
AC 2009-2441: TEACHING REAL-TIME EMBEDDED SYSTEMS NETWORKING
AND ASSESSMENT OF STUDENT LEARNING

Zaydoun Rawashdeh, Wayne State University
Zaydoun Rawashdeh has received his Master’s degree from the University of Michigan. He is
currently a Ph.D candidate in the Department of Electrical and Computer Engineering at Wayne
State University. Since 2007 he has been working as a Teaching Assistant in the department. His
research area is Vehicular Ad hoc Networks.

Syed Masud Mahmud, Wayne State University
Syed Masud Mahmud received the Ph.D. degree in electrical engineering from the University of
Washington, Seattle, in 1984. Since 1988, he has been with Wayne State University, Detroit,
Michigan. Currently, he is an Associate Professor of Electrical and Computer Engineering
Department. During the last 20 years, he has been working in the areas of hierarchical
multiprocessors, hierarchical networks, performance analysis of computer systems, digital signal
processing, embedded systems, in-vehicle networking, performance analysis of networking
protocols, secure wireless communications, and privacy protected vehicle-to-vehicle
communications and simulation techniques. He has supervised a number of projects from Ford
Motor Company and other local industries. He also served as a Co-PI on two NSF funded
projects. He has published over 100 peer-reviewed journal and conference proceeding papers. He
has supervised four Ph.D. dissertations and 8 MS theses.

Dr. Mahmud received the President’s Teaching Excellence Award of Wayne State University in
2002. He also received several other teaching excellence awards within the college of
engineering. He has served as a Technical Reviewer for many conferences, journals, and funding
agencies. Currently, he is the Editor of the SAE Transactions on Passenger Cars: Electrical and
Electronic Systems. Since 2008 he has also been serving as an ABET program evaluator. He is a
senior member of IEEE. He is also a member of SAE, ASEE, Sigma Xi and Tau Beta Pi. He has
been listed in the Who’s Who in Science and Engineering Empowering Executives and
Professionals, and many others.

© American Society for Engineering Education, 2009

P
age 14.1148.1

Abstract

Today, embedded systems and embedded networking are common in manufacturing, complex

vehicles, medical equipment, and home appliances, but few undergraduate engineering and

technology curricula teach courses devoted to real-time embedded systems networking. Not

having appropriate educational experiences risks a decline in U.S. technical expertise. Various

companies such as Vector Corporation and Dearborn Group have developed commercial

software packages for analysis, diagnosis and simulation of real-time embedded systems

networking protocols. These companies also offer short training courses in embedded systems

networking. The intended audiences of these training courses are the experienced engineers

working in the industry but not the inexperienced undergraduate students. Although the

commercial software packages are very complex and time consuming for the students to learn on

their own, they can be taught (delivered) to the students in a simple way. This can be done by

focusing on the major components that are considered the base to build any real-time embedded

systems network. In this paper, we present an instructional material for CAN Open Environment

(CANoe) software. This software can be used to develop, test, and simulate CAN networks. The

instructional material basically summarizes the main components that are needed to build

CANoe application in five labs. These labs represent the major phases in the CANoe application

development cycle. Students, after learning this material, can move forward to develop more

sophisticated applications on their own. We have also done assessment analysis for student

learning. Based on our analysis it is concluded that our semester-long teaching and hands-on

laboratory exercises greatly enhanced student learning. Detailed descriptions of our teaching

materials along with our teaching methodologies are presented in the paper. The paper also

presents the assessment of student learning. Our work may motivate other instructors around the

country to develop similar courses to teaching real-time embedded systems networking.

Introduction

We are living in a world today in which rapid technological change is occurring faster than even

our universities can keep up with. If we look back 50 years, we see an automobile industry in

which almost all systems are mechanically based. Fast-forward to today, and industry projections

are showing that by 2010, 40% of the total cost of a car will be dedicated to electronics and

distributed electronic control systems. During this time span, individual manufacturers have

developed their own processes and their own proprietary electronic architectures and protocols.

Many of these standards did not make it out of their company’s doors, but we finally have a

situation where certain protocols are used globally. This global industry standardization did not

come about until around 10 years ago. After a decade of preferred usage across Europe, Bosch’s

CAN protocol [1] finally won widespread acceptance in the US auto industry during the late

1990s. Worldwide usage brings certain advantages with it. Standardization of components drives

down manufacturing costs; it also reduces maintenance costs when replacements are easy to

obtain. In addition, auto mechanics and repair personnel only have to learn one electronics

communication protocol to diagnose and repair faulty systems. In this entire situation, the only

weak link is the educational system.

P
age 14.1148.2

Many schools around the country teach a course in embedded design, but very few [2,3,4] focus

on the networking of embedded systems. With the globalization of our workplace, and jobs

moving to other countries, it is important to train US workers on these new technologies to

remain competitive with the rest of the world.

The main issue with teaching a course in embedded systems networking is that new software and

hardware tools are necessary. Vector [5] and Dearborn Group [6] have developed software tools

that can be used to build and simulate a whole CAN network. Although these software packages

are very complex and time consuming for the students to learn on their own, they can be taught

(delivered) to the students in a simple way. This can be done by focusing on the major

components that are considered the base to build any real-time embedded systems network.

Vector [5] has developed a software package called CANoe which can be used to do real-time

simulations of a large CAN-based. This software can also be used to develop and test CAN

networks. Real external nodes can also be connected to the CANoe software system to monitor

bus traffic and control external nodes. The system can run a system with both simulated and real

nodes working together. Both Vector and Dearborn Group offer short courses to teach their

software systems. However, these short courses are very expensive especially for undergraduate

students. Thus, we have decided to introduce CANoe software in our undergraduate senior

design course so that the students can gain hands-on experience of real-world systems. As a

result, the students can be well prepared before they enter the workforce. In this paper, we

present an instructional material for CANoe software. The instructional material covers the main

components that are needed to build CANoe application in five labs. These labs represent the

major phases in the CANoe application development cycle. Students, after learning this material,

can move forward to develop more sophisticated applications on their own.

Figure 1: Simplified control network for average automobile without CAN.

P
age 14.1148.3

Figure 2: Simplified control network for an average automobile using CAN.

Background

Today, CAN is the standard for mission critical real-time electronic control networks. Developed

in the 1980s by Robert Bosch GmbH, with first silicon from Intel Corporation, CAN was created

to meet a specific need in the new fleet of automobiles on the road. Microprocessors started to

become economical enough and small enough to be implemented in cars. Fuel was now being

electronically injected, sensor data was being collected for temperatures, fluid levels, and

emissions, and we still had all of the wiring from power windows, doors, and other systems. In

this scenario, just as shown in Figure 1, the Electronic Control Unit (ECU) in the car would need

to be directly connected to all devices it would interface with. This would include analog or

digital connections to every sensor it would be processing. With dedicated links between every

processing control center and their external devices, massive amounts of wiring were needed in

addition to ever growing wiring harness sizes to accommodate these wires. This not only

increases the cost of the vehicle, but adds a noticeable amount of weight to the vehicle.

CAN eschews this structure and replaces it with a serial communication bus between all devices

in the vehicle. For the cost of adding a CAN processing chip on each node in the network we are

gaining many advantages. We now have to send only one set of wires (most likely two)

throughout the vehicle and every device can tap into the same bus. As can be seen in Figure 2,

instead of needing numerous analog and digital ports on the ECU, we can now reduce it down to

one CAN connection. This severely reduces the number of wires in the car, and the number of

inputs needed on the ECU, but it can also increase the intelligence of each node on the network.

Every node is connected to the same bus, and therefore, every node sees all of messages sent on

the bus. If multiple nodes need a specific sensor’s data, they can pull that data out simultaneously

from the same sensor when the data travels over the bus. This is a large improvement versus

having to make multiple requests to the ECU for the sensor data, or having to build in local

redundant sensors for each node if the ECU cannot handle the traffic. Another great feature is

expandability. If the vehicle manufacturer wanted to add a new system to the car, the electronics

would have to be placed, the wiring laid out, the harnesses changed to accept the new wiring, and

the ECU changed to one that had enough ports. In a CAN network, they would only need to add

P
age 14.1148.4

the electronics and tap into the CAN bus. All other changes would be made to the software

firmware of the ECU so that the unit knew the new system’s CAN messages and what to do with

them. From a protocol level, CAN is already a mature standard [7, 8]. CAN became an ISO

standard in the early 1990s, and has seen 20 years worth of testing and applications so far. The

protocol was implemented in silicon very soon after introduction, so the CAN node controllers in

use can operate at very high speed, and low power consumption with the error handling and fault

confinement capabilities handled automatically. The message format and communication

methods are also designed with error detection in mind. The robust format allows easy detection

of invalid message strings, and quick and easy notification of the transmitter that there was a

problem. The CAN protocol also has very good handling of faulty nodes. Instead of a faulty node

being able to consume all bandwidth on the network and block all transmissions, the CAN

protocol has features built in that allow the network to disable that faulty node. Since we are not

100% reliant on a single node in the network, any transactions that do not involve the faulty node

can continue as if nothing bad happened. Even though it was originally applied to automobiles,

the dependability and advantages of CAN have attracted other industries to utilize the protocol.

The textiles industry was the first to make a major move toward redesigning all of their machines

to utilize CAN networks. CAN based weaving, knitting, and sewing machines are in widespread

use today. CAN networks can also be found in train systems, airplanes, hospital room controls,

and even large and small home appliances [9]. Learning this protocol for embedded networking

will help prepare students for a large number of possible industries.

On the development side of CAN, Vector and Dearborn Group both make tools to aid in design

and production. Vector’s CANoe [10] is a simulation and measurement software that allows us

to simulate in-vehicle networks. It empowers us by allowing us to: 1) Simulate nodes in the

network, 2) Choose network protocols, 3) Create messages and signals, 4) Monitor simulated and

real bus, 5) Log all information required. Using CANoe, various simulation conditions can be

created, for example, you can choose to work on real buses or simulated buses (up to 32 buses

can be simulated). Network can have simulated and real nodes at the same time. Also, CANoe

can be configured to function as a gateway between two networks with different bandwidth e.g.,

High Speed and Low Speed CAN networks.

Although CANoe software is very complex, it can be presented and delivered to the students in a

simplified way. The methodology used is to introduce the basic components at the first stage,

and then present the major functionality components that are needed to develop and simulate

simple network scenario. For this purpose, we developed an instructional material that is

composed of five labs. The material is organized such that the students learn the basic part at

early stages and in each new lab; the students advance their knowledge and become familiar with

more details of CANoe. At the end, students will be able to simulate simple network scenario.

Instructional Material

The purpose of the CANoe software is to provide us with a development environment for CAN

systems. CANoe system also requires us to write codes for real-time networking applications

using a high-level language called CAPL which is similar to C language. The instructional

material on CANoe has been developed for our senior design class. Since all students come to

the senior design class with background in C language, writing codes in CAPL was not an issue.

P
age 14.1148.5

Since the use of CANoe software requires knowledge of the CAN protocol, lecture notes were

developed on CAN protocol to provide the students with the basic background in CAN protocol.

The other instructional materials were developed to help students build a standard CANoe model

by focusing only on the software part of the CANoe setup. The material is partitioned into five

labs. A high-level representation of the labs is shown in Figure 3.

At the end of each Lab, students learn how to operate CANoe to accomplish the goals of the

current lab. The labs are organized in an incremental way of complexity. The experiments build

upon the previous to add more functionality. In each new stage, students learn new features that

enhance their knowledge about the system. Eventually, when students finish all labs, they will be

able to simulate a CAN network consisting of multiple nodes.

Learning Outcomes of the Laboratory

Figure 3: High level description of the labs and their order

After completing the laboratory assignments, students should be able to:

1. Construct CANoe applications.

2. Create database to store all objects needed to complete a CANoe application.

3. Create panels and identify different types of controls that can be placed on the

panels.

4. Configure nodes to use environment variables to pass data of external events to

the network.

5. Configure the simulation environment and add nodes to the network.

6. Write code using CAPL to implement various types of events.

P
age 14.1148.6

7. Use CAPL to simulate node behavior.

8. Program nodes to send and receive messages.

Brief Descriptions of Labs

So far we have developed instructional materials for five labs. At the beginning of each lab,

students learn the material (content) of that lab, and at the end, they implement the lessons

learned from that lab. In order to help students grasp the important lessons of the lab, we

developed an assignment for practicing purposes. Students must implement the assignment in

parallel with the labs. The solution of the assignment can be done in several phases. Students, in

each lab, finish the phase of the solution that is related to the material of that lab. The assignment

along with the solution is included in the Appendix. You can see that, each phase of the solution

is named after the lab that is used to accomplish that part (phase). Brief descriptions of the five

labs are presented below. All these labs together will help the students accomplish the above

learning objectives.

Lab1: Exploring Main Functions of CANoe.

The goals of Lab 1 are: to introduce the CANoe Software and its graphical interface, to

understand the structure of CANoe, to become familiar with CANoe major components needed

to implement CANoe application at the introductory stage, to understand the sequence of

developing CANoe applications, to be able to open, load, and run a demo configuration. Since

CANoe is complex and huge, we begin by exploring how CANoe looks like, what do various

windows have to offer us, and how can we open a new project / configuration in CANoe. At the

beginning of this lab, we show students how to start CANoe and then we go over the windows

that help students shorten the time to learn whatever they need at this stage. The following

windows along with their functionalities have been presented to the students:

1. Windows offering the most generic functionalities, e.g., open and load a configuration

file.

2. The database window that is used to create and modify databases.

3. The measurement setup window that is used to configure data statistics we need to

monitor.

4. The Simulation setup window, which provides us with an environment to choose the type

of the bus, to add and configure nodes for simulation, to associate messages to the

configuration setup, etc.

5. A set of windows that can be used to view the data in different formats and display

system messages. These windows are:

a. Trace window: Used to show the content of the message and some other related

information like message ID, time stamp, and etc.

b. Data window: In this window, users can select what data items of the message to

be shown.

c. Graphics window: This is used to show the content of the messages graphically.

d. Bus Statistics window: This is to show the statistical information for the network,

e.g., the number of messages exchanged, the rate of the messages, and so on.

P
age 14.1148.7

e. Write window: This is used to output text data during program execution, output

the starting and end time of program execution.

6. Start window where we can start, stop, break and step through the simulation.

7. The mode window where we can switch between the online and offline modes of

operations.

8. The Panel editor work place which provides us with an environment to create panels that

can serve as a front end of the program.

This lab basically gives the directions to the students to focus on the most important components

of CANoe that are needed to develop simple CANoe application at this stage. Instead of start

learning on their own, students can save time and focus their efforts on learning these

components. After that, students can start focusing on more advanced features of the software.

Lab2: Introduction to CANdb++

The CAN system is basically a set of nodes that exchange messages and react upon their

reception. Therefore, to make the development of CANoe application simple, all objects e.g.,

nodes, messages, signals, etc, can be created, configured, and stored in a database so that they

can be used at any time during system development. Lab 2 has been designed to introduce the

CANdb++ and its graphical editor where objects needed for system development can be created

and stored. Not only this, but, students will also be familiar with the characteristics of the objects

being used. Therefore, we start the lab by describing the following objects:

≠ Network Nodes, each network node consists of one CAN controller and a transceiver in

an ECU.

≠ Messages, each message is a container holding a block of data transmitted onto the bus

and has a unique ID.

≠ Signals, which represent the actual data objects to be exchanged among nodes, and are

encoded in the data field of the CAN message.

≠ Value tables, which can be used to define symbolic values.

≠ Environment variables that are used to describe external events and can be used as input

and output variables.

After that and by using the CANdb++, students will be performing the following steps to build

the database:

≠ Create and configure (define) network nodes.

≠ Create and configure (define) messages.

≠ Create signals and position them inside the message.

≠ Represent signal values symbolically.

≠ Establish object association:

o Signals to messages association.

o Messages to network nodes association.

≠ Define environment variables.

At the end of this lab, students will be able to create their own databases by defining and adding

objects from the object tree. They learn how to create network nodes, how to create a complete

CAN message, how to define message signals and how to position signals within a CAN

message, and how to associate messages to the network nodes. The “Constructing Database” in

P
age 14.1148.8

the appendix shows how students can define the database; how they can define three network

nodes, three messages, four signals, and three environment variables, and finally how to assign

signals to messages and messages to network nodes. This lab also helps students understand the

object hierarchy of the CANdb++ and how objects are organized as shown in Figure 4.

Messages

Network Node

Signals

Messages

Signals Signals Signals

Messages

Network Node

Signals

Messages

Signals Signals Signals

Attributes

Attributes

Attributes

Value

Tables

Environment

Variables

Figure 4: Object hierarchy in the database

Lab3: Introduction to Panel Editor

Panels are basically user-defined graphical interfaces used to control and display node behavior.

They are created and assigned to nodes to make it easy to run and operate the system. Panles can

react to external events like; changing the state of the switch, or internal events like, receiving

messages from CAN bus. This lab has been designed to help students be familiar with the Panel

editor, which is basically a tool that can be used to create and arrange panels. But, In order for

the students to be able to use Panel editor to create and configure panels, they need to understand

the different types of controls that can be placed on the panels. These controls are called

elements and can be classified into:

≠ Control elements: they are used to represent the values from sensors. These values can be

modified by the user. Push buttons, Switches, are an example of this type.

≠ Display elements, they are used to represent values from actuators. The changes of these

values can be displayed. Meters, Multi-control, and gauges are an example of this type.

≠ Static elements where no environment variables can be assigned, e.g., Bitmap, Text

(Label), and so on.

≠ Input/Output Control, which regulate the input values resulting from our programmed

actions, and display the resulting output values, e.g., Input/Output control.

In this lab, students learn how to run the Panel editor, how to choose the predefined panels’

elements, how to configure nodes to use environment variables to pass data of external events to

P
age 14.1148.9

the network, and let the receiving nodes display the data embedded in the messages being

received. Students will also learn how to configure elements as input, output or both. In addition

to that, they will also learn how to associate elements with either an environment variable or

signal defined in the database. Finally, students learn how to associate the created panels to the

CANoe configuration. The “Creating Panels” in the appendix shows how students can create one

Control element (Switch) and two Display elements (LCD). The students then associate the

switch to one of the environment variables, and the LCDs to the other environment variables.

After the elements (one switch and two LCDs) have been configured, students perform the

Panels to CANoe association.

Lab4: CANoe Simulation Setup

Up to this point, students have already learned how to create databases, and how to define nodes,

messages, and signals. The time now is to learn how to add these nodes to the CAN network, and

to understand the environment that provides us with the infrastructure where the communication

among nodes can take place. This lab is designed to introduce the simulation setup tool where

students can visualize the distribution of network nodes on CAN bus. In this lab, students learn

how to configure network nodes to communicate with each other. In addition to that, students

learn how to associate the database and CAN bus to the network. But, in order for the students to

be able to use the simulation setup, they need to understand the various types of nodes that can

be added to the network, these types can be summarized as follows:

≠ Generator Block: The purpose of this type of nodes is to send messages configured in

advance and organized in a transmit list based on some triggering conditions.

≠ Interactive Generator Block: this is similar to the Generator Block, but the difference is

that signals, messages, and the triggering conditions can be adjusted during the run time.

≠ Replay Block: this is used to capture messages from a log file and resend them.

≠ Network Node: this is the most important type of nodes that can be used to simulate

complex nodes

≠ Test Module: This type is not defined in the network database. It can be implemented in

two ways: using CAPL or using an XML file. This type is good for large number of test

scenarios generated from existing data.

Once students become familiar with the different types of nodes, they start performing

simulation setup. They start by opening the simulation setup window and then associating the

database to the network. In the next step, students learn how to add nodes to the network, Figure.

5 (a) shows the process of adding a node to the network. In addition to that, students learn how to

add filtering elements by choosing the filter type (Input / Output). The filtering can be done by

right clicking on the line connecting the node to the bus and inserting a filter for message, signal,

and nodes as shown in Figure. 5 (b). The whole channel can also be filtered. Using this

technique, we can block messages and prevent some nodes from receiving or sending them.

Students also learn how to deactivate and reactivate simulated nodes and filtering blocks. The

“CANoe simulation setup” in the appendix shows how students can open the simulation setup

tool add the three Network Nodes defined earlier in the database to the CAN bus.

 P
age 14.1148.10

 (a)

 (b)

Figure 5: (a) Adding a node to the network. (b) Insert filtering block

 P
age 14.1148.11

Lab 5: Configuring Network Nodes Using CAPL.

In the previous labs, students learn how to create database, create panels, and setup the

simulation environment by adding nodes to the network. But, the system can not be operational

unless we program the network nodes and simulate their behavior. In this lab, we introduce

CAPL that is used to program nodes and simulate their behavior. We try to teach the most

important components of CAPL that are sufficient to complete CANoe application at this level.

The organization of this lab is as follows:

1. Presenting the features of CAPL.

2. Configuring nodes by opening CAPL browser and assigning CAPL programs to them.

3. Accessing database objects and interacting with panels.

4. Presenting CAPL events that are needed to develop simple CANoe application.

5. Defining messages and signals, and creating functions in the CAPL browser.

At the beginning, we introduce CAPL, which is based on C language, and present its unique

features and the main differences from C as shown in table I. We also show how to construct

CAPL program. In this lab, students learn how to open CAPL browser, by double clicking on the

Network Node shown in Figure 5, to configure network nodes. Figure 6 shows the CAPL

browser along with the events used to simulate nodes’ behavior. We show students how to

declare global variables in the global variable declaration area, how to access the database to

locate messages and signals for declaration. The students also learn how to add, define, and write

event procedure, they learn how to define and call function, and finally, they learn how to

compile the code.

Since CAPL is an event–based language, Students should learn that CAPL applications are

developed to respond to the occurrence of the predefined events. These events are classified into:

≠ Input/Output events.

≠ Timing events.

≠ Communication events.

We train students to add and write code for the events. We show them that events are not

executed in a sequential order, although the instructions within the event are executed

sequentially. Students are able to understand that the code of the event is executed only when it

occurs. In this lab, we let students focus on the following events:

1. CAN message: This event is called when a message is received, e.g., whenever a node

receives a message with a certain ID it starts a timer to send periodic messages.

2. Keyboard: This event is called and executed after pressing a key, e.g., a message can be

sent to the bus when pressing a certain key.

3. Timer: This event is called when a timer expires. Two types of timers are supported, the

mstimer that have a millisecond resolution, and the timer having resolution in seconds.

4. Environment: This event is called when an environment variable is changed in the CAPL

node or in the Panel.

We also introduce some embedded functions, e.g., the output function that is used to send

messages to the bus and the write function to display system messages on the screen. At the end

P
age 14.1148.12

of this lab, students learn how to program nodes to react to the occurrence of some external and

internal events.

Table I: Main Features of CAPL

CAPL
Main Features Main differences from C language

Event- based language (events are

uninterruptible)

Doesn’t support user defined structures

Interfacing with the database, which provides

us with an easy way to access the database

objects like Environment variables,

Messages, and Signals

Support function overloading

Utilizing the environment variables and

signals to interact with panels.

No Pointers are used

Figure 6: CAPL browser

The “Programming nodes using CAPL”, presented in the appendix, shows how students declare

the global variables like the messages, timers, the expiration period of the timer, and other

variables. They also define event procedures like environment variable that will be executed after

the switch is turned on, the timer event that can be used as an indication to send a message using

output function or increment the numbers to be displayed on the LCD. The code for all nodes is

Global variable

declaration area

Event area

Code area event

procedure

Compiler / messages

P
age 14.1148.13

included in the appendix. By finishing this phase, the students are able to complete a simple

CANoe application that can be considered as a base to start more sophisticated tasks.

Table II: Survey results of the learning outcomes.

(Numerical values in the cells of the following table indicate the number of students.)

Learning Outcomes

No

Ability

Some

Ability

Adequate

Ability

More than

Adequate

Ability

High

Ability

1. Construct CANoe applications. 2 4 10 8

2. Create database to store all objects

needed to complete a CANoe

application.

 3 5 10 6

3. Create panels and identify different

types of controls that can be placed

on the panels.

 3 6 9 6

4. Configure nodes to use

environment variables to pass data

of external events to the network.

 2 5 10 7

5. Configure the simulation

environment and add nodes to the

network.

 1 4 11 8

6. Write code using CAPL to

implement various types of events.

 4 5 9 6

7. Use CAPL to simulate node

behavior.

 4 6 8 6

8. Program nodes to send and receive

messages.

 3 7 8 6

Assessment of Student Learning

Our teaching materials on Embedded Systems Networking were introduced to the students

during the Fall-2008 semester in our senior design class. Altogether 10 hours of lecture (five 2-hr

lectures) were presented to cover the materials related embedded systems networking. The

students were divided into groups of three. The students of each group worked together to

achieve the goals of each laboratory assignment. The students were required to present a demo of

each assignment. Different student of a group was required to take the lead in showing the demo

of different assignment. This way, we could make sure that all students participated equally and

learning experience among the entire student population was similar. Most students were able to

do all five assignments without any major difficulties. However, a few students who did not have

strong programming skills had some difficulty. There were 24 students in the class and they were

divided into 8 groups. Six groups completed all labs with 100% accuracy. One group achieved

80% accuracy and the other group achieved 75% accuracy. Thus, we believe that our goals of

teaching embedded systems networking materials were met. We also conducted a survey to

determine how the learning outcomes of the laboratories were met. The survey results are

presented in Table II.

P
age 14.1148.14

The above survey results indicate that the students gained significant experience in designing

embedded system networks. As a result, we believe that our goals have been achieved. We are

also using our teaching materials during the Winter-2009 semester. We will also do another

assessment for the current semester.

Conclusion

This paper presents the description of the instructional materials that have been developed to

teach CANoe software system. Using this system, students quickly learn how to construct and

simulate CAN networks. We believe student learning about embedded systems networks is

enhanced due to the use of our instructional materials. The lecture notes and related instructional

materials can be made available to any interested instructors for teaching embedded networking

system at their institutions.

Bibliography

1. Bosch, “CAN Specification Version 2.0,” Robert Bosch GmbH, Stuttgart, Germany, 1991.

2. Oklahoma State University – Advanced Embedded Systems Design -

http://biosystems.okstate.edu/Home/mstone/5030_04/5030_04index.htm

3. Carnegie Melon University – Embedded Systems Design - http://www.ece.cmu.edu/~ece549/index.html

4. Wayne State University – Capstone Design –

5. http://ece.eng.wayne.edu/~smahmud/ECECourses/ECE4600/ECE4600.htm

6. Vector Group Worldwide – http://www.vector-worldwide.com/

7. Dearborn Group - http://www.dgtech.com/

8. International Standards Organization, “Road vehicles – Controller area network (CAN) – Part 1: Data link layer

and physical signaling,” ISO 11898-1, 1993.

9. International Standards Organization, “Road vehicles – Controller area network (CAN) – Part 2: Highspeed

medium access unit,” ISO 11898-2, 1993.

10. CANopen Application Examples – http://www.canopen.us/applications.htm

11. Vector CANoe – http://www.vector-worldwide.com/vi_canoe_en,,223.html

P
age 14.1148.15

Appendix

Detailed step by step to construct simple CANoe application

The goals of this practice are as follows:

≠ To let students apply what they learn in the five labs mentioned earlier.

≠ To construct a complete CANoe application by passing through labs in the way they are

organized.

The assignment:

Step1:

Create a CANoe Database that contains the following three objects:

o Three network nodes (N_1, N_2, N_3)

o Three messages (msg_1, msg_2, msg_3)

o Six signals (sig_1, sig_2, sig_3, sig_4).

Assign sig_1 and sig_2 to msg_1, sig_3 msg_2, and sig_4 to msg_3. Then associate msg_1 to

N_1, msg_2 to N_2, and msg_3 to N_3.

Step2:

Use environment variables and panel editor. You need to use the Switch button and the LCD (1

switch button and 2 LCDs).

Step3:

When you change the state of the switch to “ON” (by pressing on it), the following procedure

starts and continues running as long as the state of the switch remains “ON”.

1. N_1 generates 2 random numbers. The first Random Number (RN1) should be between 6

and 20, while the second Random Number (RN2) is either 1 or 2. The node stores RN1 and

RN2 in Sig_1 and Sig_2 respectively. The node must wait for 1 second and then send the

message to the can bus. The first generated number represents the maximum value of a

counter, and the second number represents the increment step.

2. Nodes (N_2 & N_3) receive the message and extract its contents. Based on the content of the

message, the two nodes take the following actions:

≠ If RN1 is between 6 and 13 (1316 ∞∞ RN), only N_2 reacts as follows:

i. N_2 starts counter and shows the counting process on the LCD. The

maximum counter value is defined by the received Sig_1, while the counting

steps (each increment step) are defined by Sig_2.

ii. If RN1 is odd and RN2 is even, then the maximum count can be up to RN1-1.

iii. When the counter reaches its maximum value. N_2 waits 1500 msec. and

replies by sending a message to the bus. The message contains the generated

random number (RN1) incremented by 1.

P
age 14.1148.16

iv. Only N_1 is allowed to respond to this message. N_1 generates new random

numbers, stores them in Sig_1 and Sig_2 respectively, and sends its message

to the bus. If the new generated random number remains between 6 and 13

(136 ∞∞ RN), we need to repeat the previous step (step i).

v. This process will be repeated as long as the state of the switch is ON.

≠ If RN1 is between 14 and 20 (20114 ∞∞ RN), only N_3 reacts as follows:

i. N_3 starts counter and shows the counting process on the LCD. The

maximum counter value is defined by the received Sig_1, while the counting

steps (each increment step) are defined by Sig_2.

ii. If RN1 is odd and RN2 is even, then the maximum count can be up to RN1-1.

iii. When the counter reaches its maximum value. N_3 waits 1500 msec. and

replies by sending a message to the bus. The message contains the generated

random number (RN1) incremented by 1.

iv. Only N_1 is allowed to respond to this message. N_1 generates new random

numbers, stores them in Sig_1 and Sig_2 respectively, and sends its message

to the bus. If the new generated random number remains between 14 and 20

(2014 ∞∞ RN), you need to repeat the previous step (step vi).

v. This process will be repeated as long as the state of the switch is ON.

Step4:

To exit from the above procedure, you need to press on the switch again to change its state to

“OFF”.

Solution:

Constructing Database:

The first thing that needs to be done is creating the objects (Nodes, messages, signals, and

environment variables), assigning signals to messages, and associating the database to the

configuration. In the following steps we show how to accomplish this.

1- Click on the database icon to launch CANdb++ in CANoe as shown below:

2- Add nodes as show below

P
age 14.1148.17

3- The following figure shows how to add messages. Signals and Environment variables can

be add in the same way

4- Assign signals to messages and messages to nodes. The figure below shows all objects

after the association process:

P
age 14.1148.18

5- Associate the database to the configuration.

Creating Panels

Since the assignment requires us to use switch to initiate the communication process and to use

the LCD to show the content of the messages, we start the second step by creating panels,

configuring them to react to the external event (changing the state of the switch) and internal

event (receiving messages), and associate the panels to the configuration file. In the following

steps, we show how to create and configure panels.

1- Open Panel editor as shown below

P
age 14.1148.19

2- Select input and output elements and add them to the panel as shown below:

3- Configure these elements by right click on the element and select configure, then

associate the element either with the signal or environment variable. The figure below

shows how to configure the LCD

P
age 14.1148.20

4- After configuring all elements, we need to associate the panels to the configuration. This

can be done by selecting the Panel configuration under configuration in the main menu.

The figure below shows how associate panels.

CANoe Simulation Setup

Before writing codes to simulate nodes’ behavior, we need to build the network that

provides us with the infrastructure where nodes can exchange information. Therefore we

start this phase by adding the nodes in the database to the CAN bus. In the following

steps, we show how to accomplish this.

1- Open the simulation setup window under view in the main menu. The figure below

shows the CAN bus without nodes being connected to it.

P
age 14.1148.21

2- Add the three nodes to the bus. There are more than one way to add these nods, we

choose to the nodes by right click on the database, select node synchronization, add

nodes one by one to the network, and click finish to complete the process. The figure

below shows all three nodes being added to the network.

Programming nodes using CAPL

The last phase to complete CANoe application is to program nodes using CAPL. In the following

steps, we show how to open CAPL browser, how to add events and write procedures to describe

them, and how to make nodes react upon the occurrence of these events.

1- A single click on the pencil icon on the node opens the CAPL browser. We start by

declaring the global variables. The figure below shows global variable declaration for

Node_1. We also show how to access the database from CAPL to locate messages for

declaration. To do this, just right click on the blank space after the keyword message, and

then select “Message from CANdb”.

P
age 14.1148.22

2- To add events, select the particular event from the event tree, right click on it and select

“New”. In the figure below, we show the procedure of the “Timer” event that will be

executed whenever the timer of Node_1expires.

3- Similar to 2, we can add events and then define them. All events along with the code to

simulate nodes’ behavior is:

Node_1

/*Global variable declaration*/

variables

{

 int RN1, RN2;

 timer tN1; //define timer for node_1

 int Per = 1; //define the period of timer

 message msg_1 M_1;

}

/* The procedure that will be executed whenever Node_1 receives a message from Node_2*/

on message msg_2

{

 RN1 = random(14) + 6; //generate random number between 6 and 20

 RN2 = random(2) + 1; //generate a number that is either 1 or 2

 M_1.sig_1 = RN1; //Store RN1 in signal_1 of msg_1

 M_1.sig_2 = RN2; //Store RN2 in signal_2 in msg_1

 write("RN1 = %d", M_1.sig_1); //Display RN1 on write window

 write("RN2 = %d", M_1.sig_2); //Display RN2 on write window

 output(M_1); //Send the message to the bus

P
age 14.1148.23

}

/* The procedure that will be executed whenever Node_1 receives a message from Node_3*/

on message msg_3

{

 RN1 = random(14) + 6; //generate random number between 6 and 20

 RN2 = random(2) + 1; //generate a number that is either 1 or 2

 M_1.sig_1 = RN1; //Store RN1 in signal_1 of msg_1

 M_1.sig_2 = RN2; //Store RN2 in signal_2 in msg_1

 write("RN1 = %d", M_1.sig_1); //Display RN1 on write window

 write("RN2 = %d", M_1.sig_2); //Display RN2 on write window

 output(M_1); //Send the message to the bus

}

/*The procedure that will be executed whenever “Timer tN1” expires*/

on timer tN1

{

 output(M_1); //Send M_1 to the bus when this event occurs.

}

/*The procedure that will be executed when the state of the switch is changed*/

on envVar En_Var_1

{

 //Check the state of the Switch, and take the appropriate action

 switch(@En_Var_1)

 {

 case 0: //The switch is OFF

 write("Switch os OFF");

 canceltimer(tN1);

 break;

 case 1: //The switch is ON

 write("Switch is ON");

 RN1 = random(14) + 6; //generate random number between 6 and 20

 RN2 = random(2) + 1; //generate a number that is either 1 or 2

 M_1.sig_1 = RN1; //Store RN1 in signal_1 of msg_1

 M_1.sig_2 = RN2; //Store RN2 in signal_2 in msg_1

 write("RN1 = %d", M_1.sig_1); //Display RN1 on write window

 write("RN2 = %d", M_1.sig_2); //Display RN2 on write window

 settimer(tN1, Per); //Set timer

 break;

 }

}

Node_2

P
age 14.1148.24

/*Global variable declaration*/

variables

{

 int vLCD;

 int RCVd_RN1, RCVd_RN2, RN1_count;

 message msg_2 M_2;

 mstimer tN2; //this timer is used to introduce delay of 1500msec

 int ms_per = 1500; // the period of tN1

 timer LCDcnt; //this timer is used for incrementing the number that

 //will be displayed every second

 int per = 1; //the period of the LCDcnt

}

/* The procedure that will be executed whenever Node_2 receives a message from Node_1*/

on message msg_1 //upon the receiption of message 1

{

 RCVd_RN1 = this.sig_1;

 RCVd_RN2 = this.sig_2;

// if RCVd_RN1 is odd and RCVd_N2 is even, then decrement RCVd by 1

// and store it in RN1_count, RN1_count will be the target to count towards

 if(RCVd_RN1 >=6 && RCVd_RN1 <=13)

 {

 if(RCVd_RN1 % 2 !=0 && RCVd_RN2 ==2)

 RN1_count = RCVd_RN1 - 1;

 else

 RN1_count = RCVd_RN1;

 settimer(LCDcnt, per); //activate timer so that the increment

 //occurs when the timer expires

 vLCD = 0;

 @En_Var_2 = vLCD; //initialize the value to be displayed on LCD

 }

}

/*The procedure that will be executed when Timer LCDcnt expires*/

on timer LCDcnt

{

 vLCD = vLCD + RCVd_RN2; //increment vLCD by RCVd_RN2 and display it on LCD

 @En_Var_2 = vLCD;

//Continue counting as long as the target value is not reached

 if(vLCD < RN1_count)

 settimer(LCDcnt, per);

P
age 14.1148.25

//if the target value is reached, then stop counting by deactivating timer LCDcnt

//Also activate timer tN2 which will send message_2 to the bus after 1500 msec.

 else

 {

 canceltimer(LCDcnt);

 settimer(tN2, ms_per);

 }

}

/*The procedure that will be executed when Timer tN2 expires*/

on timer tN2

{

 //increment the received number by 1 and save it in the message

 M_2.sig_3 = RCVd_RN1 + 1;

 output(M_2); // Send the message to the bus

}

Node_3

/*Global variable declaration*/

variables

{

 int vLCD3;

 int RCVd_R1, RCVd_R2, R1_count;

 message msg_3 M_3;

 mstimer tN3; //this timer is used to introduce delay of 1500msec

 int ms_per = 1500; // the period of tN1

 timer LCDcntr; //this timer is used for incrementing the number that

 //will be displayed every second

 int per = 1;

}

/* The procedure that will be executed whenever Node_3 receives a message from Node_1*/

on message msg_1

{

 RCVd_R1 = this.sig_1;

 RCVd_R2 = this.sig_2;

// if RCVd_RN1 is odd and RCVd_N2 is even, then decrement RCVd by 1 and store

// it in RN1_count, RN1_count will be the target to count towards

 if(RCVd_R1 >=14 && RCVd_R1 <=20)

 {

 if(RCVd_R1 % 2 !=0 && RCVd_R2 ==2)

P
age 14.1148.26

 R1_count = RCVd_R1 - 1;

 else

 R1_count = RCVd_R1;

 settimer(LCDcntr, per); //activate timer so that the increment

 //occurs when the timer expires

 vLCD3 = 0;

 @En_Var_3 = vLCD3; //initialize the value to be displayed on LCD

 }

}

/*The procedure that will be executed when Timer LCDcntr expires*/

on timer LCDcntr

{

 vLCD3 = vLCD3 + RCVd_R2; //increment vLCD by RCVd_RN2 and display it on LCD

 @En_Var_3 = vLCD3;

//Continue counting as long as the target value is not reached

 if(vLCD3 < R1_count)

 settimer(LCDcntr, per);

//if the target value is reached, then stop counting by deactivating timer LCDcnt

//Also activate timer tN2 which will send message_2 to the bus after 1500 msec.

 else

 {

 canceltimer(LCDcntr);

 settimer(tN3, ms_per);

 }

}

/*The procedure that will be executed when Timer tN3 expires*/

on timer tN3

{

 M_3.sig_4 = RCVd_R1 + 1; //increment the received number by 1 and save it in the message

 output(M_3); // Send the message to the bus

}

P
age 14.1148.27

