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Abstract

Many digital signal processing (DSP) topics are difficult for undergraduates to
internalize, but studies have shown that demonstrations and laboratory experiences
can facilitate the process. In the past, many barriers prevented including real-time
DSP hardware in an undergraduate curriculum. This paper describes a pedagogical
model the authors have developed which includes theory, demos, lab exercises, and real-
time DSP experience using Matlab, C, and real-time DSP hardware that overcomes
the barriers. This model has been very successful.

1 Introduction

A common complaint heard from electrical engineering (EE) undergraduates is that many
(if not most) of the EE topics are difficult to visualize. One of the fastest growing fields in
EE, digital signal processing (DSP) certainly has more than its share of concepts that fit
this description. In particular, making the leap from Matlab DSP simulations to real-time
DSP hardware has proven to be singularly challenging for faculty and students alike. It is
well known that demonstrations and laboratory experiences help most students internalize
both the theoretical underpinnings and the practical ramifications of various DSP topics,1–3

but real-time DSP hardware and software have usually been considered too difficult for
undergraduates. This high degree of difficulty is due to many factors, including the need to
understand parallel processing, multiple memory busses, specialized instruction sets, and—
most importantly—a lack of documentation that is “readable” by the non-expert.
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Figure 1: A systematic model for teaching DSP. The last two steps can be iterated as
needed.

Over the last few years, we have developed a systematic method to teach DSP to undergrad-
uates. It provides students with a firm bridge from their first exposure to theory all the way
to practical implementation of real-time DSP code on industry-standard hardware, such as
the Texas Instruments (TI) C6711 digital signal processing starter kit (DSK). Previous ar-
ticles4–11 have described the application of this method to specific DSP concepts; this article
generalizes the lessons learned and outlines the overall method in such a way that it could
be applied to any DSP topic. A world wide web URL is provided at the end of this article
for downloading the software that is a key component of our method for “bridging the gap”
from theory to real-time hardware.

2 A Graduated Approach to Teaching DSP

2.1 Using a “Bridge” to Real-Time

A systematic model for teaching DSP is shown graphically in Figure 1. It begins with
the traditional presentation of the theory behind each new topic, followed by a specific
progression of exercises.

To facilitate the learning process in a DSP class, demonstrations of fundamental topics are
helpful supplements to the theory. In particular, computer-based demonstrations are highly
effective for a student’s initial grasp of a new DSP topic; this is reflected in the content
of many newer DSP texts.12–17 We take advantage of the fact that the software package
Matlab18 and its related toolboxes have become a mainstay in most EE programs. Given
our students’ familiarity with Matlab, computer exercises that implement DSP theory are
a natural approach. However, today’s students are quickly bored with a “canned demo,”
and the application of these demonstrations to real-time DSP is limited. In response we have
created a series of interactive demos that allow the student to “play” with a concept and
engage in “what if?” explorations, while laying the foundation for real-time applications.

Such interactive demonstrations typically result in much greater comprehension of the topic
by the student, yet we have found that taking the next step of requiring the student to
program an example of the concept in Matlab is needed to solidify the student’s under-
standing. DSP programming has long been used in graduate-level DSP classes, but has only
recently been applied to undergraduates. When the student can comfortably create a basic
Matlab program that performs a particular DSP operation (such as FIR filtering) on stored
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data, then we can start to ease them into real-time DSP.

Moving beyond a Matlab-only program to a real-time hardware implementation is highly
desirable from a pedagogical point of view. Many practical issues and learning opportunities
occur only when the students try to adapt their newly acquired knowledge to the challenge of
real-time DSP. For example, interrupt-driven processing, tradeoffs of on-chip versus off-chip
memory access, and utilization of specific hardware capabilities are all issues that arise only
when the DSP operation is implemented in real-time hardware. In the past, this next step
in understanding has been impeded by a very abrupt transition, in terms of cost to equip a
student laboratory and in terms of the steep learning curve (for both students and faculty) of
unfamiliar systems and software. We therefore developed a software and hardware “bridge”
between Matlab and real-time DSP hardware that makes it possible to smoothly and
incrementally transition from the Matlab-only domain to a full hardware implementation
operating in real-time, while retaining as needed the impressive capabilities of the Matlab
display engine. Using this approach, students are able to develop and enhance their own
real-time DSP programs in an iterative way, “moving” more and more of their code from
the realm of Matlab over to C or assembly language for the DSK. The last two steps of
Figure 1 illustrate this iterative nature of the model.

2.2 Choosing the DSP Hardware

As detailed in previous articles, we chose to construct our DSP educational platform around
Matlab and the TI C6x DSK. The current version of the TI C6x DSK makes use of the
VLIW architecture TMS320C6711 microprocessor and includes 16 MB of memory, basic
support circuitry, and excellent software development tools (Code Composer Studio) that
include an optimizing C compiler, debugger, assembler, and linker. This meets our criteria of
low cost, sufficient processing power, ample memory, and a versatile software development
environment. Furthermore, while other companies such as Analog Devices and Motorola
also manufacture DSP microprocessors, we have been unable over the years to elicit interest
from any other company in the educational segment; only TI has consistently demonstrated
such interest. See reference [19] for details on this DSK, and see reference [20] for more
information on TI DSP products and support in general.

Unfortunately, to keep costs down, the native codec on the C6711 DSK board is the TI
TLC320AD535 chip, a single-channel telephone-quality device with a maximum sampling
frequency of only fs ≈ 8 kHz. This severely limits the utility of the DSK for a variety of
DSP applications we desire for our students. However, we feel the DSK’s advantages out-
weigh this disadvantage, and the inclusion of a flexible Expansion Daughter Card Interface
on the DSK allows us to circumvent this limitation quite easily. We supplement the basic
DSK as needed for a particular application with more capable I/O such as a CD-quality
stereo codec board21 or a high speed multichannel ADC.9,11 These small daughter cards are
available to the public at very low prices; see reference [22] for more information. Using the
C6711 DSK and the appropriate daughter card as the core, a professor can populate a highly
flexible real-time DSP student laboratory at low cost.
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2.3 Floating-Point or Fixed-Point?

One of the primary choices in practical DSP hardware today is the question of floating-point
versus fixed-point implementations.23 While the floating-point ability of the TI C6711 DSK
offers a pedagogical advantage (topics such as scaling and overflow may be postponed until
later), the C6711 processor can also run fixed-point code if the professor desires. This “two
for the price of one” ability represents another strong advantage of the C6711 DSK, in our
opinion.

3 Examples Of Using The Model

To clarify the use of this teaching model, we describe three examples of DSP topics that
have benefitted from this approach: basic FIR filter design, an application of a particular
type of FIR filter (the Hilbert transformer) for communications systems, and audio special
effects (flanging and chorus).

3.1 FIR Filter Design

One of the first “theory to real-time implementation” labs that our students experience is
the design of an FIR filter. Our students learn the basic theory first, such as the generalized
transfer function given by

H(z) =
M∑
i=0

h[i]z−i (1)

where M is the filter order and h[i] is the ith coefficient of the filter’s impulse response.24

We use interactive demos, based first upon the sptool GUI provided with Matlab’s Signal
Processing Toolbox shown in Figure 2. Students are encouraged to use sptool to create
FIR filter designs, but also introduced to the underlying programs such as remez which
can produce filters sptool cannot. Next, we move them to a program we designed called
qfilt (see Figure 3) which serves several purposes.6 The qfilt program allows students
to understand the ramifications of issues such as coefficient quantization and realization
tradeoffs, but also provides a bridge to real-time DSP. Note the button labelled Load/Run
DSK (on the right, fifth button from the bottom). Clicking this button takes the filter
coefficients the student has produced, loads an FIR filter routine on the DSK that implements
this design, and runs the DSK in real-time to demonstrate the filtering effect. This gets
the student past the initial fear of dealing with real-time DSP hardware. It is amazing
how profound an effect can be observed in most students who listen for the first time to
the sound produced by a real-time DSP filter that they designed themselves! After this
experience, we move the student toward creating their own code in C for the DSK using
the Code Composer Studio software tools which come with the DSK, shown in Figure 4.
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Figure 2: Example of the Graphical User Interface (GUI) of sptool.
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Figure 3: Example of the qfilt Matlab program.

Eventually the student creates a working “brute force” FIR filter that runs on the DSK. We
provide helper programs for Matlab which format filter coefficients created in Matlab
into an “include” file that can be easily used by a C program. We encourage the student
to further refine the C program, implementing, for example, circular buffering. Before long,
the student is almost effortlessly validating filter designs in Matlab, then moving them to
the DSK using C.

3.2 Using the Hilbert Transformer

Once our students have mastered the basic implementation issues associated with FIR filters,
a real-world application is needed. For our example here, we have selected a DSP-based
envelope detector for a communications system receiver. This type of detector can be used
to recover the message associated with a commercial amplitude modulation (AM) signal. A
brief review of the theory follows.
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Figure 4: Example of Code Composer Studio for the DSK.
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The expression for a double-sideband (with carrier) AM signal is,

sAM(t) = Ac[1 + m(t)] cos(ωct) (2)

In this equation, Ac is the amplitude of the carrier, m(t) is the message signal (with amplitude
≤ 1 to prevent overmodulation), and ωc is the carrier frequency expressed in radians/sec.25

In order to recover the message signal, it is necessary to extract the envelope of the signal
Ac[1 + m(t)]. Once the envelope is obtained, the DC component can be removed with a DC
blocking filter, leaving Acm(t), which is a scaled version of the original message signal.

The general principle of message recovery using DSP techniques is to select only the positive
(or negative) frequency component of the signal∗ and determine its magnitude, which will
be proportional to the envelope.26 A Hilbert transformer filter will generate an all-pass 90◦

phase-shifted version of the received signal that is called the Q (for “quadrature”) compo-
nent. The non-phase-shifted version of the received signal is called the I (for “in-phase”)
component. Note that the analytic signal z(t), defined as

z(t) = I(t) + jQ(t) (3)

contains only positive frequency components. An important learning step for our students
is to realize that they must account for the group delay of this FIR filter in order to align
the I component with the Q component of the AM signal. At this point in the receiver
development, the envelope may now be expressed as

envelope of sAM(t) =
√

I2(t) + Q2(t) (4)

which means the envelope can be extracted using DSP techniques. The square root operation
in Equation 4 may be directly implemented (for example using the floating point sqrtf

command available via the DSK’s C compiler) or by using a less computationally intensive
approximation technique. As our teaching model suggests, the student first learns the theory
with the aid of interactive demos, then develops a working solution off-line in Matlab, then
eventually moves to the DSK and implements a fully functional real-time DSP solution.

Example plots from a student project are shown in Figures 5–7. The AM signal shown in
Figure 5 is a 2 kHz carrier modulated by a 700 Hz sinusoidal message signal. Note: in an
actual software radio this would be the IF output. Figure 6 shows the impulse response of
the Type III FIR filter the student designed using Matlab’s remez program to implement
a Hilbert transformer on the DSK. A comparison of the original message and the recovered
message using this DSP technique is shown in Figure 7. Note how well this design works!

We observe significant excitement and enthusiasm of our students when they can see real-
time DSP-based demodulation working as a result of their own design.

∗Recall that a real sinusoidal signal made up of positive and negative frequency components can be
thought of as two counterrotating vectors; a complex sinusoidal signal, sometimes called an analytic signal,
is made up of only a positive or negative frequency component and can be thought of as a single rotating
vector. Signals made up of multiple frequencies can be treated similarly.
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Figure 5: An AM signal to be demodulated via DSP.
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Figure 6: Impulse response of the Hilbert transformer Type III FIR filter used for the
demodulation.
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Figure 7: A comparison of the original message signal with the signal demodulated via DSP.

3.3 Audio Special Effects: Flanging and Chorus

An area of DSP in which many students are very interested is audio special effects. Altering
the sound of an electric guitar or voice in real-time using student designed programs for the
DSK has been extremely motivational for the students. We first describe to them the basic
theory of special effects such as flanging and chorus, provide some demonstrations, then
challenge the students to write algorithms in Matlab using stored sound files.

A block diagram of the flanging effect is shown in Figure 8, where α is a scale factor, and
β[n] is a periodically varying delay described by

β[n] =
R

2
(1 − cos (ω0n)) . (5)

In Equation 5, R is the number of sample-time delays and ω0 is a relatively low frequency.

A block diagram of the chorus effect is shown in Figure 9. To generate the chorus effect,
three separately flanged signals are summed with the original signal. For a proper chorus
effect, each of the βi and αi factors should be independent.

To ease the students on to the “bridge” that will get them to real-time processing, we
first provide them with a custom program called winDSK6 which provides a highly flexible
graphical user interface that can easily manipulate the C6711 DSK (see Figure 10).

The winDSK6 Audio Effects module contains a mixture of both FIR and IIR applications.
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Figure 9: A block diagram of the chorus effect.
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Figure 10: The winDSK6 program’s main window.

Clicking on the Audio Effects button from the winDSK6 main window will load the audio
effects program module into the attached DSK, and a window similar to Figure 11 will
appear. The flanging and chorus effects are both implemented with FIR filters. After
becoming comfortable with their own Matlab programs and winDSK6, the next step is for
them to write similar programs of their own in C that will run in real-time on the DSK.

Audio special effects have been particularly popular as capstone senior design projects, where
the student designs and builds a unit which typically contains a C6711 DSK, power supply,
interface buffers/amplifiers for microphones and/or electric guitars, and various user controls.

Figure 11: The winDSK6 program running the Audio Effects application.
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The unit produces whatever real-time audio special effect is created by the student’s software,
such as flanging, chorus, echo, reverb, harmonic generation, etc. This project effectively
combines hardware and software in a single capstone design experience. It should be noted
that until we implemented our “bridging the gap” method of teaching real-time DSP we
could not entice a single student to pursue such a senior design project; after implementing
the method there have been multiple students each year who enthusiastically chose such a
project.

4 Conclusions

We have developed a systematic teaching model that allows our students to firmly grasp new
DSP topics, and to smoothly transition from theory to a real-time DSP system implemen-
tation. Experiences at our respective institutions have shown that, compared to traditional
undergraduate DSP classes, this model promotes greater comprehension of the theoretical
underpinnings as well as the practical ramifications of each new DSP topic. The hardware
investment required to implement such a model is rather modest, and much of the software
needed has already been developed by the authors.

We freely distribute much of the associated software for educational, non-profit use, and
invite user suggestions for improvement. See reference [27] for downloading the software;
any interested parties are also invited to contact the authors via e-mail.†
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