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Students’ Understanding of Sequence And Series as Applied in 

Electrical Engineering 
 

 

Abstract 

 

Across all engineering fields, upper-level engineering courses often build upon a strong 

mathematical foundation.  As such, a critical component of understanding how students learn 

engineering concepts is studying how students apply their mathematical background to the 

engineering domain. Studying how students apply mathematical knowledge in engineering 

courses allows us to identify challenges, pitfalls, and common misconceptions. Through an NSF-

funded study, we are addressing the broad goal of developing a better understanding of how 

students transfer mathematical knowledge to concepts in engineering.  In this component of the 

study, we focus on electrical engineering students’ application of concepts in sequence and series 

to a junior-level signals and systems course. A strong understanding of sequence and series is 

fundamental to the study of discrete-time signals and systems.  A discrete-time system response 

takes the form of a sequence, and the characteristics of this sequence and of the associated series 

dictate system properties such as causality, stability, memory, and finite vs. infinite impulse 

response.  Additionally, sequence and series are the basis of discrete-time Fourier series and 

transforms, which provide the primary tool for frequency-domain signals and systems 

analysis. We have selected and analyzed five group problems based on their connection to 

significant concepts in sequence and series.  The results of our analysis indicate that students 

encounter challenges in associating mathematical expressions with physical realities, providing 

logical justifications for their conclusions, and manipulating multiple representations of series. 

These results have direct application to instructional design, since the design of assessment items 

and problems can be informed by students' interpretations of items.  

Background and Motivation 

 

All facets of engineering require students to transfer mathematical knowledge from introductory 

mathematics courses into engineering courses.  Electrical engineering is a mathematically 

intensive discipline, and the subfield of signals and systems has a particularly strong 

mathematical basis including applications for Fourier analysis, Laplace transforms and advanced 

calculus.  In this work, we focus on students in an introductory discrete-time signals and systems 

course.  As part of a larger NSF-funded study through which we aim to better understand how 

students transfer mathematical knowledge to concepts in engineering, we analyze student work 

in the discrete-time signals and systems course in an effort to characterize challenges students 

face in transferring knowledge of sequence and series to the study of discrete-time signals and 

systems. While the mathematics education community has studied students' understanding of 

limits and of the convergence and divergence of series, these studies have not addressed the link 

to engineering applications.  In addition, there are few studies about students’ understanding of 

periodicity
1
 that is foundational to understanding signals and systems.  

 

In our broader work, we aim to study the depth of both the procedural and conceptual elements 

of students' understanding as it applies to mathematics in electrical engineering.  Procedural 

knowledge has been described as the understanding of rules and algorithms for mathematics 
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where conceptual knowledge describes understanding of the relationships and connections 

between mathematical ideas or skills.
2,3

 In this paper, we focus on the application of sequence 

and series in the context of discrete-time signals and systems.  At a procedural level, 

determination of series limits arises in computation of the system energy, Fourier transform, and 

convolution sum.  At a conceptual level, the students need to understand the connections 

between the mathematical techniques and the associated physical phenomena they represent in 

addition to connecting mathematical ideas broadly.  Given that little research has been performed 

studying students’ use of sequence and series in an engineering context, we focus our work on 

the following research question:  What are the procedural and conceptual difficulties students 

encounter in applying sequence and series knowledge to signals and systems content?  Through 

qualitative analysis of students' in-class work, we have identified two areas of interest and drawn 

conclusions addressing students' approach, challenges, and misconceptions. 

 

Signals and Systems 

 

Signals and systems theory forms the backbone of a wide range of engineering fields including 

aeronautics, control systems, signal processing, communications, circuit design, and biomedical 

engineering.  Put simply, a system is an entity that acts upon, or transforms, an input signal to 

produce an output signal.  The study of signals and systems centers around developing the 

analytical framework and mathematical representations necessary to characterize both signals 

and systems, as well as to design systems that achieve the desired effect when applied to signals 

of interest.
4   

In the program in which this study is conducted, students pursuing an electrical 

engineering major are required to complete a three course series in signals and systems:  a 

sophomore-level course introducing the concept of signals and systems and common 

signal/system representations, a second sophomore-level course addressing continuous-time 

signals and systems theory, and a junior-level course addressing discrete-time signals and 

systems theory. 
 

Signals and systems topics present an interesting opportunity for studying conceptual 

mathematical thinking in engineering for two primary reasons.  First, the relevant courses are 

offered at the junior and senior levels, so students have significant mathematical background and 

are typically committed to their engineering program.  Second, the engineering content of the 

courses relies heavily on mathematical concepts applied to the signals and systems content. This 

is somewhat akin to a transfer problem as examined by Lobato
5
: how do students transfer 

knowledge from one domain into the other? In this case, students are not only transferring 

knowledge but are also developing new knowledge about signals and systems (i.e., mathematics 

for engineering). In our study, we seek to probe deeper into students’ understanding of 

mathematics for engineering and to use the results to inform the design of in-class problems for 

formative assessment, as well as to guide overall curriculum design. 

 

A strong understanding of sequence and series is fundamental to the study of discrete-time 

signals and systems.  A sampled (discrete-time) signal can be represented and analyzed as a 

sequence in which each element corresponds to a signal sample value.  In addition, the 

mathematical representation of a discrete-time system response, usually called the impulse 

response of the system, also takes the form of a sequence.  Fundamental properties of the system, 

including causality, stability, memory, and finite vs. infinite impulse response, are dictated by the 

P
age 14.1092.3



characteristics of this sequence and of the associated series.  Manipulation of sequence and series 

also plays a fundamental role in determining the output of a discrete-time system through 

evaluation of the convolution sum. Sequence and series also form the basis for frequency domain 

and related representations of discrete-time signals and systems.  Specifically, evaluation of 

series is required for computation of the discrete-time Fourier series (DTFS) and the discrete-

time Fourier transform (DTFT) representations, as well as for computation of the Z-transform 

representation, which is the primary tool used for analysis and manipulation of a broad class of 

discrete-time signals and systems. 

 

Methods 

 

The course under investigation, discrete-time signals and systems, is a junior-level course and 

the second of two required courses in signals and systems.  Prior to enrolling in the course, 

students have completed a one-semester course in continuous-time signals and systems. At 

minimum, students have also an advanced calculus course sequence and differential equations. 

The class meets twice each week for one hour and fifteen minutes.  In each class period, students 

work in groups of three or four to complete in-class problems in addition to the lecture.  The in-

class problems are designed to provide formative assessment for both the students and the 

instructor.  Ideally, completion of the in-class problems will help students become more engaged 

with the fundamental concepts from the material covered in class and to identify any holes in 

their understanding as part of formative assessment.
6
 Similarly, evaluating student performance 

on the in-class problems, both by grading the written work and by observing groups as they solve 

the problem, gives the instructor an opportunity to gauge students' comfort level with the 

material and to correct any misconceptions in their early stages. 

 

Students in the course completed at least one and often two in-class problems during each class 

session. Thirty-five students agreed to participate in the study; the number of groups submitting 

each in-class problem varied with group membership and attendance. For this study, we selected 

five in-class problems for qualitative analysis to measure design, content, and student 

understanding.  We selected problems specifically with an emphasis on sequence and series. In 

each of these problems, students were required to apply their knowledge of sequence and series 

to discrete-time signals and systems analysis. We have qualitatively analyzed their solutions to 

the relevant in-class problems to identify common approaches, challenges, and misconceptions.  

Using document analysis procedures, we coded the responses by solution type based on the 

students’ difficulties with the problem.
7
 We performed an initial review of the responses and 

then developed categories for coding. In the following sections, we present the five questions, 

mapping of the question content to two foundational concepts in sequence and series, and our 

analysis of students' solutions. 

 

Problem Analysis 

  

From the 20 in-class problems students completed over the course of the semester, five were 

selected based on their strong sequence and series content.  The five selected problems were then 

divided into two groups based on the particular sequence and series concepts that must be 

applied to solve them successfully.  The first two problems require an understanding of the 

convergence of sequence and series, while the last three problems require manipulation of 
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multiple series and series representations.  The problems and the trends in student responses are 

discussed in the following sections. 

 

Two in-class problems included content that evaluated students' understanding of the 

convergence of sequence and series.  In both problems, students were required to apply sequence 

and series concepts to determine whether or not a given system was stable.  In the first problem, 

shown in Figure 1, students were first asked to describe what a system does if the system was 

defined by an infinite summation.  Thirteen groups submitted solutions, and five groups were 

able to describe the "purpose" of the system in words.  While an additional six groups were able 

to expand the summation to give a formulaic description of the processing performed by the 

system, their inability to explain that the system was an accumulator (summing the current and 

all previous inputs) indicates a possible lack of ability to interpret series in a relevant physical 

context. 

 

 

 

 
 

FIGURE 1:  First in-class problem analyzed.  Students are asked to interpret an infinite series, 

determine system output, and evaluate stability. 

 

In part (b) of the problem, students were asked to determine the system output when the input 

was a unit step (equal to 1 for positive values of n and 0 otherwise); 12 of the 13 groups 

completed this part successfully and determined that the output signal was a ramp whose 

amplitude approaches infinity as n approaches infinity.   In the final part of the problem, students 

were asked whether or not they could infer stability/instability of the system from their answer to 

part (b).  For the purposes of signals and systems, a system is deemed stable if every bounded 

input generates a bounded output.  Eleven of the thirteen groups were able to deduce from the 

ramp-form of the answer to part (b) that the output was unbounded and hence concluded that the 
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system was unstable.  Only three of the eleven groups that reached this conclusion explicitly 

noted that the corresponding input signal was bounded. 

 

In the second problem addressing stability, shown in Figure 2, students were asked to draw 

conclusions about the stability of the general classes of finite impulse response (FIR) and infinite 

impulse response (IIR) systems.  An FIR system is one for which the impulse response, h[n], is 

nonzero for only a finite number of values of n; in contrast, an IIR system is one for which the 

impulse response, h[n], is nonzero over an infinite range of n.  In discrete-time signals and 

systems, a system is guaranteed to be stable if its impulse response, h[n], is absolutely 

summable.  Hence, system stability is guaranteed by convergence of the series associated with 

the absolute value of the system impulse response.  

 

Students were asked to draw conclusions about the stability of the classes of FIR and IIR systems 

and to give examples that support those conclusions (see part (b) of the problem in Figure 2). 

Seven of the nine groups were able to correctly conclude that some, but not all, IIR systems are 

stable.  Three of these groups gave examples of both stable and unstable IIR systems.  The 

remaining four gave examples of stable IIR systems but not of unstable IIR systems.  This could 

indicate one of two things:  (1) students think it obvious that unstable IIR systems exist, or (2) 

students are not able to apply logic to deduce that supporting examples for the conclusion that 

only some IIR systems are stable would include both stable and unstable systems.  Only two of 

the seven groups were able to precisely articulate the conditions under which the impulse 

response is absolutely summable, and they achieved this by computing the finite value, not by 

describing the condition.  Several groups provided vague sketches of the impulse response of a 

stable IIR system and appeared to conclude that any monotonically decreasing sequence would 

be absolutely summable. 

 

 
FIGURE 2: Second in-class problem analyzed. Students are asked to draw conclusions about the 

stability of the classes of FIR and IIR systems . 
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Nine groups submitted solutions to the second problem, and all of them correctly concluded that 

all FIR systems are stable.  Six of the nine groups were able to successfully justify their 

conclusion and noted that because the impulse response of any FIR system includes only a finite 

number of nonzero terms, all FIR impulse responses are absolutely summable.  Two of the 

remaining groups gave examples of FIR impulse responses and noted that they were absolutely 

summable but did not provide a general justification.  The final group exhibited confusion 

between the impulse response sequence and the associated series, setting the impulse response 

equal to a sum and testing its convergence. Both groups that reached the incorrect conclusion 

claimed that no IIR systems are stable.  As an example supporting their claim, both submissions 

considered a unit step function and noted that it was not absolutely summable.  The students 

over-generalized from one counterexample of an IIR system that was unstable when what they 

needed was one example of a stable IIR system. However, the wording of the problem may have 

caused them to consider only the stable systems rather than providing examples of both stable 

and unstable systems. It is fairly common for students to over-generalize from one example that 

a statement is true. For a complete argument in this case, the students needed to provide 

examples of both types of systems. 

 

In the last three problems analyzed, students were asked to determine Fourier series coefficients 

for a variety of sequences.  Completion of these problems required students to move between 

multiple series representations, as both the time-domain and the Fourier series representations of 

a signal are given by sequences, and conversion between the two is performed via evaluation of a 

finite summation.  The three problems considered represent increasingly difficult Fourier series 

problems, moving from simple computation (both procedurally and conceptually) of Fourier 

series coefficients to physical interpretation of the Fourier series representation. 

 

 
FIGURE 3:  Third in-class problem analyzed.  Students are asked to determine the Fourier series 

coefficients corresponding to a time-domain sequence and to verify their solution via the Fourier 

series analysis equation. 

 

In the third problem, shown in Figure 3, students were first asked to determine the Fourier series 

coefficients of a periodic sequence depicted graphically in the problem statement.  Using the 
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Fourier series analysis equation, which gives the coefficients as a function of the time-domain 

coefficients of a periodic sequence, ten of the eleven participating groups were able to correctly 

determine the Fourier series coefficients.  Computation of the Fourier series coefficients was 

particularly simple for this sequence, as the expressions involved were entirely real numbers. In 

general, the coefficients are complex numbers, and hence students must manipulate and interpret 

complex numbers and expressions. The single incorrect solution submitted computed only a 

single value and set this value equal to the Fourier series coefficient sequence, a[k].  This type of 

error, which arises repeatedly in related problems, indicates a possible lack of understanding 

with respect to the generation of one sequence from another sequence.  On a procedural level, 

students appear to have difficulty manipulating expressions that include multiple independent 

index variables (n and k in this case).   On a conceptual level, students do not have a clear 

understanding of the physical meaning of the Fourier series representation (e.g. the 

representation of a sequence as the sum of a finite number of sinusoidal components). 

 

In part (b) of the third problem, students were asked to use the Fourier series synthesis equation 

to verify that the coefficients they computed in part (a) were correct.  (The Fourier series 

synthesis equation gives the time-domain sample values as a function of the Fourier series 

coefficients.)  Correct completion of this problem involved using the Fourier series coefficients 

computed in (a) as the parameters of the synthesis equation and evaluating a finite summation to 

compute the time-domain sample values.  If these sample values are equal to those given in the 

sketch, then the solution to part (a) has been verified.  Only six of the eleven participating groups 

were able to correctly apply the synthesis equation to verify their Fourier series coefficients.  

Incorrect responses fell into one of two categories.  In the first category, students were unable to 

correctly state and/or apply the synthesis equation, potentially pointing to a lack of procedural 

understanding of how to manipulate series.  In the second category, students were unable to 

perform the logical steps of verifying their results from part (a).  Rather than computing and 

confirming the time-domain sample values, they simply stated the Fourier series coefficient 

values that would be included in the synthesis equation or used the known time-domain sample 

values to solve for the Fourier series coefficient values using the synthesis equation. 

 

 
FIGURE 4:  Fourth in-class problem analyzed.  Students are asked to sketch a periodic sequence 

represented by an infinite series and to find the FS coefficients corresponding to the sequence. 

 

In the fourth problem analyzed (shown in Figure 4), students were again asked to compute the 

Fourier series coefficients for a given discrete-time signal given in the form of an infinite series.  

P
age 14.1092.8



Part (a) of the problem asked students to sketch the time-domain signal, requiring them to 

interpret the infinite series representation and express the same information graphically.  All 

eleven groups were able to sketch the signal successfully.  Students were then asked in part (b) to 

compute the Fourier series coefficients for the given signal, and seven groups successfully 

computed the coefficients using the analysis equation.  Because the time-domain signal has only 

one nonzero element in each period, the Fourier series analysis sum simplified to a single term.  

All four of the incorrect responses started with the correct analysis equation but gave a final 

result that was a single value rather than a sequence of coefficients in terms of k, a misconception 

similar to that observed in several solutions to the third problem (Figure 3) where students had 

difficulty working with multiple sequences. 

 

In the final problem considered (shown in Figure 5), students were given a discrete-time sine 

wave and were first asked to compute the period of the signal.  Using a formula for computing 

the period of discrete-time sinusoids, nine of the eleven groups were able to correctly identify the 

period of the sine wave as seven samples.  The two incorrect responses used the correct formula 

but encountered procedural difficulty in applying it to the given signal.  In part (b) of the 

problem, students were asked to determine and sketch the Fourier series coefficients of the given 

sine wave.  None of the groups were able to successfully determine the Fourier series 

coefficients, and hence none could complete the sketch. All groups approached the problem by 

applying the correct Fourier series analysis equation, as they had with the previous two Fourier 

series-related problems; however, many applied various inappropriate substitutions when 

working with the analysis equation to determine coefficients. The algebraic transformations 

required by the problem were again challenging, as they had been in the previous two problems 

about Fourier series coefficients. 

 

While the Fourier series analysis equation is a mathematically correct approach to solving part 

(b) of this problem, it results in a mathematically complicated expression that is difficult to 

generate and nearly impossible to interpret.  Hence, application of the analysis equation does not 

provide a set of Fourier series coefficients in a form that facilitates sketching.  Eight of the 

eleven groups began with the correct analysis equation, and four of those successfully wrote the 

sine function as a sum of complex exponentials and incorporated it into the analysis equation.  

When they attempted to evaluate this expression, however, they quickly reached a point at which 

the complexity of the terms obfuscated the values of the individual coefficients.  The other four 

groups made incoherent substitutions in an effort to manipulate the formula into a form they 

could interpret.  It was not clear that any conceptual reasoning governed these substitutions.  

Additionally, two of the groups confused the index variables for the time and frequency domain 

sequences and as a result generated a mathematically incorrect expression for the Fourier series 

coefficients. 
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FIGURE 5:  Fifth in-class problem analyzed.  Students are asked to determine the period of a 

discrete-time sine wave and to determine and sketch the associated Fourier series coefficients. 

 

In order to correctly determine the Fourier series coefficients of the sine function, students 

needed to draw upon an understanding of the physical meaning of the coefficients.  The 

fundamental feature of discrete-time Fourier series theory is that any periodic sequence can be 

represented by the summation of a finite number of appropriately weighted discrete-time 

complex exponentials, each with a different frequency. Each coefficient represents the 

contribution (or weight) of a particular complex exponential component to the generation of the 

time-domain sequence.  While the students were able to write the sine wave as a sum of complex 

exponentials, they were not able to make the connection to Fourier series coefficients (i.e., to 

realize that the two complex exponentials in the sine expression correspond to two elements of 

the Fourier series representation, and hence only two the Fourier series coefficients will be 

nonzero).  Students' solutions to this problem indicate a tendency to apply procedural approaches 

to solve problems without looking for concepts that might simplify the procedural mathematics. 

 

Results and Discussion 

 

Overall, the students exhibited mixed levels of procedural knowledge. While they could start a 

problem with the correct equation, the procedural complexity of the Fourier series process 

sometimes overwhelmed them or they got lost in the process.  The students needed to apply their 

conceptual understanding of sequence and series in conjunction with their procedural 

understanding in order to arrive at correct solutions. The most challenging problems for students 

were when they were computing series within a series and needed to monitor multiple indices 

(e.g., n and k). This, in conjunction with connecting their conceptual understanding of the 

phenomena with the physical interpretation and with a graphical representation (e.g., the problem 

in Figure 3) is cognitively challenging. A second challenge for students is to understand systems 

as functions-of-functions. In such cases, the input signal is itself a function and is also the 

domain for a function representing the impact of the system on an input to produce another 

function (the output signal).  

 

The use of formative assessments such as the in-class problems should highlight for students the 

concepts which are particularly important as well as provide the instructor an opportunity to 
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assess what students know and to respond appropriately. The analysis of student responses 

informs both our understanding of what students know and the design of formative assessment. 

Clearly, the instructor has identified some areas that are cognitively challenging for students and 

has emphasized these areas with the in-class problems. However, there may be ways to better 

construct such in-class tasks and word such problems in order to better elicit what students do 

and do not know about the content. Analysis of student responses also reveals how the wording 

of the problem can dictate how the students justify their answers (e.g., in providing 

counterexamples for the stability problem Figure 2).  

 

Conclusion  

 

Given the results in the two primary areas of the study (transfer of procedural and conceptual 

knowledge of sequence and series, design of in-class formative assessment), several relevant 

questions emerge for continuing research.  Further analysis in students’ transfer of mathematical 

knowledge will consider additional problems in order to more clearly understand how the 

students work with multiple variables as well as moving between the frequency and time 

domains in signals and systems.  In addition to examining a wider range of problems, we plan to 

correlate in-class problem performance with students’ performance on related exam questions 

and class projects. Further study in design of formative assessments will investigate the role of 

the instructor and how to best construct and implement in-class problems. For example, what is 

the impact of working in small groups on the students’ responses? Is some balance of small 

group and individual work more effective? We will more deeply explore students’ problem-

solving approaches in a group environment by observing student groups as they solve problems 

in an interview setting. 
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