
Paper ID #16496

Teaching an Undergraduate Introductory MATLAB Course: Successful Im-
plementation for Student Learning

Dr. Kyle Frederick Larsen, Eastern Washington University

Dr. Larsen currently teaches mechanical engineering at Eastern Washington University. He received his
B.S. and M.S. degrees in mechanical engineering from California State University Sacramento and his
Ph.D. in mechanical engineering from Brigham Young University.

Dr. N.M. A. Hossain, Eastern Washington University

Dr. Hossain is an Associate Professor in the Department of Engineering and Design at Eastern Washington
University, Cheney, WA. His research interests involve the computational and experimental analysis of
lightweight space structures and composite materials. Dr. Hossain received M.S. and Ph.D. degrees in
Materials Engineering and Science from South Dakota School of Mines and Technology, Rapid City,
South Dakota.

Prof. Martin William Weiser, Eastern Washington University

Martin Weiser is an Assistant Professor in the Engineering and Design Department at Eastern Washington
University. He earned his BS in Ceramic Engineering from the Ohio State University and his MS and
PhD in Materials Science and Mineral Engineering from the University of California at Berkeley. He
then joined the Mechanical Engineering department at the University of New Mexico where he taught
Materials Science, Thermodynamics, Manufacturing Engineering, and Technical Communication. Mar-
tin then joined Johnson Matthey Electronics/Honeywell Electronic Materials where he held positions in
Technical Service, Product Management, Six Sigma, and Research & Development. He is an inventor
on a dozen patents and patent applications and has published over 30 papers and book chapters on topics
including ceramic processing, Pb-free solder development, experimental design, and biomechanics. His
current research focuses on rocket propellant characterization, fin flutter, and heat transfer.

c©American Society for Engineering Education, 2016

TEACHING AN UNDERGRADUATE INTRODUCTORY MATLAB

COURSE: SUCCESSFUL IMPLEMENTATION FOR STUDENTS

LEARNING

Kyle Larsen, Awlad Hossain and Martin Weiser

Department of Engineering and Design

Eastern Washington University

Abstract

In our institution, we offer a one-quarter long MATLAB class for the Mechanical Engineering

(ME) and Mechanical Engineering Technology (MET) curriculum. This course teaches

computational methods to solve engineering problems using the program MATLAB. The

coursework involves teaching fundamental programing along with engineering principles to

build the concept, analyzing simple structural problems using matrix algebra and then solving a

wide variety of engineering problems dealing with statics, dynamics, fluid mechanics, and heat

transfer. Students enrolled in this class solve a variety of problems by setting them up

analytically then programing them and solving them in MATLAB. As we are in a quarter

system, it is challenging to solve multidisciplinary complex engineering problems in regular

class lectures. Therefore, students enrolled in this class are required to program a variety of

engineering problems within a short time. These problems must have adequate engineering

complexity and themes conveying interesting knowledge or technical concepts, and at the same

time be concise enough to be completed during the course. While a course in MATLAB could be

a common offering in many universities, the authors of this paper presents the pedagogical

approaches undertaken to successfully implement the course objectives to the undergraduate

engineering students. The topics and techniques applied to teach different topics of engineering

problems to enhance students learning outcomes are addressed in this paper. The paper also

presents how different topics taught in this class fulfill the targeted course objectives, which are

mapped with ABET Engineering criteria.

Introduction

At Eastern Washington University (EWU) the faculty continually strives to improve the

engineering program; this was a big motivation for this study. The purpose of this paper is to

provide information that will help to optimize a curriculum in MATLAB. Engineering

universities are often trying to improve their curriculum, while at the same time attempting to not

increase the number of credit hours for their degree. Therefore, optimizing the curriculum by

teaching students how to program many different types of engineering problems in a relatively

short time is very important.

A big challenge in teaching a MATLAB course is the fact that many of the students haven’t had

a lot of math or engineering prior to taking the class. This is because most of the students taking

the class are in their sophomore year. Therefore, it is essential that the problems being

programed are carefully setup in a step by step manner in which the students can understand.

Furthermore, the math and engineering used in the problems needs to be presented in such a way

that it is very understandable to the students. This requires starting with simple problems and

then increasing the complexity of the problems as the course continues. Whether the class is

taught as a 15-week semester course or a 10-week quarter course, the limited time makes it very

difficult to cover all the material. This is especially true for schools that teach only a generic

MATLAB course that is not intended for a specific engineering discipline and is therefore

supposed to cover a little bit of everything.

The purpose of this paper is to provide information that will help optimize the curriculum in a

MATLAB course and provide examples that are effective in teaching the students. This paper

accomplishes this by studying some of the methods used by other colleges and universities,

along with a discussion of the techniques used by the authors that have been found to be

effective in teaching a course in MATLAB. Additionally, the importance of MATLAB as a pre-

requisite for two different courses taken later by the students: Engineering Numerical Methods

and Robotics are also addressed.

Review of the Teaching Methods used by Other Schools

Many engineering institutions use MATLAB as a technical computing language. Teaching and

training students to become competent and efficient programmers continues to be a challenge.

Engineering faculty from Armstrong Atlantic and Georgia Southern University
1
 implemented

several pedagogical approaches to address this challenge, including the use of Virtual Learning

Environments (VLEs). This work presented the use of the VLE – MATLAB Marina as a

supplement in computing for engineering courses.

Using a VLE as a supplement to the classroom study can greatly help the students to learn the

material quicker. This could even be incorporated with an online tutorial that covers both

programing techniques and the engineering concepts necessary to solve various problems in

engineering.

At Grand Valley State University
2
 the instructors used MATAB to learn different computing

concepts in an inverted classroom. The inverted classroom showed great promise for providing

students with a learning experience that can persist after the course ends. In the inverted

classroom, students shift from being passive recipients of information to active evaluators and

users of information, and the instructor shifts from an impersonal lecturer to an involved coach.

The classroom environment shifts from a transactional model to a relational model, substituting

the transfer of information with personal guidance through problems that are difficult and

meaningful. Students are trained not only on course content but on how to acquire and assimilate

content once their university coursework is finally over. In short, the inverted classroom prepares

students to be learners. In terms of instruction of MATLAB and other computing topics, the

inverted classroom seems particularly well-suited, as MATLAB and other software are in a state

of continual flux, and the specific content students learn today may be obsolete by the time they

enter the engineering workforce.

At the University of Cincinnati
3
, a series of courses called Engineering Models I and II are

offered to help students make the connection between the math and science courses typically

taken during the first year to engineering applications. This is done by introducing students to

computing, through MATLAB, to allow the students to work on a variety of complex problems.

In an effort to improve the learning of students in the course, three sets of two teaching assistants

(TAs) tested a different educational method in the lab portion of the courses. These methods

were identified by the TAs after teaching students for several weeks and analyzing the common

pitfalls encountered by the students. In the first method, the TAs focus on complimenting

students on their performance and encouraging them to break up the problem into smaller, more

manageable steps. This fosters an engineering mindset that assists the students intimidated by

programming, or helps those that struggle with starting the problem. The next method tested

involved the TAs asking questions about the coding concepts the students were using to

encourage a deeper level of thought and understanding with the assignment. Lastly, the TAs

questioned the students on the commands used in the lab activity and provided some initial

guidance in starting the code for the assignment.

It has been shown that students learn best by visuals and examples
4
. These methods include

using pictures, and realistic problems to show the students how to apply the concepts with the

theory. If a student can visually see how all the pieces fit together, they will be able to master the

subject and apply it to real world applications.

Projects with real world applications are another tool used in teaching MATLAB. Many schools

use projects to teach their students a variety of different subjects.

At Northern Illinois University
5
 they used MATLAB to design and simulate a sun tracking solar

power system. The simulation consists of four modules: solar tracking cells, signal conditioning

circuit, controller, and motor. The simulation provides an excellent platform for undergraduate

engineering technology students to study the design and theory of a sun tracking solar power

system using the MATLAB platform.

The University of Maryland, Eastern Shore
6
 introduced an undergraduate level in-class project

exercise of solving 2-3 extensive problems that required developing MATLAB subroutines and

SIMULINK. MATLAB and SIMULINK were used for modeling to present the method of

solution and grasp the theoretical ideas in practice to use it further for nonlinear application of a

real-world problem. The authors of this paper presented a study of students’ assessment,

grasping capabilities and challenges to make it thorough and rewarding for undergraduate

research experiences in Systems Dynamics & Controls and Aerospace Engineering.

The University of Cincinnati
7
 has used MATLAB to teach different components of electric

machines classified as Direct Current (DC) and Alternating Current (AC). Due to the time

constraint in one quarter, seven (7) important AC and DC laboratory assignments pertaining to

electric machines are selected in one required course. Using MATLAB enables the in-depth

teaching of these topics during the ten-week quarter period. MATLAB was used as a tool that

made it possible to teach important electromechanical topics in electrical engineering

curriculums, during a limited time, in one quarter or one semester.

Use in Additional Courses

At EWU the Mechanical Engineering (ME) students take a course in Engineering Numerical

Methods while both the ME and Mechanical Engineering Technology (MET) students take a

course in Industrial Robotics. Both the MATLAB course discussed here and a computing course

in the C language are accepted as prerequisites for these two courses. This is necessary because

EWU has a significant number of transfer students that take a course in C at the community

college or another University.

The Engineering Numerical Methods class covers a wide variety of methods used by Engineers

ranging from basic tools such as least squares regression through solutions to partial differential

equations. The course addresses the background mathematics and then requires the students to

set up and solve an engineering problem both starting from the background math and using

provided functions in both MATLAB and Excel. In most cases the students may solve the

problem from the background math using their choice of programming language, occasionally

choosing to use C++ or even Python. The use of MATLAB alongside Excel has been very well

received by the students, even those who took a different programming language. Most of them

pick up the MATLAB syntax quite quickly, as we solve more difficult problems and find the

immediate feedback on both mistakes and successes very rewarding. It is understood that in their

future work they will most likely use the functions provided in various software packages, but

the goal is to make sure they understand how to use them. However, some of the students have

reported back that they have used what they learned to quickly solve some fairly difficult

problems using MATLAB or Excel when their employer did not have more sophisticated

software such as ANSYS or SolidWorks Simulation.

The Industrial Robotics course is taken by both the ME and MET students at the same time and

focusses on developing innovation
8
. The course starts with using a Robix kit to introduce the

students to programming a basic robot. It then moves on to programming industrial robots

(ADPET Cobra 600 or FANUC LR MATE 200ir robots) to perform a more complex task of the

student’s choice as featured on the EWU Robotics channel on YouTube. It finishes with a

section programming a PLC to run the bulk delivery component of a model industrial plant. Each

of these systems uses a different, proprietary programming language which the students must

learn. However, we have found that the students who have taken MATLAB, rather than C++,

pick up the new languages significantly faster since these industrial languages have the same

basic structure as MATLAB.

Example Problems in the MATLAB Course

As mentioned earlier, most of the students do not have an extensive math, engineering and

programing background. The prerequisite for our MATLAB course is Pre-Calculus; however, we

teach various engineering concepts where the math ranges from Pre-Calculus through

Differential Equations. Therefore, it is necessary to start with the basics, using simple problems,

and increasing their complexity as the course progresses and encouraging our students with a

deeper mathematics background to use their knowledge to make the problem more realistic.

We require and use one text book as a reference for the course along with examples from the

internet and other books. Examples we use to teach the basics in our MATLAB course relate to

the following subjects:

1. Built in functions.

2. MATLAB matrices and arrays.

3. User defined functions.

4. Loops, logical functions and selection structures.

5. Graphing and plotting.

6. Matrix algebra.

7. User-controlled input and output.

8. Symbolic Mathematics.

9. Graphical user interface.

10. Simulink.

A simple example to teach students about “built in” functions is to use a program to generate a

sine wave with noise. This problem combines the random number function along with the sine

function to model random noise such as noise = rand(size(t));

y = 5*sin(2*t) + noise. The output is then plotted showing the results in figure 1.

Figure 1 Sine Wave with Noise Example

This same random noise problem is then used to show the students how SIMULINK works. This

is modeled using the set of blocks shown in figure 2. Here a sine wave function block and a

uniform random number block are added along with three scopes. One scope shows the sine

wave, the second shows the random noise, and the third shows the sum of the two which is the

sine wave with the noise added.

Figure 2 Sine Wave with Noise Solved using Simulink

Another problem useful in teaching the students about loops and logical functions is that of

calculating the terminal velocity of a particle falling in a fluid. In this example, many iterations

must be made using different Reynolds numbers as the velocity changes to calculate the varying

drag coefficient until the terminal velocity is reached. Since the students at this stage have not

had enough concepts on fluid mechanics, a detailed handout showing all the background of the

mechanics of this problem is given. Figure 3 shows the diagram of the force balance and the

apparatus.

Figure 3 Terminal Velocity Problem

An example of a simple statics problem used is with a crate held in equilibrium as it rests on a

frictionless inclined plane making an angle θ with the horizontal. The objective of this problem is

compute the tension in the cable and the normal force at the surface for θ at 5 ̊ increments

increasing from 0 ̊ to 90 ̊. The tension in the cable and the normal force is then plotted. Figure 4

shows the configuration of the crate on the inclined plane.

 Figure 4 Crate on Incline Plane Problem

 (Statics by R.W. Soutas-Little and D.J. Igman)

In addition to these examples many others are used to cover the topics mentioned earlier. These

include 3-D graphing, graphical user interface problems including a commonly used

READY_AIM_FIRE
9
 example, an economics problem with compound interest, and circuits

problem requiring matrix algebra to solve for the voltages and currents.

One of the more complicated problems that is solved in the introductory MATLAB course is the

trajectory of a projectile with air drag. This is a second order, inhomogeneous, partial differential

equation with non-constant coefficients. Since the prerequisite for the course is only pre-calculus

this is well beyond what students have experienced in the past. In fact, it is beyond the scope of

the mathematics requirement for the ME degree which terminates with ordinary differential

equations. In spite of this, most of the students do very well with the project and leave the course

understanding a bit of the true power of MATLAB. Based upon their reports, they are far better

prepared when they take the rest of their calculus and differential equations classes.

The keys to making this project work are not to present the true complexity of the problem at the

start, but to clearly present the students with the set of finite difference equations to be solved,

and to break it into a series of projects that build to the true complexity of the problem. Most of

the students have been introduced to the trajectory problem in their college physics class where

they solve for the optimal launch angle without air drag of 45
o
 above the horizon for maximum

distance. The first project in this sequence is for them to plot the trajectory of the projectile as a

function of the launch angle starting from the basic equations of Fx = max = 0 and Fy = may = -

mg which are then used to calculate the velocity and position in both the x and y directions via

the recursion formulae vj+1 = vj + t aj and dj+1 = dj + t vj

based upon Euler’s method. The

students have to read in the initial velocity, angle, and t using the input function. They are

given a great deal of latitude in their choice of t and the details of how they program this

project. One of the biggest issues that arises is that they pick a value of t which results in the

altitude being less than 0 after 1 time step so that their while loop only runs once,. i.e. t g >

vy,j+1.

The next step is to have the students add the drag force to their program and calculate the

acceleration at each time step. The drag force is proportional to the velocity squared and opposes

the velocity. This latter fact generally causes problems in the vertical direction as the projectile

passes apogee. They are told about the sign function in MATLAB, but a significant number

confuse it with the sine function and end up with some rather interesting, but not particularly

useful results. The third project uses xlsread to read in data for several different projectiles and

then read in the projectile type and launch parameters using the input function. They also have to

plot the trajectory and velocity as animations on fixed axes that are a bit larger than the

maximum of the x and y values rounded to a reasonable multiple such as 100m.

Often times we have the students calculate the projectile motion using Excel first, both without

drag and then with drag so they can get a better understanding of the math. Then we have them

use MATLAB to do the same thing, showing how much easier and versatile it is to do it with

MATLAB. Figure 5 shows a plot of projectile motion without and with drag using Excel and

figure 6 shows a similar plot using MATLAB.

Figure 5 Projectile Motion using Excel

Figure 6 Projectile Motion using MATLAB

In the Engineering Numerical Methods course this project is generally extended by converting

the projectile to a large model rocket where there is an initial motor thrust to start the flight that

depends upon time as well as the deployment of both a drogue parachute at apogee and a main

parachute at a lower elevation that dramatically changes both the Cd and projected drag area. The

students that have completed the projectile project in the introductory MATLAB course

generally do not have too many issues with this extension of the problem. However, nearly

everyone has issues in converting from the simple Euler’s method to the more complex Runge-

Kutta 4 (RK4) method, particularly since it is the relationship between acceleration and velocity

for drag that is not as straight forward.

Evaluation of the Course

For the ABET evaluation of the ME program, the student performance in our MATLAB class is

specifically assessed against ABET criterion 3k “An ability to use the techniques, skills, and

modern engineering tools necessary for engineering practice” for the MET program a very

similar ABET criterion 3a “An ability to select and apply the knowledge, techniques, skills, and

modern tools of the discipline to broadly-defined engineering technology activities” is used. As

of the Fall 2014 term, we have defined a Performance Indictor (PI) for each of the criterion,

which are listed in Table I.

Evaluation of student performance versus the performance indicators is somewhat subjective as

used for the ME/MET programs at EWU. The instructor sorts the chosen assignments into four

categories based upon the rubric. This may or may not be directly tied to the student’s score on

the assignment since most of the assignments in this course also include writing a short report

about how they did the assignment and presenting their results. It is not uncommon for the

students to demonstrate that they understand the use of the tool as defined by the rubric, but lose

a significant number of points on the assignment.

Table I Performance Indicator for ABET Criterion 3k (ME) and 3a (MET).

Performance

Indicator

Unsatisfactory

(Usat)

Below Average

(BA)

Satisfactory

(Sat)

Exemplary

(Ex)

Student must be

able to use a

mathematical

software to

analyze a

problem.

Student did not

know how to use

any math

software.

Student could

navigate through

the software but

is unable to use it

to solve.

Student could

navigate through

the software and

is able to use it to

solve a simple

problem.

Student has a good

understanding of the

software and is capable

of solving complex

problems.

This PI was used to assess student performance during the Fall 2014, Winter 2015, and Summer

2015 terms when the course was taught by 3 different instructors. As a result three related, but

different problems were used for the assessment as listed below.

 Fall 2014 – Use the Symbolic Toolbox to solve systems of linear equations composed of

up to cubic polynomials and find the integral and derivative of such polynomials. The

ezplot function was then used to plot the polynomial and its integral and derivative as

subplots. Polynomials were chosen since the students were familiar with them and the

expected results so they could focus on using the symbolic toolbox.

 Winter 2015 – The function x
2
sin(x) was numerically integrated from 7 to 12 using a

Riemann Sums. The initial value of x was 0.5 and the program had to decrease x until

the Riemann Sum was within 1% of the true area as determined using the Symbolic

Toolbox.

 Summer 2015 – Determine the terminal velocity of a sphere falling in a viscous fluid as

described earlier in the paper. This assignment focused on using loops and branching to

calculate the velocity as a function of the Reynolds number and plot it.

Although these problems are different, they all use MATLAB to teach the use of software to

solve a problem. However, we recognize that the winter 2015 assignment is probably the

most difficult (Symbolic Toolbox, loops, and evaluation of when the results were good

enough) while the summer 2015 assignment was the easiest (loops with different ranges of

Re), but it was taught earlier in the term than the other assignments. The results from this

assessment are presented in Table II and graphically in Figure 7.

Table II Student Performance vs. the Rubric for the Three Terms.

 MET Students ME Students

 Usat BA Sat Ex Usat BA Sat Ex Total

Fall 14 0 0 3 0 0 3 11 7 24

Winter 15 2 2 1 0 0 4 4 7 20

Summer 15 0 1 1 2 0 0 3 11 18

Total 2 3 5 2 0 7 18 25 62

The student performance levels were then assigned scores of 0, 1, 2, and 3 from unsatisfactory to

exemplary. The weighted means and standard deviations were first calculated for each of these

different classes for both the MET and ME students, and then they were calculated by combining

the data for all three classes for the MET and ME groups. The results are shown in Table III.

Table III Mean and Standard Deviation of the Student Performance versus the Rubric

 MET Students ME Students

 Fall 14 Winter 15 Summer 15 Fall 14 Winter 15 Summer 15

Count 3 5 4 Count 21 15 14

Average 2.00 0.80 2.25 Average 2.19 2.20 2.79

SD 0.00 0.75 0.83 SD 0.66 0.83 0.41

0%

20%

40%

60%

80%

100%

M
ET

 -
 U

sa
t

M
ET

 -
 B

A

M
ET

 -
 S

at

M
ET

 -
 E

x

M
E

-
U

sa
t

M
E

-
B

A

M
E

-
Sa

t

M
E

-
Ex

P
er

ce
n

t
o

f
St

u
d

en
ts

Fa14

Wi15

Su15

Figure 7 Results of the Assessment versus PI 3k (ME) and 3a (MET).

 MET Students ME Students

Count 12 Count 50

Average 1.58 Average 2.36

SD 0.95 SD 0.71

Examination of Figure 7 and Table III shows that in general the MET students did not perform as

well as the ME students on these assignments. This is expected since most of the ME students

are more comfortable with mathematics and some have taken courses beyond Calculus II which

is the last mathematics course required for the MET students. Spending a little more time

explaining the math would most likely help to alleviate this difference. The second thing is that

the assessment results are quite variable from term-to-term, which is a result of the type of

problem that was assigned and the expectations of the instructor. Analysis of these results

indicate that we need to better define the type of problem used for this assessment and how it is

to be assessed to allow better use of the tool. Having each instructor use the same problem in

their class to excess the students learning would help to better achieve this outcome.

Conclusions and Recommendations

We have found that by having the students solve many different problems, first starting with the

simpler ones and then increasing their complexity, is the best way for them to learn MATLAB.

In addition, even though most of the students haven’t had much math, engineering or programing

prior to taking the course, our experience has been if the problems are well-organized and

explained to the students, they can better grasp the material. Having students solve various

problems not only teaches the students how to program and use MATLAB, but also teaches them

more about engineering and math in general which prepares them for their future classes.

We have also found that our MET students have a more difficult time then our ME students in

learning to solve problems in MATLAB. This was indicated by the results of our assessments by

the problems we used in our classes. This is probably because MET students are generally less

comfortable with math than ME students. While the results of our assessment methods did

support this conclusion, the assessment of our students learning could be better improved by

using at least one problem that is the same in every class taught. However, there is still some

variability even when this is the case due to the different expectations and interpretations of the

instructor when performing the assessments.

Finally, we have provided a number of good examples that can be used in an introductory

MATLAB course along with our recommendation for those subjects that should be taught.

These include the following:

1. Built in functions.

2. MATLAB matrices and arrays.

3. User defined functions.

4. Loops, logical functions and selection structures.

5. Graphing and plotting.

6. Matrix algebra.

7. User-controlled input and output.

8. Symbolic Mathematics.

9. Graphical user interface.

10. Simulink.

References

1. P. T. Goeser, W. Johnson, S. L. Bernadin, and D. A. Gajdosik-Nivens, “Work-in-Progress: The Impact of

MatLab Marina - A Virtual Learning Environment on Student Learning in a Computing for Engineers Course”,

ASEE Annual Conference and Exposition, 2013.

2. R. Talbert, “Learning MATLAB in the Inverted Classroom”, ASEE Annual Conference and Exposition, 2012.

3. J. J. Heeg, K. Flenar, J. A. Ross, T. Okel, T. A. Deshpande, G. W. Bucks, and K. A. Ossman, “ Effective

Educational Methods for Teaching Assistants in a First-Year Engineering MATLAB Course”, ASEE Annual

Conference and Exposition, 2014.

4. M. Cook, “Teaching with Visuals in the Science Classroom,” Science Scope, vol. 35, no. 5, pp. 64 – 67,

January 2012.

5. L. Guo, J. Han, and A. W. Otieno,”Design and Simulation of a Sun Tracking Solar Power System”, ASEE

Annual Conference and Exposition, 2013.

6. R. Sharma, and A. Nagchaudhuri, “Implementing Problem-Based Learning Projects to Synthesize Feedback

Controllers Using MATLAB/Simulink and Students Assessment”, ASEE Annual Conference and Exposition,

2014.

7. M. Rabiee, “Using MATLAB to Teach Electric Energy Courses”, ASEE Annual Conference and Exposition,

2012.

8. J.K. Durfee, D.C. Richter, M.W. Weiser, N.M.A. Hossain, and H.S. Saad, “Using Course Projects to Infuse

Innovation Throughout the Undergraduate Experience in the Engineering and Engineering Technology

Curriculum”, paper 8984, 121st ASEE Annual Conference, Indianapolis, IN June 2014

9. Moore, Holly. 2015. MATLAB for Engineers 4
th

 edition. Pearson.

