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Study of Accuracy of CNC Machine Tools 
 

 

ABSTRACT 

The dimensional accuracies as well as surface finishes of parts produced by a CNC 

machine tool are strongly dependent on the motion accuracy of each axis of the machine.  

The overall accuracy of the machine tool is decided by the mechanical characteristics of 

the machine as well as the characteristics if the control system driving the individual 

axes.  A CNC Machine is programmed to travel along a predetermined or contour, and 

any deviation from the programmed path is referred as the contouring error.  A typical 

test that is used is a circular test in which the machine is programmed to travel along a 

circle, and the difference between the programmed path and the measured actual path is 

compared.  The purpose of this study is to identify the various contributors to this 

contouring error, and in particular estimate the error due to stick slip motion using 

analytical techniques.  It is planned to measure the errors experimentally making use of 

capacitance probes.  The study is intended to develop an appreciation for the sources of 

different errors produced in a machine tool and as such forms a module in a typical 

semester long class devoted to manufacturing processes.    

 

 

INTRODUCTION 

 

Computer controlled machine tools are expected to perform within the specified limits of 

accuracy, especially for the contouring operations.  With the increasing demands placed 

on high precision combined with high contouring accuracy a careful study of the 

accuracy degrading mechanisms arising during machine operation needs to be 

considered.  A CNC machine is programmed to travel along a predetermined contour, 

and any deviation of the actual path as compared to the programmed path is the 

contouring error.  Most contouring tests use a circular path, and the contouring error is 

the difference between the programmed circle and the actual circular (a distorted one) 

path described by the machine tool.  This is what constitutes the circular test as described 

by Knapp (1983).   The specific focus of this work is to analytically determine the 

magnitude of such an error in a circular test due primarily to the stick slip friction. 

 

CONTRIBUTORS TO CONTOURING ERROR 

If the two axes of a CNC machine are not perpendicular to one another then an oval path 

will result.  In addition backlash in lead screws, axis straightness, pitch and yaw errors 

can all affect contouring accuracy.  These errors constitute geometric errors. In particular, 

backlash is a positioning error that occurs when the spindle approach direction is reversed 

and in general it is due to the tolerance of the ball lead screw or the guide way.   The 

other set of errors arise due to control system, and are the interpolation errors, errors due 

to hysteresis, and those due to servo mismatch and master slave changeover.   
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Servo mismatch appears due to different velocities of the spindle in the two axes, 

resulting in different gain values leading to distorted circle on the contouring data.   

For two dimensional motions there is usually a leading axis (master) and a following axis 

(slave).  In a circular interpolation path, distortion or glitches appear every 45 degrees of 

the circular path.  This is termed “master-slave” changeover, and is due to the change in 

the feed rates in the different axes at a given position.    

 

 

STICK SLIP ERRORS 

 

In this work, we investigate the degradation of the contouring accuracy due to dry friction 

at the sliding interfaces of the CNC machine work tables.  This dry friction appears in 

two different forms: (i) as a resistance against the beginning of motion from equilibrium 

(stick mode); and (ii) as a resistance against the existing motion (slip mode).  The friction 

resistance is a constraining force in the stick mode and an applied force in the slip mode.  

When the work tables are in motion, both phenomena are present resulting in a stick-slip 

motion.  In machine tools it is well known that that a work table moving at a slow speed 

may execute jerky motion instead of a smooth travel.  This may give rise to indexing 

errors.  Such responses are also possible in the vent of rapid starts and stops.   

 

As the work tables execute coordinated motions corresponding to the commanded input, 

the velocities of the individual tables go through different velocities including zero.  Such 

a variation in velocities leads to a variation of friction forces in a nonlinear fashion.  The 

inclusion of these nonlinear effects into the dynamics of the X-Y tables leads to a coupled 

system of nonlinear differential equations.  Numerical solutions to the equations of 

motion would yield responses typical of a nonlinear dynamical system and has been 

explored in this study.   

 

ANALYTICAL MODEL 

 

Figure 1 illustrates a typical 3-axis CNC machine with its mathematical idealization.  The 

two tables moving in the X and Y directions are connected to the individual lead screws 

that provide them with the required motions as programmed in the controller.  For each of 

the two tables masses are assigned which are arranged to move in the X and Y directions.  

The connections between the masses and the driving elements are never perfectly rigid 

and therefore springs may be substituted for them.   
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The stiffnesses of the springs are typically those of the lead screws, the most compliant 

elements of the drive systems.  Damping also occurs in the connections and the damping 

force is assumed to be proportional to the speed.  The X-Y tables can therefore be 

modeled as a system consisting of two masses Mx and My attached to two springs Kx and 

Ky and two dampers Cx and Cy in an arrangement as shown in Figure 1.  Thus we have a 

kinematically coupled system of two orthogonal oscillators.  The velocities of the X and 

Y tables, V0x and V0y are coordinated such that the commanded trajectory is that of a 

circle drawn at a constant velocity V0.   

 

In the discrete model of an X-Y table, the self excitation is caused by the friction force 

acting between the guide way and the slider.  Self excitation is only possible when the 

forces have a decreasing characteristic with increasing speed.  Under practical conditions, 

the coefficient of friction µ varies with sliding speed in a fashion as indicated in Figure 2.  

Typically at low speeds, the value falls off from its static value to a minimum and then 

rises again, as described by Tobias (1965).    Figure 2 indicates the coefficient of friction 

as a function of the relative velocity of sliding for the idealized situation as depicted by 

the signum function, as well as those employed in the investigations by Popp and Stelter 

(1990), and Feeny and Moon (1989).  The function used in this study is a modified 

version of that of Feeny and Moon (1989) and reflects a falling and rising characteristic 

typical of machine tools. 

 

The mathematical expression of the function used in this work is given by, 

   

 

 

 

Here µ2 is the dynamic coefficient of friction and µ1 is the static coefficient of friction.  v 

is the non-dimensional relative velocity between the slider and the guide way.  α, β and γ 

are fitting parameters.   

 

The equation of motion of the X table and that of the Y table are given by equations (2) 

and (3) respectively as, 
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The equations (2) and (3) represent a coupled set of nonlinear ordinary differential 

equations with nonlinearities from the expression of the friction force.  The coefficient of 

friction is of course dependent on the relative velocity.  If the commanded trajectory is a 

circle of radius R generated with a constant angular velocity Ω, then the programmed 

circle is given by equations (4) and (5) as, 
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From equations (4) and (5) we have differentiating with respect to time, 
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Substituting the values from equations (6) through (9) in equations (2) and (3) we have,  
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NUMERICAL SOLUTION 

 

For the numerical solution it will be advantageous if the system of second order equations 

represented by equations (10) and (11) be transformed into a system of four first order 

equations. 
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Introducing variables, 
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We then have the following equations; 
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 The functional relationship of the coefficient of friction, µ is of course given by equation 

(1).  The system of first order differential equations (13) through (16) is solved by a fifth 

order Runge –Kutta procedure with variable time step size adjuster.  The time step size is 

varied between 10
-4

 second and 10
-6

 second, such that convergence is achieved.    
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The following numerical values are used in the numerical computations  

 

Mx = 90kg, My = 120kg,  

Kx = 10
8
 N/m, Ky = 10

8 
N/m,  

Cx = 1900 N-s/m, and Cy = 2200N-s/m 

 

The above damping values are based on a damping ratio of 1% of the critical damping 

calculated from the stiffness data.  The mass and stiffness values correspond to that of a 

typical CNC machine.  The stiffness values correspond to those of the lead screws 

driving the two tables.  These values may vary somewhat from the nominal values, but 

for this analysis this variation has been ignored.  The radius of the circle is taken as 0.1 

meter.  The angular velocities in the computations, Ω are 0.5 rad/s and 1.5 rad/s.  The 

numerical values in the expression of the coefficient of friction, µ in equation (1) are: 

 

µ1=0.15, µ2=0.08, α = 50 s
2
 / m

2
, β = 5s/m, and γ = 1.5. 

 

 

Time history of the two displacement components have been obtained for Ω = 0.5 rad/sec 

and Ω = 0.5 rad/sec and are shown in Figure 3.  For the lower speed the errors are of the 

order of 2-3 µm and are a little higher for the higher value of the speed chosen.   

 

We have demonstrated analytically using a simplified dynamic model of the X-Y tables 

of a typical CNC machine that stick-slip friction can potentially result in contouring 

errors.  The distortion is produced due to the nature of the stick-slip friction at speeds 

equal or close to zero. 
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Figure 1 Basis for Mathematical Model of CNC Machine X-Y Tables 
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Figure 2 Coefficient of Friction versus Relative Velocity  
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Figure 3 Displacement Deviations in X and Y Directions Versus Time 
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