
AC 2008-1310: TEACHING JAVA – OBJECTS FIRST WITH BLUEJ

Xuemin Chen, Texas Southern University

David Olowokere, University of Alabama at Birmingham

Graham Thomas, Texas Southern University

© American Society for Engineering Education, 2008

P
age 13.1166.1

Teaching Java – Objects First with BlueJ

Abstract

The traditional way to teach computer languages such as C, C++ is to start with a simple

program “Hello, world!”. Java derives much of its syntax from C and C++ but has a simpler

object model and fewer low-level facilities. But Java uses the object-oriented programming

methodology. To start teaching “Hello, world!” will not help students understand the object-

oriented programming concept of Java. Therefore, it will be difficult for students to take

advantage of object-oriented programming concepts. In this paper, an objects first Java teaching

method with BlueJ, a simplified and virtualized development environment, is presented. A post-

course assessment is conducted. The interpretation of the assessment results is also discussed.

Introduction

Java was created by James Gosling at Sun Microsystems
1
. It combines object-oriented (OO)

features such as data abstraction, inheritance, and dynamic binding with procedural features such

as variables, assignment, and control structures. The result is a powerful but complex language

that is difficult for beginning programmer to master.

The Java programming language has become increasingly popular in recent years because of its

support for the platform independent, and the OO paradigm. Teaching Java is becoming more

and more common in university departments
2
. There are two ways to teach OO computer

languages such as Java
3
. The traditional way (objects later) is to start with data type, then control

structures, eventually classes and objects. An alternative way is the ‘objects first’ approach,

which is to start first with classes and objects, then move to source code. Java is not the

introductory computer programming language for students at authors’ department. The students

already took C++ in freshman or junior years. The students were taught C++ programming

language concepts and skills without the object-oriented paradigm.

Java derives much of its syntax from C and C++ but has a simpler object model and fewer low-

level facilities. Java programming language platform is based primarily on object-oriented

structures. This makes the use of the language as a teaching tool much easier when teaching

object-oriented concepts. The way to understand the OO paradigm is to deal with the

fundamental concepts - classes and objects. The longer this is left, the more difficult the

paradigm shift becomes.

The transition from the procedural programming paradigm to OO paradigm is very difficult
4
.

Object-oriented development requires a new way of thinking
5
. The syntax-driven approach

(objects later) can take students’ attention away from the underlying concepts and principles of

OO
6, 7

. In the computing education community, a well-known educational design pattern exists

that states that important concepts should be taught early and often
8
. Based on these concerns,

the questions bringing which needs consideration are as follows:

• Which textbook is suitable?

• Which programming environment will be used?

P
age 13.1166.2

• What kind of teaching strategy should be adopted?

The search for a suitable textbook started with these keywords: Java and object first. The

textbook, Objects First with Java – A Practical Introduction Using BlueJ
9
, was selected.

Actually, this textbook is broadly adopted in education community
10, 11

.

Software tools for programming in Java can be equally overwhelming to beginning

programmers. Professionally integrated development environments (IDEs) like Eclipse
12

, and

Borland JBuilder
13

 provide programmers with many features for editing, compiling, and

debugging programs, but their increased sophistication makes them less user friendly and

difficult to use. Beginning programmers are consequently faced with two challenging tasks,

learning the IDE and learning the language. A simple IDE that can allow students to visualize

objects and their relationships would be ideal. BlueJ
14

, written in the Java programming

language, is that kind of IDE developed to support learning and teaching.

The next section reviews the BlueJ integrated development environment. The subsequent section

describes our Java teaching objective and procedure. A section describing the final project

follows. The next section gives the post-course assessment and interpretation of the assessment

results. Finally a conclusion is presented.

The BlueJ IDE

The development of BlueJ was started in 1999 by Michael Kölling and John Rosenberg at

Monash University in Melbourne, Australia, as a successor to the Blue system
15

. Blue was an

integrated system with its own programming language and environment. BlueJ implements the

Blue environment design for the Java Programming Language. It has become a popular choice

for introductory programming courses because of the ease with which absolute beginners can

learn how to use its features
9, 10, 11

.

BlueJ presents on screen a graphical overview of a project structure in the form of a UML

(Unified Modeling Language) like class diagram as shown in Figure 1. It then allows the

interactive creation of objects from any given class in a software project. Once an object has

been created, it becomes visible to the user and any of its public methods can be interactively

invoked by selecting it from a pop-up menu. Parameters and method results are entered and

presented through dialogue windows. In particular, using the Inspect option of the pop-up menu

associated with objects, students can directly see the values of the fields of an object. This allows

them to immediately see the effect of a method invocation on that object and also simplifies the

debugging process.

The environment is carefully designed to be very simple to use. The goal is that students do not

need to spend significant time struggling with the environment, but instead concentrate on the

programming task. This was achieved by a conscious trade-off: Much of the functionality

presented in other environments such as Eclipse and JBuilder is not included in BlueJ. This

makes BlueJ mainly for educational purposes, but also suitable for small-scale software

development.

P
age 13.1166.3

Figure 1 The BlueJ main window

The Course Objective and Teaching Procedure

Cited from curriculum, the course title is “Java Programming”, and the short description is

“High-level, object-oriented language programming using JAVA. The course includes

inheritance and polymorphism, implementing hiding, and the creation of JAVA applets for

internet usage.” Upon completing this course, students should be able to program in Java at an

intermediate level. Specifically, they should be knowledgeable about object-oriented

programming, and able to implement a median software system in Java.

The Computer Engineering Technology is a new program in author’s Engineering Technologies

Department. This programs has begun the process for seeking ABET accreditation in the near

future. The proposed roles of Java course in aiding program outcomes are a, b, d, e, I and k

defined in ABET Criterion 3.

The BlueJ IDE is introduced in the first class, examples on project “Shapes” are demonstrated;

and examples are used to explain the very important concepts – Object and Class. Thereafter, a

hands-on laboratory task follows. With this simplified and virtualized IDE, it is expected that

most students will understand the concepts of object and class in Java programming structure

within the first few weeks.

In order to comply with the laid-down objective of the course, and that is ensuring that students

can program in Java at an intermediate level after course completion, the examination method for

the course has been greatly modified. The first exam is closed book. In this exam, we focus on

Java concepts and syntax. The second exam is open book. The students will demonstrate their

P
age 13.1166.4

programming capability; the intent being to allow students to demonstrate their programming

skills using their textbooks or other materials as references, rather than taking an objective test

about Java programming concepts.

As mentioned in the introductory section, the Java Programming course is not the introductory

computer programming language for students at the authors’ department. The students would

have taken C++ programming prior to the Java class. On completion of topics related to

foundations of object orientation, such as objects, classes, abstraction, modularization, flow

control, library, responsibility-driven design, coupling, cohesion, refactoring; and some complex

concepts such as inheritance, polymorphism, exception handling and implementing hiding;

students are then taught the graphic user interface (GUI) and Applet programming skills.

There have been some arguments on the teaching of OO concept through GUI programming. An

opinion is that students spend excessive time moving and placing GUI components around the

screen, and those OO concepts can be easily embedded or completely ignored. Another opinion

is to teach OO programming effectively and give students firsthand experience with its benefits,

one needs a substantial framework. And the GUI programming provides a particularly effective

vehicle for this purpose because it is relevant to virtually all applications and provides immediate

feedback on the correctness of OO structures through tangible, visual results
 16

. In our case, the

students show a lot of interests in learning these concepts. From the students’ point of view,

learning the concepts of GUI and Applet gives them insights into industrial application.

Instead of a final exam, students are assigned a final project which enables them to apply their

programming knowledge, to learn how to function effectively on teams and to develop self-

learning capability.

When designing the final project, the main concern was to design a project which would

incorporate most of the concepts learned during the semester; and with the project presenting

numerous opportunities for useful application. In the same semester, one of the authors was

teaching the DC Circuits laboratory. The freshman students have some difficulty in remembering

the resistor color code in the DC Circuits class (taught by one of the authors of this paper) and in

using the knowledge to read resistor. There are a lot of graphic resistor color code calculators on

Internet. For example the one developed by TI
17

. When the user changes the resistor color band,

the resistor value will be recalculated and displayed on screen. But that kind of calculators don’t

have quiz functionality to test the students’ color code reading capability. Hence, it was decided

to use this as the final project.

Another concern is the virtual and remotely accessible Laboratory development in authors’

department. Computer based learning has become an important part of education. The Internet

(Website) has become a widespread tool for teaching and learning. The Website enables more

flexible delivery (anytime), distance education (anyplace), new visualization possibilities

(interactivity), and cost reduction. One of the very successful virtual laboratories is the iLab

developed by MIT
18, 19

. The web-based laboratories are impossible to totally replace the

traditional laboratories. But its relatively low cost, flexibility, and remote accessibility will

dramatically improve the teaching and learning capability. The resistor color code lab is the first

P
age 13.1166.5

one we developed for this purpose. More labs related to DC/AC circuit, control, DSP, data

communication and so on will be developed. This plan will provide us lot of project ideas.

The Final Project

The final project is to build a resistor calculator with Java GUI and Applet. The project tasks are

listed as follow:

1. Use Java applet to develop a GUI that is similar to the reference webpage
17

.

2. Display the resistor image.

3. Make the color band change when selecting the different colors in the Como Boxes.

4. Make the webpage have two modes: learning mode and quiz mode. If the user selects the

learning mode, the webpage function is similar to the reference webpage. When the user

picks the quiz mode, the computer randomly generates a color band, and the user can

input the resistor value into the textbox. A SUBMIT button is built for the user to submit

the value. The computer displays a message: “Correct if the value entered by the user is

right” and “Wrong if the value entered by the user is incorrect”.

This project covers most of the topics in the textbook
9
. The project is done as shown in Figures 2

and 3.

As we discussed in a previous section the BlueJ IDE is a simple and effective teaching tool and

also good for small scale software design. Implementation of the project was done using the

professional IDE, Eclipse as this was more suitable for purposes of this project.

Figure 2 The default mode is quiz off. Resistor value is recalculated as the band changing

P
age 13.1166.6

Figure 3 The quiz mode is on. The user read the color code, fill the box. Then submit for

judging.

Post-Course Assessment

This is a small class since the program is new. There are only ten students, and they transfer from

other majors to the Computer Engineering Technology program. One student did not complete

class due to some personal reason. The remaining nine students completed the course and did the

course survey. The following are the survey questionnaires. Number of students selecting each

answer are indicated.

1. In C++ Programming, we start from the “Hello, world!” example. In Java Programming,

we start from classes and objects. Which way do you prefer for Java learning?

a. Objects first 6

b. Objects latter 2

c. Don’t know 1

2. Java vs. C++: learn

a. Java is Harder 4

b. Unsure 1

c. Java is Easier 4

3. Java vs. C++: program

a. Java is Harder 4

b. Unsure 1

c. Java is Easier 4

P
age 13.1166.7

4. Do you confuse classes with objects when you finished this course?

a. Yes 1

b. No 6

c. Don’t know 2

5. Do you like the IDE (Integrated Development Environment) provided by BlueJ?

a. Yes 7

b. No 2

c. Don’t know

6. Do you own the textbook?

a. Yes 7

b. No 2

7. Is the textbook helpful?

a. Yes 6

b. No 1

c. Don’t know 2

8. Would you recommend this course to your fellow students?

a. Yes 9

b. No 0

c. Don’t know 0

Though the sample size used is small and the survey results might not reflect the whole picture

valuable information can be obtained from analyzing the survey results. 67% of students

preferred the objects first teaching method. It was interesting to note that half of the students

think Java learning and programming are harder than C++. Java derives much of its syntax from

C and C++ but has a simpler object model and fewer low-level facilities. It does not mean that

the Java is much easy to learn and program. Most of the students (67%) don’t confuse the class

with the object when they finish this course. Two students were confused. This was due to their

poor attendance. 78% of students enjoy using the BlueJ IDE as the learning tool. The trade-off of

the simplified IDE is that it doesn’t provide powerful help as the professional IDEs do. The

textbook
9
 provides many examples that are easy to follow. 78% of students have the textbook

and 66% of students think the textbook is helpful. The good thing is all of students gain their

programming capability and recommend this course to their fellow students. In the comments

area, lots of the students mention the final project. They like this project and learn a lot from it.

They also mentioned that the project was a bit difficult. To enable them to complete the project

the instructor provided additional assistance.

Conclusion

Java as an object-oriented computer language is not easy to teach. Although not taught as an

introductory computer language in authors’ department, student students still find that Java is a

difficult object-oriented computer language. However, with right teaching tools and methods the

teaching outcomes can be significant. BlueJ which is designed with the unique features of

interactivity, visualization and simplicity can create a good first impression on students. A

professional IDE such as Eclipse is recommended for complicate project design. A well designed

final project with graphic user interface will motivate the students to learn and help them to

better understand Java.

P
age 13.1166.8

Bibliography

1. James Gosling, Henry McGilton, The Java language Environment: A white paper, Sun Microsystems, 1996

2. M. Kölling, J. Rosenberg, Guidelines for Teaching Object Orientation with Java, Proceedings of 6
th

 conference

on Onformation Technology in Computer Science Education (ITiCE 2001), Canterbury, 2001.

3. Albrecht Ehlert, Carsten Schulte, Learners Views on Objects-First and Objects-Later – Results of an

Exploratory study, 11th Workshop on Pedagogies and Tools for the Teaching and Learning of Object Oriented

Concepts, Berlin, Germany, July 2007.

4. Jürgen Börstler, Marie Nordström, Lena Kallin Westin, Jan-Erik Moström, and Johan Eliasson, Transitioning to

OOP/Java - A Never Ending Story, http://www.spop.dk/final-chapters/Transitioning_to_OOP.pdf.

5. V. Bacvanski and J. Börstler. Doing Your First OO Project: OO Education Issue in Industry and Academia.

Proceedings of OOPSLA Addendum, Atlanta, GA, USA: ACM Press, 1997.

6. J. Bennedsen and M.E. Caspersen, Model-Driven Programming, in The SPoP book, J. Bennedsen, M.E.

Caspersen, and M. Kölling, Editors. 2006.

7. M.E. Caspersen and H.B. Cristensen, CS1: Getting Started, in The SPoP book, J. Bennedsen, M.E. Caspersen,

and M. Kölling, Editors. 2006.

8. J. Bergin, Fourteen Pedagogical Patterns for Teaching Computer Science, Proceedings of the Fifth European

Conference on Pattern Languages of Programs (EuroPLop 2000), Irsee, Germany, July 2000.

9. David J. Barnes and Michael Kölling, Objects First with Java – A Practical Introduction Using BlueJ, Third

Edition, Pearson Education, 2006.

10. Jasna Kuljis, Orienting the teaching of an Introductory Object-Oriented Programming to Meet the Learning

Objective, Journal of Computing and Information Technology –CIT 12 (2), 135-142, 2004.

11. Stelios Xinogalos, Maya Sartatzemi, Vassilios Dagdilelis, and Georgios Evangelidis, Teaching OOP with

BlueJ: A Case Study, Proceedings of the Sixth International Conference on Advanced Learning Technologies

(ICALT'06).

12. Eclipse, http://www.eclipse.org.

13. JBuilder, http://www.borland.com/jbuilder.

14. BlueJ, http://www.bluej.org.

15. BlueJ, http://en.wikipedia.org/wiki/BlueJ.

16. Jesse M. Heines and Martin J. Schedlbauer, Teaching Object-Oriented Concepts Through GUI Programming,

Eleventh Workshop on Pedagogies and Tools for the Teaching and Learning of Object Oriented Concepts, Berlin,

Germany, 2007.

17. TI Four Band Resistor Color Code Calculator, http://focus.ti.com/docs/toolsw/folders/print/4rescolorcalc.html.

18. Gerardo Viedma, Isaac J. Dancy, and Kent H. Lundberg, A Web-Based Linear-Systems iLab, American Control

Conference, June 8-10, 2005. Portland, OR, USA, pp. 5139-5144.

19. iLab, http://icampus.mit.edu/iLabs/

P
age 13.1166.9

