taught very differently.  ECE 

290 uses large problem sets with lots of repetition, while CS 231 assigns less homework to 

students.  We are interested in the effect the different structures have on students’ conceptual 

understanding of course material.  Students from both courses participated in the interviews, but 

the data set is so small that no significant conclusions can be drawn.  Furthermore, only ECE290 

students took the review test.  We will study the effect of taking the CS version of the course in 

future work. 

 

Future work will also focus on understanding student misconceptions about sequential circuits 

and translating these misconceptions into multiple-choice questions. Finally, we intend to refine 
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the questions and answer choices to create a draft concept inventory that can be taken by a larger 

group of students at the end of spring 2006.  
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APPENDIX A 

Representation of information 

• Convert between decimal, binary, octal, and hexadecimal representations of integers 

• Determine the number of errors that a code can detect or correct 

• Understand two's complement representation of integers and determine whether overflow 

occurs in arithmetic operations 

• Distinguish between a variety of decimal and alphanumeric codes 

Design and analysis of combinational networks 

• Understand the operation of discrete logic gates 

• Analyze a combinational network using Boolean expressions 

• Convert a verbal specification into a Boolean expression 

• Understand basic properties of Boolean algebra: duality, complements, standard forms 

• Apply Boolean algebra to prove identities and simplify expressions 

• Use Karnaugh maps to find minimal sum-of-products and products-of-sums expressions 

• Design combinational networks that use NAND, NOR, and XOR gates 

• Design with MSI components such as encoders, decoders, multiplexers, adders, 

arithmetic-logic units, ROMs, and programmable logic arrays 

• Calculate delays in ripple carry adders and combinational arrays 

Design and analysis of sequential networks 

• Understand the operation of latches; clocked, master-slave, and edge-triggered flip-flops; 

shift registers; and counters 

• Plot and interpret timing diagrams 

• Determine the functionality of sequential circuits from state diagrams and timing 

diagrams 

• Translate sequential circuit specifications into state diagrams 

• Design sequential circuit components (latches, flip-flops, registers, synchronous 

counters) using logic gates 

• Synthesize general sequential circuits 

• Understand tradeoffs in register and counter design 
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