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Abstract 

 

In the fourth industrial revolution, data becomes as important as energy and materials. The major 

tool to deal with the huge amount of data is machine learning, which can analyze audio and 

visual information effectively. The fundamentals of machine learning were introduced to 

Engineering Physics students in a one-credit introductory course. Since many concepts in 

machine learning are related to physics and engineering, the students have no trouble 

understanding the principles. In order to avoid the challenges of programming, Excel was used to 

demonstrate the training processes.  

 

Introduction 

 

In the last six decades, there has been an exponential growth of data, and now the quantity is far 

beyond the human intelligence to process it. In addition, the traditional computer programs 

cannot process the data effectively either. Therefore, neural network based artificial intelligence 

is needed. This approach emulates the learning processes of the human brain, so it is also called 

machine learning (ML).  
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Fig. 1 Schemes of (a) traditional programing vs. (b) machine learning. 

 

The traditional way of data processing is algorithm based, with the computer being a static 

device to execute the program, which is shown in Fig. 1(a). In this approach, the program is 

customized to the specific data to be processed. The optimization of this process relies on 

humans to update the program. On the other hand, machine learning has a different scheme, 

which is shown in Fig. 1(b). First, humans need to design the configuration of the neural network 



and set up a number of parameters. Second, in a supervised training process, the system is fed 

with both the input data and correct output, and the system will be optimized by comparing the 

calculated output with the provided correct ones. With enough training processes, the system can 

process new data with high confidence [1]. 

       

The first generation of a neural network is called a perceptron [2], which is shown in Fig. 2. A 

perceptron has three layers of artificial neurons: an input layer, a hidden layer, and an output 

layer. In a densely connected perceptron, each neuron in the hidden layer is connected to all the 

neurons in the input and output layers. The data from the input layer are summed together with 

different weights at the neurons in the hidden layer. This happens between the hidden layer and 

the output layer as well. These weights are the key parameters to be optimized in the training 

processes. At the beginning, these weights can be assigned with random numbers, but there are 

advanced approaches in initialization [3].   

 

 

Fig. 2 Perceptron—neural network with a single hidden layer. 

 

With a single hidden layer, the capability of a perceptron is rather limited. The natural evolution 

is to add more hidden layers, which is also reflected in biological evolution. For example, the 

cortex of turtles has three layers of neurons, but the human brain has six layers in the neocortex. 

The architecture with many hidden layers is called a deep neural network, and its operation is 

correspondingly called deep learning [5-6]. 

  

One of the major applications of ML is on image recognition, where the data is in the two-

dimensional (2D) format. If a traditional neural network is used, the 2D matrix needs to be 

flattened into a one-dimensional (1D) vector. In the 2D format, there are strong correlations 

among the neighboring pixels, but this important information becomes intricate in the 1D format. 

Therefore, a new approach was developed, which is called a convolutional neural network 

(CNN) [7-8]. In a conventional CNN, the hidden layers are also 2D matrices, which are called 

filters.  

 

The architecture of a CNN follows the occipital lobe of the human brain, where the visual 

information from the retina is processed in several steps. In the primary visual cortex region, 

only the primitive patterns are detected, such as vertical and horizontal edges of an object. The 

results from the primary visual cortex are fed into the secondary region, and so on. There has 

been tremendous progress in image recognition with CNNs, which exceed human performance 

in many areas now, such as cancer cell detection from CT images [9-10]. 



 

Besides image recognition, neural networks can also translate languages or analyze audio 

information, which is the function of the temporal lobe of the human brain. Unlike the 

information in an image, audio signals carry time series information, and thus memory is 

intimately involved. On one hand, an audio signal can be recorded in 1D vector, and there is no 

2D correlation. On the other hand, there is a temporal correlation within the signal. For example, 

a word in a sentence often refers to another word in an earlier sentence. Therefore, the neural 

networks need a special configuration to process audio information, and the popular type is 

called a recurrent neural network (RNN) [11].   

 

The most exciting applications of ML belong to the type of neural network with reinforcement 

learning capability, which includes game playing and automatic driving [12-13]. The counterpart 

with similar functions in the human brain is the frontal lobe, where a reward pathway plays an 

important role in learning, as well as addiction. The major difference between humans and 

animals lies at the frontal lobe, so the neural network with this type of architecture can substitute 

humans for many jobs, and we will be accompanied by robots with learning capabilities in the 

near future.  

 

In Spring 2019, ML was introduced in a one credit hour course, and students met once a week in 

learning the related concepts and methods. The content of this course covered the perceptron 

model and the deep neural network in detail, and the more advanced topics were also introduced, 

such as the CNN, RNN, and reinforcement learning.  

 

In order to lower the threshold of programming, Excel was used in training the simple neural 

networks in this course. Since the math formulae were very simple and the training process was 

very short, Excel is capable of handling these procedures. In addition, the data of every layer of 

the neural network was able to be presented on the same page, and the algorithm could be 

revised very easily. It proved to be a good platform to introduce ML to students without 

extensive programming background.    

 

Structure and Procedure 

 

There are several popular open source packages for ML, and the most popular ones are 

TensorFlow and PyTorch, which were developed by Google and Facebook, respectively. 

However, it takes some time to learn how to use them, and thus they are not good options for this 

introductory course. On the other hand, if students do not practice training neural networks, their 

knowledge on ML would be rather shallow. Therefore, Excel was selected as the tool for simple 

ML projects that can demonstrate the training procedures.  

    

A simple example is temperature conversion, although it is very easy in conventional 

calculations: y w x b=  + , where x and y are the temperatures in Celsius and Fahrenheit, and the 

two constants are w = 1.8 and b = 32.  With the approach of ML, a training data set with 

temperature pairs in Celsius and Fahrenheit (x, y) are provided, and the weights (w, b) in the 

neural network will be optimized. A more general neural network is shown in Fig. 3, in this 

special case only one input is needed.  

 



 

 

   Fig. 3 A perceptron with a single output. 

 

Assume that the temperature in Celsius is the input, and then the temperature in Fahrenheit is the 

output. In Fig. 3 there is another input of the constant 1, and the corresponding weight is called 

the bias. In this simple neural network, there are only two weights to be optimized, and the 

output can be expressed in the following formula: 

 ˆ ( )y f w x b=  +  (1) 

In this equation, x stands for the input temperature in Celsius and w is its weight, b is the bias. In 

general, a nonlinear function f is needed to generate the output. However, in this linear problem, 

the equation can be simplified:  

 ŷ w x b=  +  (2) 

Since the corresponding temperature in Fahrenheit—the true value of the output y—is provided 

in the training data sets, the error or loss function can be calculated: 
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In this equation, x and y are constants, w and b are variables. This function can be illustrated as a 

two-dimensional parabola, which is shown in Fig. 4. 

 

 

   Fig. 4 Loss function of neural network. 



If the two weights (w, b) are optimized, the solution is at the bottom of this parabolic surface. 

However, any unoptimized set of weights correspond to a point above the bottom point, and the 

gradient vector at this point is the direct of steepest climb. Therefore, the inverse of the gradient 

vector is the steepest descent path towards the bottom. From this intuition, the weights can be 

updated by following the direction of the steepest descent: 
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Here the learning rate parameter η is introduced, which is a positive number less than one. If the 

parabolic surface is very steep, and then the gradient is quite large, in this case the updated 

weights are likely to pass the bottom point and jump into the opposite side of the parabolic 

surface. In the worst-case scenario, this approach can become unstable and the error gets larger 

and larger. With a small learning rate, this situation can be stabilized, and the parameters move 

towards the bottom progressively. However, the learning process could become very slow if the 

learning rate is too low.    

 

Now the learning process can start, and the weights can be updated in an iterative way: 

 1 1,i i i i i iw w w b b b+ += +  = +   (5) 

If there is more than one input, this approach can be applied in the same way. However, it is hard 

to illustrate a parabola in higher dimensions. 

 

 

Results with Excel 

First, we need to generate the training data. In this example, one hundred random temperatures in 

Celsius between 0 C and 100 C are the input (column A in Table I), and the corresponding 

temperatures in Fahrenheit are the output (column B in Table I). In order to train the neural 

network effectively, the input and output data should be normalized, so they are divided by 100 

(columns C and D in Table I). In this normalized scheme, the bias should also be scaled in the 

same way. In other words, the optimized values of w and b are 1.8 and 0.32, respectively. 
 

Table I Data and Variables in Neural Network 

 

 



Table I shows the data and variables used in the training of this neural network, F3 and G3 are 

randomly selected initial values, and the relationship between the variables are shown in Table II. 

Since this neural network is very simple and stable, a very high learning rate of 0.9 was used. In 

this way the training process can be quicker. When this number is used in the expression of w 

and b, it is in the format of a constant ($E$1) in Excel. If the conventional (E1) is used in the 

expression instead, it would be automatically changed to (E2) in the calculations in row 5.  

 

  Table II Relationship between Variables 

Cell Variable Meaning Expression 

E1 η Learning rate 0.9 

F4 w Updated weight F4 = F3 + J3 

G4 b Updated bias G4 = G3 + K3 

H4 T_hat Output from the neural network H4 = C4*F4 + G4 

I4 T Difference between true value and output I4 = D4 - H4  

J4 w Change in weight J4 = ($E$1)*I4*C4 

K4 b Change in bias K4 = ($E$1)*I4 

L4 Loss Quadratic error L4 = ( I4*I4)/2 

 

 

With the first two rows (#3 and #4) calculated as shown in Table I, one can select the cells in the 

fourth row from F4 to L4, and then move the mouse cursor to the lower right corner. When the 

icon of the mouse cursor is changed to a cross, one can pull it all the way down to the end of the 

data. In this way, the training process is done, and Table III shows the results of the last six rows. 

   Table III Result of Training 

 
 

The true value of the weight is w = 1.8, and the result generated from this neural network in 

column F is 1.799502. The true value of the bias is b = 0.32, and the result obtained in column G 

is 0.320274. In addition, the loss or error in column L becomes very low at the end of the 

training process (E = 5.44E-09), which indicates that it is very close to the bottom of the 

parabolic surface of the loss function. Therefore, the neural network is trained very well with 100 

training data pairs, and it can be used to predict the temperatures in Fahrenheit from the input 

temperatures in Celsius.  

 



Results with TensorFlow 

 

This simple neural network can also be trained with TensorFlow 2.0, and the core section of the 

code is shown in Fig. 5. Instead of 100 data pairs, only 20 of them are used. In general, a larger 

data set makes the training process more effective.  Fortunately, these training data can be used 

repeatedly in TensorFlow, and each iteration is called an epoch. In addition, the learning rate is 

set at 0.1. Compared with TensorFlow 1.x, the 2.0 version is much easier to debug. In addition, 

the adoption of Keras [14] makes the code very concise.   

 

 

   Fig. 5 Core section of the code in TensorFlow 2.0. 

 

The loss magnitude in the training process with 150 epochs is shown in Fig. 6. The steep drop of 

the curve at the beginning indicates that the training process is very fast, and the final value 

falling to zero means a successful training. After the training process completed, the weights of 

this neural network are w = 1.8002 and b = 0.32003, which are very close to the true values. 

 

 

   Fig. 6 Loss magnitude in the training process with 150 epochs. 

 

temp_c = np.array([0.28, 0.12, 0.03, 0.61, 0.94, 0.4, 0.09, 0.52, 0.36, 0.56, 0.09,

 0.6, 0.39, 0.29, 0.75, 0.01, 0.99, 0.64, 0.23, 0.53], dtype=float) 

temp_f = np.array([0.824, 0.536, 0.374, 1.418, 2.012, 1.04, 0.482, 1.256, 0.968, 1.

328, 0.482, 1.4, 1.022, 0.842, 1.67, 0.338, 2.102, 1.472, 0.734, 1.274], dtype=floa

t) 

layer_1 = tf.keras.layers.Dense(units=1, input_shape=[1]) 

model = tf.keras.Sequential([layer_1]) 

model.compile(loss='mean_squared_error',optimizer=tf.keras.optimizers.Adam(0.1)) 

history = model.fit(temp_c, temp_f, epochs=150, verbose=False) 

 

print("The weights are: {}".format(layer_1.get_weights())) 



Compared with Excel calculation, TensorFlow is much more powerful. Although the code is 

very simple, beginners need some time to learn and understand the meanings of the statements in 

the code. Therefore, for an introductory course to Engineering Physics students, Excel is a much 

better tool to start with.  

 

 

Conclusion 

 

In the wave of fourth industrial revolution, machine learning is an essential tool to analyze the 

huge amount of data. Therefore, engineering students should be exposed to the knowledge of 

machine learning, and Excel can be used as the simulator at the beginning. However, for 

advanced applications, TensorFlow or PyTorch should be engaged. 
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