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Abstract

Finite Element Analysis (FEA) is a very powerful tool that is used in virtually every area in the

field of Mechanical Engineering and many other disciplines. It is beneficial for the mechanical

engineering students to have exposure to this tool as early as possible and as frequently as

possible in their engineering education. The earliest time comes when they are taught the truss

problems in Statics. The FEA can be introduced as a solution method for the truss problems in

Statics, without the need to involve additional knowledge of the deformation theory. This paper

presents the step by step FEA formulation of the equations to solve for the forces inside the truss

members and the reaction forces at the fixed and sliding joints, and compares the FEA

formulation with the conventional approach closely. The students will clearly see the

methodology and the essential features of FEA. Only truss member internal forces are involved in

the elemental formulation and thus there is no need to introduce deformation theory. A MATLAB

program is written to implement this FEA solution method. The property of the final assembled

coefficient matrix, with the boundary conditions applied, determines the problem at hand to be

statically determinate or statically indeterminate. In the former case, the students can easily solve

for the joint forces using matrix manipulation just as in the conventional solution method. In the

later case, the students are then encouraged to revisit this problem after they learn the deformation

theory in the mechanics of materials course. The students are reminded that, with the introduced

FEA formulation procedure deep in mind, the only major difference would be in the elemental

formulation to apply FEA in mechanics of materials as well as in heat transfer, fluid mechanics,

etc. FEA can then be reintroduced in these courses to strengthen the students’ understanding of

the basic FEA procedure and commercial FEA software can also be involved.

Introduction

Finite Element Analysis (FEA) is a very powerful tool that is used in virtually any area in the field

of Mechanical Engineering and many other disciplines. Many institutions have an FEA course as

a technical elective in senior level [1, 2]. However, it is beneficial for the mechanical engineering

students to have exposure to this tool as frequently as possible in their engineering education [3],

and as early as possible. Many educators introduce FEA in lower level mechanical engineering

courses, most likely in Mechanics of Materials [4, 5, 6].

FEA can be introduced to students at an even earlier point in the curriculum, i.e. Statics. The

conventional deformation based FEA analysis of truss problems can be taught by introducing first
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the deformation theory [7], which usually appears in the Mechanics of Materials course. However,

this extra burden of covering the deformation theory in order to introduce FEA in Statics is not

necessary. This paper describes the member force based FEA analysis of plane truss problems

that can be introduced to the students as a solution method for the truss problems without

involving the additional knowledge of deformation theory.

The Simple Plane Truss Problem - Statically Determinate

A simple plane truss problem is statically determinate. A general layout of the simplest

configuration of such a plane truss problem is shown in Figure 1(a) with three truss members, one

fixed joint and one sliding joint, which is sliding on the plane of angle θsliding to the x axis. This

setup is used as an example in deriving the equations for both the conventional solution and the

FEA solution. Each joint is numbered consecutively starting from 1. The order assigned to

number the joints does not play a factor in the analysis as long as all the joint numbers are

consecutive starting from 1. Similarly, each truss member is also numbered consecutively starting

from 1 and the number is denoted with a circle around it to distinguish it from the joint number.

The conventional assumptions of smooth pin joints and loads applied only at joints are followed.

As a result, each truss member is a two-force member as shown in Figure 1(b). As used in this

Figure and throughout this paper, the subscript of a variable denotes the joint number while the

superscript denotes the truss member number. The sign convention used here is that tension is

positive. Thus a positive truss member force F e means a tensional force in truss member e while

a negative F e means a compressional force. The force acting on the sliding joint Rsliding is

positive pointing toward the sliding plane as shown in Figure 1(a). The two joints of the truss

member e are denoted as ie and je. The angle of the truss member is then defined as the angle

from the positive x direction to the direction of ~ieje. The forces acting on the truss member e at

the ie and je joint locations are then denoted as ~F e
ie and ~F e

je , respectively, as shown in Figure 1(b).

Consequently, reaction forces acting on the joints by the truss member e are denoted by −~F e
ie and

−~F e
je as shown in Figure 1(a).

The traditional solution methods are Method of Joints and Method of Sections, as typically taught

in the Statics Course. The students will master these two methods first. However, these two

methods will become tedious if the number of truss members or joints becomes large. It is very

useful to introduce a systematic approach to solve this truss problem.

The Linear Algebra Formulation

A conventional way of solving this problem systematically is to gather all the equations and solve

them using linear algebra. The force balance at all the joints gives:

Joint 1:
F 1 cos θ1 + F 2 cos θ2 + Rfixed,x = 0

F 1 sin θ1 + F 2 sin θ2 + Rfixed,y = 0

Joint 2:
−F 2 cos θ2 + F 3 cos θ3 + Fapplied cos θapplied = 0

−F 2 sin θ2 + F 3 sin θ3 + Fapplied sin θapplied = 0
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Figure 1: (a). A simple truss structure layout and forces on the joints/nodes (b). Notation and

forces on a truss member/element

Joint 3:
−F 3 cos θ3 − F 1 cos θ1 + Rsliding cos(θsliding −

π
2 ) = 0

−F 3 sin θ3 − F 1 sin θ1 + Rsliding sin(θsliding −
π
2 ) = 0

We have 6 equations for this problem and also 6 unknowns to solve for: three truss member forces

F 1, F 2, F 3, two fixed joint reaction forces Rfixed,x, Rfixed,y and one sliding joint reaction force

Rsliding, which is normal to the sliding plane. Moving the known quantities to the right hand side

of the equations and putting the equations into matrix form yields:















cos θ1 cos θ2 0 1 0 0

sin θ1 sin θ2 0 0 1 0

0 − cos θ2 cos θ3 0 0 0

0 − sin θ2 sin θ3 0 0 0

− cos θ1 0 − cos θ3 0 0 cos(θsliding −
π
2 )

− sin θ1 0 − sin θ3 0 0 sin(θsliding −
π
2 )















︸ ︷︷ ︸

=[K]







F 1

F 2

F 3

Rfixed,x

Rfixed,y

Rsliding







︸ ︷︷ ︸

={FR}

= −







0

0

Fapplied cos θapplied

Fapplied sin θapplied

0

0







︸ ︷︷ ︸

={FA}

(1)

where as [K] is the coefficient matrix, {FR} is the unknown reaction force vector and {FA} is

the applied force vector from this simple linear algebra formulation. The solution is then simply:

{FR} = −[K]−1{FA} (2)

When a simple plane truss problem has more members and joints, two force balance equations are

written for each joint, and then all the equations are assembled into the matrix form. Again, as the

numbers of members and joints increase, it is troublesome to get this matrix form. This is when,

the Finite Element Analysis, as a numerical method, can be used to efficiently and automatically

generate this matrix form to solve the problem.
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The FEA Formulation

Now, we follow the conventions of FEA to name the truss members as elements and the joints as

nodes in this analysis, and the names are interchangeable from here on in this paper. Only the

internal forces in the truss members/elements and the reaction forces at the joints/nodes are of

concern. For each element, the force inside the element F e contributes to the load on the joints as:

{F}e =







−F e
ie,x

−F e
ie,y

−F e
je,x

−F e
je,y







=







F e cos θe

F e sin θe

−F e cos θe

−F e sin θe







=







cos θe

sin θe

− cos θe

− sin θe







F e (3)

Here {F}e is the elemental force vector that is acting on the ie and je nodes of the element e.

Note the first two components are acting on the joint ie (the i joint of the truss member e) while

the last two components are acting on the joint je.

On each joint i, we have the force balance of:

∑

e

(−~F e
ie)i=ie +

∑

e

(−~F e
je)i=je + ~Ri,fixed + ~Ri,sliding + ~Fi,applied = 0 (4)

The first two terms only exist if the i node (ie) or the j node (je) of the element e is the current

node of interest i, respectively. The last three terms exist if the current node of interest i is a fixed

joint, a sliding joint, or a joint with external force(s), respectively. Applying this vector equation

on all Nnode nodes will give us a total of Neq = 2Nnode independent equations.

To assemble all the equations into matrix form, we first extend the elemental force vector {F}e of

element e (on nodes ie and je) in Equation 3 to the global force vector {F}e
G including force

components on all the nodes (1,2,3) in the problem. For element 1,

{F}1
G =







cos θ1

sin θ1

0

0

− cos θ1

− sin θ1







F 1

− node 1, x component

− node 1, y component

− node 2, x component

− node 2, y component

− node 3, x component

− node 3, y component

(5)

Note that the positions corresponding to forces on node 2 are padded with zeros as element 1 is on

nodes 1 (i node) and 3 (j node). Similarly, we have for elements 2 and 3:

{F}2
G =







cos θ2

sin θ2

− cos θ2

− sin θ2

0

0







F 2 {F}3
G =







0

0

cos θ3

sin θ3

− cos θ3

− sin θ3







F 3 (6)
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The global reaction force vector for fixed joint(s) can also be written including the force

components on all the nodes as:

{Rfixed}G =







Rfixed,x

Rfixed,y

0

0

0

0







=







1

0

0

0

0

0







Rfixed,x +







0

1

0

0

0

0







Rfixed,y (7)

where as node 1 is the fixed node and the positions corresponding to force on nodes 2 and 3 are

padded with zeros. Similarly, the global reaction force vector for sliding joint(s) can be written as:

{Rsliding}G =







0

0

0

0

Rsliding cos(θsliding −
π
2 )

Rsliding sin(θsliding −
π
2 )







=







0

0

0

0

cos(θsliding −
π
2 )

sin(θsliding −
π
2 )







Rsliding (8)

as node 3 is the sliding node.

The global applied force vector can be written as:

{Fapplied}G =







0

0

Fapplied cos θapplied

Fapplied sin θapplied

0

0







=







0

0

cos θapplied

sin θapplied

0

0







Fapplied (9)

as the external force is applied at node 2.

Applying the above global force vectors to Equation (4), we have:

{F}1
G + {F}2

G + {F}3
G + {Rfixed}G + {Rsliding}G + {Fapplied}G = 0 (10)

or:






cos θ1

sin θ1

0

0

− cos θ1

− sin θ1







F 1 +







cos θ2

sin θ2

− cos θ2

− sin θ2

0

0







F 2 +







0

0

cos θ3

sin θ3

− cos θ3

− sin θ3







F 3 +







1

0

0

0

0

0







Rfixed,x +







0

1

0

0

0

0







Rfixed,y
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+







0

0

0

0

cos(θsliding −
π
2 )

sin(θsliding −
π
2 )







Rsliding +







0

0

cos θapplied

sin θapplied

0

0







Fapplied = 0 (11)

Simplifying and moving the known applied force vector to the right side of the equation, we have:















cos θ1 cos θ2 0 1 0 0

sin θ1 sin θ2 0 0 1 0

0 − cos θ2 cos θ3 0 0 0

0 − sin θ2 sin θ3 0 0 0

− cos θ1 0 − cos θ3 0 0 cos(θsliding −
π
2 )

− sin θ1 0 − sin θ3 0 0 sin(θsliding −
π
2 )















︸ ︷︷ ︸

{F}1

G
{F}2

G
{F}3

G
{Rfixed}G {Rsliding}G







F 1

F 2

F 3

Rfixed,x

Rfixed,y

Rsliding







︸ ︷︷ ︸

{FR}

= −







0

0

cos θapplied

sin θapplied

0

0







︸ ︷︷ ︸

{Fapplied}G

Fapplied

(12)

which is exactly the same as Equation (1) from the direct linear algebra formulation. A close

examination of the Equation (12) yields that by arranging the unknown reaction force vector as:

{FR} =







F 1

F 2

F 3

Rfixed,x

Rfixed,y

Rsliding







]

Nelem, number of truss members/elements

]

2Nfixed, twice the number of joints/nodes (x and y components)

]Nsliding, number of sliding joints/nodes

(13)

the coefficient matrix [K] of the final system of equations has the following properties:

• The first Nelem columns correspond to the global force vectors of the Nelem elements,

without the truss member forces as they are the unknowns.

• The next 2Nfixed columns correspond to the global force vectors of the Nfixed fixed joints,

without the x and y reaction force components as they are the unknowns.

• The last Nsliding columns correspond to the global force vectors of the sliding joints,

without the normal (to the sliding plane) reaction forces as they are the unknowns.

As a result, the coefficient matrix [K] can be determined by simply assembling all the global

force vectors. So, the finite element analysis process starts with getting the force vector

components due to the elemental forces and put then into the corresponding column positions in

the coefficient matrix [K]. Then the two different kinds of boundary conditions, namely the fixed
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and sliding conditions, are applied and the related force components are determined and put in the

corresponding column positions in the coefficient matrix [K]. Finally the loading information is

gathered to determine the global applied force vector {FA}.

The above FEA formulation can be applied to any truss problem with any number of members or

joints. Note that there are Nunk = Nelem + 2Nfixed + Nsliding unknowns in the unknown force

vector. The number of equations we have is Neq = 2Nnode due to both the x and the y components

of the force balance on each node. Neq and Nunk are then the number of rows and the number of

columns for the coefficient matrix [K], respectively. Now from the knowledge of linear algebra,

we can determine that:

if







Neq > Nunk

Neq = Nunk & |K| 6= 0

Neq = Nunk & |K| = 0

Neq < Nunk

then







No Solution , mechanism with d.o.f.

{FR} = −[K]−1{FA} , statically determinate

No Solution , statically indeterminate

No Solution , statically indeterminate

The final assembled coefficient matrix [K] can then go through the check as described in this

equation. To further the students’ understanding of the different conditions here, the following

figure is shown to them.

1 d.o.f

Nnode = 3
Nelem = 2
Nfixed = 1
Nsliding = 1

Neq(6) > Nunk(5)

1 d.o.f.

mechanism

partial constraint

Nnode = 3
Nelem = 3
Nfixed = 1
Nsliding = 1

Neq(6) = Nunk(6)
|K| 6= 0
statically

determinate

proper constraint

Nnode = 3
Nelem = 2
Nfixed = 2
Nsliding = 0

Neq(6) = Nunk(6)
|K| = 0
statically

indeterminate

improper constraint

Nnode = 3
Nelem = 3
Nfixed = 2
Nsliding = 0

Neq(6) < Nunk(7)

statically

indeterminate

redundant constraint

Figure 2: Different cases for a general truss problem

A MATLAB program is provided to the students and is attached at the end of this paper. The test

case in the provided program is the Example Problem 6.1 in the Statics textbook by Hibbeler [8].

The only part in this program that the students need to modify for different problems is the first

part that gathers the FEA model information. The program consists of 100 lines with only 40

lines of true commands. The students are asked to use this program to check their answers to any

truss problem they are assigned, whether the problem is solved using the method of joints or the

method of sections.
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Further Notes About FEA

The students are then introduced to the general FEA procedures, which consists of 7 steps, as

related to the current analysis:

1. Discretization - We have a naturally discretized system in truss with truss members as

elements and joints as nodes.

2. Interpolation - The truss member force is used as it is, no need for approximation in this

case.

3. Elemental formulation - Determine the elemental force vectors for each element as in

Equation (3).

4. Assembly - Extend the elemental force vectors to global force vectors as in Equations (5)

and (6) and put them in corresponding columns of the coefficient matrix [K].

5. Applying boundary and loading conditions - Generate the global reaction force vectors

as in Equations (7) and (8) and put them in corresponding columns of the coefficient matrix

[K]. Generate the global applied force vector as in Equation (9).

6. Solution - Solve the problem using the matrix manipulation.

7. Getting other information - The stress, strain, joint displacement can be determined given

the geometry and material properties of the truss members, and of course the deformation

theory.

For the statically indeterminate truss problems, the students are reminded that they will revisit

truss problems in Mechanics of Materials and those problems can be solved using the

deformation theory. After they learned the deformation theory in that course, they will be able to

use FEA to solve both the statically determinate and indeterminate truss problems, utilizing the

deformation theory in the elemental formulation. They are encouraged to look up the description

of such an FEA truss problem formulation in any FEA textbook, if it is not taught in the class.

The students are also reminded that, with the introduced FEA formulation procedure deep in

mind, FEA can easily be applied to problems in mechanics of materials as well as in heat transfer,

fluid mechanics, etc., with the only major difference being in the elemental formulation.

In terms of commercial FEA packages, the students are taught that a typical package consists

basically of three parts:

1. Preprocessor - Does steps 1 through 5 in the FEA procedure, gathering information about

node, element, boundary conditions and loading conditions.

2. Solver - Does step 6 in the FEA procedure, the most time consuming stage.

3. Postprocessor - Does step 7 in the FEA procedure as well as provide graphic information

about the solutions.
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Conclusion

In this paper, a basic Finite Element Analysis on statically determinate truss problem is presented,

which is well suited to introduce FEA to mechanical engineering students in the Statics course.

This introduction is based solely on the topics covered in a general Statics course and does not

require the introduction of deformation theory which is typically discussed in the Mechanics of

Materials course.

With the exposure to FEA in the Statics course, the students can then be reintroduced to FEA in

the subsequent mechanics of materials, heat transfer, fluid mechanics courses as well as many

others. Commercial FEA packages can also be introduced in these courses. The students will

have a better understanding of FEA in this approach of learning FEA step by step (course by

course). This approach is also especially helpful if there is no formal FEA course offered in the

curriculum.

This FEA formulation was introduced to the students in the Spring 2004 Statics course. The

material was presented in one lecture period immediately after the students were taught the

method of joints to solve truss problems. A questionnaire was also handed out to the students for

their feedback about the current approach of teaching FEA in Statics. Out of the 11 students

responded, all indicated that the material presented here is helpful for them to become familiar

with FEA and strengthened their interest in FEA. The FEA program handed out also became a

handy tool to check their solutions of truss problems, by simply changing a few lines.
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Appendix - FEA Program of Simple Plane Truss Problem

     1 % FEA Program for Plane Truss Problems in Statics
     2 % − Jiaxin Zhao, December, 2003, IPFW
     3

     4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     5 % Part 1: Input FEA Model Inforcemation %
     6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     7 % symbol[dimension]: variable
     8 % nnode            : number of nodes (joints)
     9 % nelem            : number of elements (truss members)
    10 % nfixed           : number of fixed joints
    11 % nslide           : number of sliding joints
    12 % nforce           : number of joints with forces applied
    13 %
    14 % xnode[nnode]     : x coordinate of each node
    15 % ynode[nnode]     : y coordinate of each node
    16 % ielem[nelem]     : i node number of each element
    17 % jelem[nelem]     : j node number of each element
    18 % lelem[nelem]     : length of each element
    19 % telem[nelem]     : angle of each element, from x+ to i−>j direction, rad
    20 %
    21 % kfixed[nfixed]   : node number of fixed joints
    22 % kslide[nslide]   : node number of sliding joints
    23 % tslide[nslide]   : sliding angle of joints, from x+ to sliding plane, rad
    24 % kforce[nforce]   : node number of joints with forces applied
    25 % fforce[nforce]   : magnitude of the forces applied
    26 % tforce[nforce]   : angle of the forces applied, rad
    27

    28 % input geometry information (Example 6−1, Statics, 10e, R.C.Hibbeler)
    29 nnode=3;
    30 nelem=3;
    31 xnode=[0 0 2];
    32 ynode=[0 2 0];
    33 ielem=[1 1 2];
    34 jelem=[3 2 3];
    35 lelem=sqrt((ynode(jelem)−ynode(ielem)).^2+(xnode(jelem)−xnode(ielem)).^2);
    36 telem=atan2(ynode(jelem)−ynode(ielem), xnode(jelem)−xnode(ielem));
    37

    38 % input boundary conditions
    39 nfixed=1;
    40 kfixed=[1];
    41 nslide=1; % if nslide=0; then
    42 kslide=[3]; %    kslide=[];
    43 tslide=[0]/180*pi; %    tslide=[];
    44

    45 % input loading conditions
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    45 % input loading conditions
    46 nforce=1;
    47 kforce=[2];
    48 fforce=[500];
    49 tforce=[0]/180*pi;
    50

    51

    52 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    53 % Part 2: Build FEA Model and Solve %
    54 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    55 % symbol[dimension]: variable
    56 % nunk             : number of unknowns in the FEA solution
    57 % kg[nunk,nunk]    : coefficient matrix
    58 % xg[nunk]         : unknown vector
    59 % fg[nunk]         : force vector
    60

    61 nunk=nelem+2*nfixed+nslide;
    62 kg=zeros(nunk,nunk);
    63 xg=zeros(nunk,1);
    64 fg=zeros(nunk,1);
    65

    66 % FEA formulations − direct assembly of the elemental force vectors
    67 for e=1:nelem
    68    kg(2*ielem(e)−1,e)= cos(telem(e)); % x component of i node for element e
    69    kg(2*ielem(e)  ,e)= sin(telem(e)); % y component of i node for element e
    70    kg(2*jelem(e)−1,e)=−cos(telem(e)); % x component of j node for element e
    71    kg(2*jelem(e)  ,e)=−sin(telem(e)); % y component of j node for element e
    72 end
    73

    74 % applying boundary conditions
    75 for i=1:nfixed
    76    kg(2*kfixed(i)−1,nelem+2*i−1)=1; % x component of fixed node
    77    kg(2*kfixed(i)  ,nelem+2*i  )=1; % y component of fixed node
    78 end
    79 for i=1:nslide
    80    kg(2*kslide(i)−1,nelem+2*nfixed+i)=cos(tslide(i)−pi/2); % x comp of sli nod
    81    kg(2*kslide(i)  ,nelem+2*nfixed+i)=sin(tslide(i)−pi/2); % y comp of sli nod
    82 end
    83

    84 % applying loading conditions
    85 for i=1:nforce
    86    fg(2*kforce(i)−1)=fforce(i)*cos(tforce(i)); % x component of applied force
    87    fg(2*kforce(i)  )=fforce(i)*sin(tforce(i)); % y component of applied force
    88 end
    89

    90 % solution
    91 xg=−kg\fg
    92

    93 % results for current case: (Example 6−1, Statics, 10e, R.C.Hibbeler}
    94 % xg =
    95 %  500.0000 − F1 , Member 1 in tension
    96 %  500.0000 − F2 , Member 2 in tension
    97 % −707.1068 − F3 , Member 3 in compression
    98 % −500.0000 − R1x, negative x direction
    99 % −500.0000 − R1y, negative y direction
   100 % −500.0000 − R3 , normal to and pointing away from the sliding plane
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