

Session 2559

Teaching and Curriculum Development of Microprocessor Classes

Roman Stemprok
University of North Texas

Abstract

This paper addresses teaching and curriculum development for several microprocessor
classes in the Engineering Technology Department at the University of North Texas.
Fundamentals of computer hardware and assembly language were presented in
undergraduate and graduate courses with emphasis on a processor to control external
devices. Students studied microprocessor structure, became proficient in assembly
language programming techniques, developed basic microprocessor interfacing
techniques, designed simple memory systems, and investigated basic data
communications. Special care was taken in organizing labs for these hands-on
undergraduate and graduate courses. Students were assigned projects of increasing
complexity from a simple control circuit to “Digital Pet” powered by the Motorola
microprocessor (a semester project). Successful student teams demonstrated working
hardware models at the end of each semester.

Introduction

This paper describes projects and laboratory assignments for courses in the Electronics
Division of the Engineering Technology Department. After completion of the digital
logic introductory course students learned to utilize microcontroller technology through
“hands-on” assignments. Class curricula integrated the Motorola 68HC11
microcontroler and the xx86 Intel processor, which are available on PCs. Courses
involved included Introduction to Microprocessors, Digital Systems, and Embedded
Controllers.

The MC68HC11A8 microcontroller was used in a variety of lab assignments and
projects at the undergraduate and graduate levels to interface output commands from
the microcontroller to relays, motors, displays and ICs. The Motorola microcontroller
offers high-speed in control-related embedded operations. The 8K bytes of on-chip
memory (ROM), 256 bytes of RAM, 512 bytes of EEPROM and an 8-bit analog-to-
digital converter were used with several I/O ports [1]. Students designed process
controls using, for example, the A/D converter input from a variety of sensors or
transducers.

System I/O design issues were taught in the upper division course where a PC
interface, using an ISA expansion slot, was built by each student team. The Intel xx86
processor was programmed using assembly code (MASM compiler), or the DOS
Debug program. The wire-wrap PC bus extender accessed the signals through the ISA

P
age 5.578.1

expansion slot. This PC card extender was used to interface devices such as
converters, sensors, motors and actuators.

Laboratory Assignments using MC68HC11

Students were introduced to microcontoller technology in the lower division
undergraduate course utilizing the Motorola EVB (Evaluation Board) with the
MC68HC11A8 processor [2,3]. Students studied Motorola assembly language
programming and connecting I/Os. The basic evaluation board (MC68HC11EVB) was
connected to a PC through a communication software (Procomm) program. The basic
laboratory sequence is shown below [3]:

1. Block move.
2. Parallel output an 8-bit value that will turn ON/OFF LEDs.
3. Input a binary code through the Port C and output the code to 8-bit LEDs.
4. Attach the A/D “on-board” converter with a temperature sensor through an

interface.
5. Output compare the square wave generation.
6. Measure a signal frequency utilizing the "on-board" programmable timer..
7. Generate sound using a speaker attached through an interface to a port of HC11.
8. Incorporate EEPROM programming.
9. Initiate event counting using a pulse accumulator.

Project Applications using MC68HC11

The graduate course included three semester projects constructed by each student.
Students in the lower division undergraduate course were assigned end-of-semester
projects using the HC11 microcontroller. The EVB, with a 60-pin header, was used to
interface the required sensors, actuators and other I/Os through conditioning circuits.
Appendix I includes a programming sample of an EEPROM that was used for these
projects. Project applications included:

• Collision Alert System Project
• Gasoline Pumping Station
• Key Card Reader
• Digital Pet or Moving Roach
• Temperature Room Control
• Traffic Lights Control System

Figure 1 shows the Collision Alert System project. Recent studies indicate that most
traffic accidents are a result of poor driving habits. Using an on-board microcontroller
(M68HC11), accidents can be avoided by determining distance and speed. This project
includes sensors connected to the car’s accelerator, brake, and speedometer. The
indicator light is lit when these sensors are activated and the traffic situation calls for a
control action (accelerating, breaking and measuring speed.) The project included
recommendations to avoid hazardous situations.

P
age 5.578.2

Figure 1: Car Control Peripherals and MCU

Digital pet was a successful design completed by several independent student groups.
The animal body was constructed from LEGO parts with actuators powered by
servomotors. The pet had “eyes” (sensors), its tail moved, and the animal emitted a
sound when pulled. Some designs were able to navigate around objects.

A room temperature control project utilized the D/A converter included in the HC11
microcontroller. Outputs controlled the blower, air-conditioner and heater.

Laboratory Assignments using x86 Intel

Modified laboratory assignments, listed in Mazidi's lab manual [4], were given to
students in the upper level undergraduate course to learn the general parts. They wrote
assembly codes in Debug, performed data area calculations, and explored the BIOS

MCU

PC0 09 •
PC1 10 •
PC2 11 •
PC3 12 •
PC4 13 •
PC5 14 •
PC6 15 •
PC7 16 •

PB7 35 •
PB6 36 •
PB5 37 •
PB4 38 •
PB3 39 •
PB2 40 •
PB1 41 •
PB0 42 •

PA1 33 •
PA0 34 •
PE2 47 •
PE3 49 •
PE6 48 •
PE7 50 •
VRL 51 •
VRH 52 •

VDD 26 •
GND 01 •

LCD

• 01 Vss •
• 02 Vdd •
• 03 Vo •
• 04 RS •
• 05 R/W •
• 06 E •
• 07 DB0 •
• 08 DB1 •
• 09 DB2 •
• 10 DB3 •
• 11 DB4 •
• 12 DB5 •
• 13 DB6 •
• 14 DB7 •

Alarm LED
1K

Accelerator LED
Brake LED

Reset
Switch

10 K
Resistive

Bank

Accelerator
Pedal

Speed
Sensor

Break
Pedal

Range
Sensor

1K
1K
1K
1K

1K 10K 10K 1.0µF

1K

P
age 5.578.3

functions of an Intel manufactured processor involving parallel and serial ports. The
laboratory sequence, each including several lab sessions, is shown below [5]:

1. Assembly language programming using MASM and Debug
2. Assembly language application and program computations
3. PC system programming such as the mouse, video and memory
4. Serial and parallel port interfacing.

The next level of assignments was to connect the hardware I/Os to a computer. A test
board [6] was connected through an ISA PC slot at 300H – 31FH address. Lab
assignments included the following:
1. Output - Intel 8255 to control LEDs
2. Output - Intel 8255 to control stepping motor
3. Input/output from keypad to a monitor
4. Output – Intel 8253 to play music

Project Assignments using x86 Intel

An interface card using a ISA PC bus was constructed by each two-member student
team. An empty JDR prototype card was supplied to each group [6]. The 16-bit
prototyping board, with I/O decode logic, is for students who like to design their own
cards. This card has plated through holes, silk screen legends, and gold plated edge
card connectors and is compatible with soldertail or wire-wrap sockets. The examples
use conventional addresses in the hex 300 through 31F range, and are expected to be
16 bits wide.

The card was stuffed with buffers to access the bus signals. Figure 2 is a design of
such an ISA card interface with I/Os. Students used the 8255 Programmable
Peripheral Interfacing chip. When a dynamic change was not required on the JDR
card, a hardwired 74LS373 and 74LS244 chips were used.

The projects were:
1. Automatic Guitar Tuner
2. Constant Tire Pressure Regulator
3. Music Player

Conclusions

The laboratory assignments, leading to semester projects using the computer hardware
and assembly language, were presented. Emphasis was on a processor that would
control external devices. Students studied microprocessor structure, became proficient
in assembly language programming techniques, developed basic microprocessor
interfacing techniques, designed simple memory systems, and investigated basic data
communications. Special care was taken in developing labs for undergraduate and
graduate level courses. Students enjoyed these “hands-on” courses and were assigned
the building of projects of increasing complexity from a simple control circuit to a P

age 5.578.4

“Digital Pet” semester project powered by the Motorola microprocessor. Successful
student teams demonstrated their working hardware models at the end each semester.

Figure 2: The 80x86 ISA PC Bus Controller

Bibliography
1. Driscoll, Coughlin, Villanucci, “Data Acquisition and Process Control with the M68HC11

Microcontroller,” Prentice Hall, 1994.
2. Motorola, Inc., “M68HC 11 Reference Manual,” 1991.
3. Motorola Inc, “Motorola Technical Training MC68HC11 Course,” 1993.
4. M.A Mazidi, “The 80x86 IBM PC and Compatible Computers,” Volumes I & II, Prentice Hall, 1998.
5. M.A Mazidi, “Lab Manual for The 80x86 IBM PC and Compatible Computers,” Volumes I & II,

Prentice Hall, 1998.
6. JDR Microdevices, “16 Bit Prototype Board”, JDR-PR10, user manual, 1998.
7. Jefferey Royer, “Intergface Tutor, Student –user Manual V1.0”, 1989.

Roman Stemprok
Roman Stemprok is an Assistant Professor of Electronics Engineering Technology at the University of
North Texas. He also serves as Director of the Center for Transportation Study. Dr. Stemprok is actively
involved in research for industry. Dr. Stemprok received a M.E. in Electrical Engineering from McGill
University in Montreal in 1989 and a Ph.D. from the Department of Electrical Engineering at Texas
Tech University in 1995.

PC Bus

8255

8253

Decoding
circuitry
(74LS138)

 Interface
(74LS245)
(74LS244)

 Interface
(74LS244)

Actuator:
(stepping motor)

Sound System:

Data display:
(LCD, LEDs)

P
age 5.578.5

Appendix I

* Example of using MC68HC11 for a control operation
* Concept of EEPROM programming that was used in various projects
*
PPROG EQU $103B ;index for PPROG register for EEPROM control
 ORG $C100 ;start of FCC memory away from user code memory
NAME FCC ’code to burn’ ;this is a code/data of your choice
 FCB 0 ;form constant byte, fill that with zero

FCB 0 ;form constant byte, fill that with zero

 ORG $C000 ;starting address of the user code
*
* ROW ERASE MODE – step one
*
 LDAB #$0E ;set register $103B to ROW erase ($0E)

;EELAT, ERASE, ROW = 1
 STAB PPROG ;store ACCB at $103B

LDY #$B600 ;pointer to start of EEPROM array, EEPROM location is
;$B600 to $B7FF (512 bytes)

 STAB 0,Y ;Store 'Don't Care' Data
 LDAB #$0F ;turn on program voltage EEPGM = 1, EELAT = 1,

;ERASE = 1
STAB PPROG ;write the contents of accumulator B to address $103B, turn

;charge pump on, can not read from EEPROM
 BSR DELAY ;make a 10 ms delay

CLR PPROG ;turn-off program voltage, enable READ – turn off latch,
;ERASE = 0

*
* PROGRAM MODE, ROW into EEPROM Starting at $B600 – step two
*
 LDX #NAME ;load X as pointer to NAME table
 LDY #$B600 ;load Y as pointer for EEPROM location
PRB LDAA 0,X ;load data from table
 BEQ EXIT ;exit PRB loop upon detecting 0 in NAME table
 LDAB #$02 ;set EELAT bit in PPROG register
 STAB PPROG ;store ACCB at $103B
 STAA 0,Y ;store data to LATCH
 LDAB #$03 ;turn-on EEPGM bit - voltage on, EELAT = 1
 STAB PPROG ;store ACCB at $103B
 BSR DELAY ;delay about 10 ms
 CLR PPROG ;turn-off EEPGM voltage, READ enable
 INY ;increment index register Y by one
 INX ;increment index register X by one
 BRA PRB ;run loop
*
* SUBROUTINE DELAY about 10 ms = #2860
*
DELAY LDD #2860
LOOP SUBD #1 ;subtract one from accumulator D inside the loop
 BNE LOOP
 RTS
*
EXIT STOP

END

P
age 5.578.6

