
Paper ID #19219

Teaching Hardware to Demystify Foundational Software Concepts

Dr. Christopher Miller, Rose-Hulman Institute of Technology

Chris is an Assistant Professor of Electrical & Computer Engineering at Rose-Hulman Institute of Tech-
nology. His interests include engineering education, embedded systems, and ubiquitous computing.

c©American Society for Engineering Education, 2017

Teaching Hardware to Demystify Foundational Software Concepts

Abstract: Both top-down and bottom-up approaches have been proposed for software and
programming education. Motivations can be cited for both approaches, but empirical data for
either approach can be difficult to obtain. In this paper, we explore potential benefits of a
bottom-up approach which begins at the architecture and machine language level. Abstractions
of basic software concepts such as data storage and pointers can lead to misconceptions.
Understanding how these abstractions are implemented in the underlying hardware can provide
clarity of foundational software concepts.

An introductory course on embedded systems and microcontrollers for electrical and computer
engineers was modified in an attempt to strengthen student understanding of foundational
software concepts. The material covered in the course primarily remained the same, but the
course schedule was modified to move the system architecture and instruction set material to the
beginning of the course, rather than the end. Data was collected for common exam questions for
offerings both prior to and following the course modification. The data indicates that students
who were exposed to the functionality of the underlying architecture prior to high-level
programming languages had a better understanding of basic concepts such as storage allocation
and referential pointers.

This paper contributes to the fields of education in electrical and computer engineering and
computer science by providing data on student outcomes for alternate approaches to content
delivery. We hope that this information is useful in curriculum design and development for
related fields.

Introduction
When teaching a course based in programming or structuring a curriculum with emphasis in
programming there are two approaches which may be pursued: bottom-up and top-down. In a
bottom-up approach1,2,3, students are first introduced to basic low-level concepts, and the course
continues to build upon past-learned concepts, thus forming a foundation for future concepts.
The course gradually builds up to a more high-level abstracted representation of programs. In a
top-down approach4,5,6, students are first introduced to high-level, abstracted representations of
programs, and gradually dig deeper into the details of implementation, towards the low-level
concepts. This can have the benefit of abstracting the complications of low-level
implementation, allowing students to first become familiar and comfortable with basic
programming concepts while working with higher-level languages. Benefits for both approaches
can be stated, but quantifying the differences can be difficult since there is rarely an opportunity
for applying the same measure of evaluation to both approaches.

In a sophomore-level introduction to microcontrollers course, the course outline was modified to
address difficulties in student comprehension of the impact of program design on the underlying
hardware. The original course began with programming in C, which provided a higher level of

abstraction. Towards the end of the course, the instruction set architecture was introduced along
with assembly programming. For most students, this was their first experience with either
language. Many students struggled with understanding the C programming language. They also
struggled to switch to the lower-level of abstraction when assembly programming was
introduced. Since the instruction set was introduced in the latter portion of the course, it aligned
with the more complex projects, which made these projects particularly tedious since they had to
be implemented in assembly.

To address these issues, the outline of the course was modified to begin with an introduction to
the instruction set architecture (ISA) and assembly programming, and later introduce
programming in C. There were several intended benefits to this switch. By starting with the
ISA, students would have a better understanding of data storage on the device and how variables
correlate to physical storage. Students would better understand how special function registers
are connected to the underlying hardware. With a better understanding of data storage on the
physical hardware, students would have a better understanding of how C pointers function.
Since the course begins with assembly programming and ends with programming in C, assembly
programming is only needed for earlier projects, which tend to be smaller and simpler
implementations. Later projects, including the final project, can now be implemented in C,
which allows students to be more creative and attempt more adventurous projects.

While the order of material in the course outline changed, the material covered was largely the
same, and thus similar exam problems were used for both versions. We therefore have a
consistent set of evaluations under each method for similar population samples. In this paper, we
focus on the impact to student understanding of C pointers. This tends to be a challenging topic
for many students, leading to many misconceptions of relational operations. It was hypothesized
that by first helping students to understand how data is stored on the physical hardware, and how
data type assignments correlate to storage, that pointers would be less of a mystery, and students
would exhibit a better understanding of their implementation. We present the course outline
both prior to and following the transition, and the common exam questions which were used in
evaluation. We show student performance on the common exam questions to evaluate
improvement in student understanding.

Methodology
i. Original course design
This course is offered in a 10-week, quarter-based institute. In the original outline of the course,
the first eight weeks were primarily focused on working with microcontrollers and developing
embedded systems using the C programming language. In the last two weeks, we introduced the
instruction set architecture and discussed microcontroller organization and assembly
programming. Since the majority of students had no experience with C prior to this course, the
first two weeks were primarily dedicated to a quick ramp-up in C programming. Hands-on lab
and project work is an integral part of the course. There are weekly lab projects, except for the
final two weeks when students focus on a final project. We use an 8-bit Microchip PIC16
microcontroller, which has a simple RISC architecture with only 35 instructions. An outline of

the course is shown in Table 1. The integral labs are shown in Table 2. These labs will vary a
bit from year to year, but each lab will generally cover the same concepts, with slightly different
implementations. Each of these labs were completed using the C programming language. The
final project assignment was completed using assembly programming.

Table 1. Original outline of course.

Week Topics
1 Introduction, circuit review, software development tools,

and programming in C overview
2 Programming in C and the PIC microcontroller, basic I/O

and mechanical switch debounce methods
3 Hardware timers, compare modules, interfacing with

LCD displays and internal pull-up resistors
4 Hardware timers with interrupts, compare/capture

modules, interfacing with keypads, and driving high-
current loads

5 RS232 Universal Asynchronous Receiver-Transmitter
(UART) serial communication, framing and parity

6 Inter-integrated circuit (I2C) synchronous serial
communication, temperature sensors, and stepper motors

7 Servo motors, pulse width modulation, and analog-to-
digital conversion

8 PIC architecture and instruction set
9 Assembly programming
10 Final project completion

ii. Updated course design
Between the 2014-2015 academic year and the 2015-2016 academic year, the course was
updated to the new outline. The coverage of material is mostly unchanged in the new outline,
with the primary difference being the move of instruction set architecture and assembly
programming to the beginning of the course. This necessitated some modifications to the labs,
since the early labs must now be completed in assembly. This was a good fit, since the earlier
labs tend to be shorter and simpler programs, and thus are more easily accomplished in assembly
than would be projects later in the course. The final project was now completed in C. This
emboldened students to be much more creative and bold in their project goals. One drawback of
the revised outline is it resulted in a more compressed schedule, particularly the first seven
weeks, since all topics must be covered which are necessary in order for the students to complete
the labs. Tables 3 and 4 show the updated course outline and lab schedule. Labs 1 thru 3 are
completed in assembly, and the remaining are completed using the C programming language.

Table 2. Example of original course labs.

Lab Title Description
1 Pushbutton and LED Familiarize students with lab kits, microcontrollers, development

software and basic circuit concepts. Timing delays – fixed-
length instruction loops.

2 Pushbutton input with
timing

Familiarize students with testing/debugging tools. Introduce
timers and de-bouncing concepts. Timing delays – timer with
overflow flag.

3 LED whack-a-mole
game

Introduce 16-bit timers and compare modules. Introduce
function calls and parameter passing. Timing delays – timer with
compare module.

4 Music note player
and frequency tuner

Introduce capture module and compare with output effect.
Introduce LCD display, potentiometer, speaker, nMOSFET,
square-wave signals. Introduce interrupts. Timing delays –
timer and compare module with interrupts.

5 Remote combination
lock system

Introduce UART and serial communication – baud clock
generation, data framing, parity. Introduce keypad input.

6 Temperature control
system

Introduce I2C serial communication – data framing, addressing.
Introduce stepper motors.

7 Light sensor with
servo

Introduce analog-to-digital conversion. Analog input sources.
Introduce PWM and servos.

Table 3. Updated outline of course.

Week Topics
1 Introduction, software development tools, and PIC

microcontroller architecture
2 PIC instruction set, assembly language programming,

hardware timers, internal pull-up resistors, basic I/O and
mechanical switch debounce methods

3 Programming in C, timers, and compare modules
4 Hardware timers with interrupts, compare/capture

modules, and driving high-current loads
5 Servo motors, pulse width modulation, analog-to-digital

conversion, and interfacing with LCD displays
6 RS232 Universal Asynchronous Receiver-Transmitter

(UART) serial communication, framing and parity, and
interfacing with keypads

7 Inter-integrated circuit (I2C) synchronous serial
communication, temperature sensors, and stepper motors

8 Embedded system design principles and advanced topics
9 Final project design and modern development tools
10 Final project completion

Table 4. Example of updated course labs.

Lab Title Description
1 Pushbutton and LED Familiarize students with lab kits, microcontrollers,

development software, assembly programming and basic circuit
concepts. Timing delays – fixed-length instruction loops.

2 Double-click detector Familiarize students with testing/debugging tools. Introduce
variable data storage, timers and de-bouncing concepts. Timing
delays – timer with overflow flag.

3 LED quick reaction
game

Introduce 16-bit timers and compare modules. Introduce
function calls and parameter passing in assembly. Timing
delays – timer with compare module.

4 Music note player and
frequency tuner

Programming in C. Introduce capture module and compare with
output effect. Introduce interrupts. Introduce potentiometer,
speaker, nMOSFET, square-wave signals. Timing delays –
timer and compare module with interrupts.

5 Light sensor with
servo

Introduce analog-to-digital conversion. Analog input sources.
Introduce LCD display, PWM and servos.

6 Remote combination
lock system

Introduce UART and serial communication – baud clock
generation, data framing, and parity. Introduce keypad input.

7 Temperature control
system

Introduce I2C serial communication – data framing, addressing.
Introduce stepper motors.

Results
Since the material covered with both versions of the course is primarily the same, and only the
order of delivery has been changed, the examination questions also remained mostly unchanged
other than the order. This provided a common metric for evaluation of student understanding of
C programming concepts, such as C pointers. In both cases, an introduction to programming in
C occurred in the first half of the term, and was thus covered on the midterm exam. There were
three questions pertaining to programming in C on the exams – each with multiple sub-parts.
The first question primarily measured student understanding of C data types, data storage, and
declarations. The second question primarily measured student understanding of program flow
concepts such as loops, conditional blocks, function calls, and basic C operations. This question
included concepts such as pass-by-value, pass-by-reference and arrays, so it has some
connections with C pointer concepts. The third question focused on student understanding of C
pointers. An example of a portion of the question is shown in Figure 1 (students were instructed
to assume a 1-byte addressable system for these types of questions).

In the delivery of material on C pointers, the discussion always connected the implementation to
the effect on the underlying hardware (data storage). It was believed that this would strengthen
the student understanding of the functionality of C pointers, and they would thus be less of a
mystery. Students, however, continued to perform very poorly on these questions. It typically
scored one of the lowest question averages on the exam, indicating a poor student understanding
of the function of C pointers. It was believed that the change in the course outline to introduce
the underlying organization and instruction set architecture would help to address this gap in

understanding. In the year following the course outline change, students performed dramatically
better on this question, resulting in one of the highest averages among questions on the exam.
That trend has continued in the current year, though we only have a limited sample thus far.
Figure 2 shows the students’ average for the question on C pointers for the year prior to the
change and following, as well as the current year (limited sample). The 95% confidence
intervals are also provided. Data was captured over multiple sections for each year. The 2014-
2015 academic year data captures 91 students across three sections. The 2015-2016 academic
year data captures 78 students across three sections. The current academic year data only
captures a single section of 25 students, and thus has a wider confidence interval. We can see
that the average climbed nearly 25%, and that gain has thus far been maintained into the current
year.

Figure 1. Example of question on exam problem relating to C pointers.

The averages for the other questions related to programming in C were also evaluated, though
they were less conclusive. Shown in Figure 3 are the student averages for the exam questions
pertaining to C data types and storage and program flow in C. There is an indication of
improvement in student understanding of program flow, which could be a result of improved
understanding of pass-by-value and pass-by-reference functionality. Further analysis is needed,
however, of the scores of the individual sub-parts of this problem to identify where exactly the
gains occurred. For the question on C data types and storage, there were modest gains in the
year following the course change, but oddly the average dipped below the original average this
year. There are several factors that may have resulted in this phenomenon. First, there were
some new sub-parts added to this question this year, which differed from the style of question in
previous years. Second, this is a limited sample size (only one section), so it may change after
further samples are captured. Third, there was not much room for improvement on this question,
since the average was already in the mid-80s, indicating that students did not have much
difficulty in understanding these basic concepts.

Figure 2. Student averages (per academic year) on exam question relating to C pointers.
95% confidence intervals included.

Figure 3. Student averages (per academic year) on exam questions relating to program
flow and C data types. 95% confidence intervals included.

0

10

20

30

40

50

60

70

80

90

100

AY2014-2015 AY2015-2016 AY2016-2017*

Av
er

ag
e

st
ud

en
t s

co
re

 (%
)

* Partial year, only one section included in sample

C Pointer Exam Problem Scores

0

10

20

30

40

50

60

70

80

90

100

AY2014-
2015

AY2015-
2016

AY2016-
2017*

Av
er

ag
e

st
ud

en
t s

co
re

 (%
)

C Program Flow Exam Problem
Scores

* Partial year, only one section included in sample

0

10

20

30

40

50

60

70

80

90

100

AY2014-
2015

AY2015-
2016

AY2016-
2017*

Av
er

ag
e

st
ud

en
t s

co
re

 (%
)

C Data Types Exam Problem
Scores

* Partial year, only one section included in sample

Conclusions and future work
The data indicates that providing students with a background in the underlying architecture of the
hardware does benefit their understanding of the functionality and implementation of C pointers.
Benefits to their understanding of other core concepts in C is not clear from the data. There are a
number of other factors which may affect student understanding. Students entering the course do
not all have the same background, and in particular, the same programming experience. Some
students have already worked with C, C++ or Java extensively, and some have prior experience
with microcontrollers or Arduinos. For the majority of students entering the course prior to the
2016-2017 academic year, however, their only programming experience was with an
introductory course in Python. Beginning in the 2016-2017 academic year, students entering the
course had prior experience with Arduinos, which uses a language built on C for development.
While it is not possible to fully isolate the factors impacting student understanding, the
significant and consistent increase in student understanding of C pointers would indicate that the
change in the order of delivery of course material has resulted in gains in student understanding.

Further analysis of the data will be made to obtain greater detail of changes in student
understanding on specific concepts within C by looking at performance on the individual sub-
topics within each question. Data will continue to be gathered for future sections of the course to
evaluate consistency.

References

1. Jerry Mead, Simon Gray, John Hamer, Richard James, Juha Sorva, Caroline St. Clair, and Lynda Thomas. 2006.
A cognitive approach to identifying measurable milestones for programming skill acquisition. SIGCSE Bull. 38,
4 (June 2006), 182-194.

2. Orni Meerbaum-Salant, Michal Armoni, and Mordechai Ben-Ari. 2011. Habits of programming in scratch.
In Proceedings of the 16th annual joint conference on Innovation and technology in computer science
education (ITiCSE '11). ACM, New York, NY, USA, 168-172.

3. Judy Sheard and Dianne Hagan. 1998. Our failing students: a study of a repeat group. In Proceedings of the 6th
annual conference on the teaching of computing and the 3rd annual conference on Integrating technology into
computer science education: Changing the delivery of computer science education (ITiCSE '98). ACM, New
York, NY, USA, 223-227.

4. Rick Decker and Stuart Hirshfield. 1993. Top-down teaching: object-oriented programming in CS 1.
In Proceedings of the twenty-fourth SIGCSE technical symposium on Computer science education (SIGCSE
'93). ACM, New York, NY, USA, 270-273.

5. Margaret M. Reek. 1995. A top-down approach to teaching programming. In Proceedings of the twenty-sixth
SIGCSE technical symposium on Computer science education (SIGCSE '95), Curt M. White, James E. Miller,
and Judy Gersting (Eds.). ACM, New York, NY, USA, 6-9.

6. Peter Van Roy, Joe Armstrong, Matthew Flatt, and Boris Magnusson. 2003. The role of language paradigms in
teaching programming. In Proceedings of the 34th SIGCSE technical symposium on Computer science
education (SIGCSE '03). ACM, New York, NY, USA, 269-270.

