
2006-1209: TEACHING SOFTWARE ENGINEERING THROUGH COMPETITION
AND COLLABORATION

Mark C Johnson, Purdue University

Yung-hsiang Lu, Purdue University

© American Society for Engineering Education, 2006

P
age 11.1223.1



Teaching Software Engineering Through

Competition and Collaboration

Abstract

This paper reports a case study in teaching senior-level software engineering using both
competition and collaboration. The students were divided into teams to write computer
games and competed in the second to last week of the semester. Meanwhile, each team
had representatives to write libraries used by all teams. This course adopted several princi-
ples of “problem-based learning”: students discovered the needed skills as they progressed
throughout the semester. Because competition was conducted through a computer network,
the students had to learn network programming and synchronization among concurrent pro-
grams. A competition required three programs: two players and one referee called “game
server”. In addition to network communication and concurrent programming, students also
learned graphical user interface and game strategies later in the semester.

This course also emphasized team building and team management. Each team included
five or six students. Five unique roles were suggested by the instructor and the students
decided their roles by exchanging their resumes among their team members. A leader was
elected by each team; the leader received bonus points when the team met its schedule and
penalty if the schedule was missed. Even though this successfully kept all teams on schedule,
team leaders suggested more participation in deciding the grades of team members.

We discovered three important aspects of using competition and collaboration in edu-
cation. First, students consider collaboration within a team much more important than
collaboration across teams. Second, it is important to select a game that is sufficiently chal-
lenging for the competition and allows sophisticated strategies. Third, competition itself
cannot promote higher quality. If the teams only need to compete within the class without
a higher standard, it is possible that all teams resort to simple strategies. Instead, the in-
structor should provide a reference player that implements an advanced strategy and then
encourage students to defeat this reference player.

Introduction

A typical course on software engineering discusses software process, project management,
requirement and design, and maintenance.4,14 While these topics provide a theoretical foun-
dation for the students to construct large-scale software, these concepts can be better con-
veyed through a semester-long team project. Students can learn how to collaborate with
their teammates in the project. A recent study13 suggested that students would be better
motivated through competition. In the spring semester of 2005, a senior-level course on
software engineering was taught using both collaboration and competition. In this course,
students collaborated in two ways. First, they worked with their teammates in the projects. P

age 11.1223.2



Second, each team had representatives to form three cross-team committees. (a) The stan-
dard committee defined the common interface and wrote the library so that the program
built by each team could compete. (b) The quality committee wrote testing code that used
the standard interface. Any team that failed the tests would be disqualified from the final
competition. (c) The contest committee decided the competition rules and wrote the code
to decide the winner in each game. The committee also wrote a reference player; a team
had to beat the player before entering the competition. The teams competed to win the Yali
game, a two-player board game. Each player had twelve marbles. The player that could
move eight marbles to the other side won the game. All teams had complete freedom in
choosing the programming languages.

The course was offered using some principles of problem-based learning (PBL) to teach
students how to solve real-world problems.7,8 The problem was to construct a game that
could compete with and win the games against the other teams. PBL was chosen because
its procedures met the requirements of the course:15 (a) The problem was introduced before
any lecture. (b) The problem was realistic and could be encountered by the students outside
the classrooms. (c) The students were encouraged to apply and integrate their knowledge
from other subjects. PBL has been adopted in teaching software engineering,1,3 first-year
CS courses,9 and programming.12

This paper presents our findings in using both competition and collaboration. Each
student filed a weekly report about the amount of time spent on the project, overall satis-
faction with the project, the evaluations of the other team members, and suggestions about
the course. To encourage the students to report accurate amounts of effort, the reported
numbers were not used for grading. We learned the following issues in this course. (a)
Competition is a strong motivator; hence, collaboration within each team is highly success-
ful. In contrast, cross-team collaboration is not appreciated among many students. (b) To
encourage students to exploit their full potential, a strong opponent should be available as
a reference. This reference should be provided by the instructor and all teams must beat
the reference player to enter the competition. (c) As expected in many team projects, some
members gave a greater effort than other members. This problem may be alleviated if the
team leaders have more influence on each member’s final grade.

This paper is organized as follows. We present previous work on the education of soft-
ware engineering, problem-based learning, and the basic rules of the Yali game in the back-
ground section. The organization section describes the course organization and the students’
backgrounds. The discovery section presents our discoveries and discusses how to use our
discoveries to improve the course in the future. The paper ends with conclusions and ac-
knowledgements.

P
age 11.1223.3



Background

Education of Software Engineering

Software engineering is the study of how to design, construct, and maintain high-quality
software. Software engineering usually involves four aspects: people, process, project, and
product.4 Many papers and books have been published on the contents of software engi-
neering. Here we list a few recent studies on the education of software engineering. Yeh16

described several requirements for future software engineers; these requirements included
the understanding of business needs and better skills in communication. Garćia et al.10

discussed a common challenge in many curricula for teaching software: students learned
programming first without sufficient understanding of software modeling. Workshops were
held to teach software modeling in order to remedy this common problem. The students
were required to develop their models and a volunteer group presented their solution. Their
success was supported by the students’ high passing rate of the examination in software
engineering. Evaluating a teaching methodology is often difficult because every student is
unique. Karoulis et al.11 used two groups, one experiment group and one control group, to
study the effectiveness of an instructional tool called “lesson sheet”. The sheet is a table that
associates the course outline with relevant information, such as charts or discussion in class.
Chen et al.5 used a classification tree method to teach black-box software testing. Billard2

used UML (unified modeling language) and operating systems to teach software engineering.
Operating systems were chosen for the foundation of the course because operating systems
had a well-understood theoretical background. Thus, the students could learn both theory
and implementation of software. Lawrence13 used game competition to motivate students
in learning data structures. When a student finished the programming project, the student
could upload the program into a server and compete against the programs written by the
other students. Since 2000, IEEE Computer Society has been holding programming contests
that allow participants to define their own projects under some loosely specified guidelines.6

The competition is designed for teams to develop long-term projects with special emphasis
on teamwork. IEEE’s competition differs from other competitions because the others usu-
ally allows the participants to solve well-defined problems within several days. In contrast,
IEEE’s competition allows participants to develop their software for several months.

Education of Software Engineering using Problem-Based Learning

Problem-based learning (PBL) has been applied to some courses teaching software devel-
opment. Armarego1 presented a case study of using PBL for software design. The paper
provided detailed description of the course and many quotes from students about the ad-
vantages as well as the problems of using PBL. For example, some students appreciated the
opportunity to solve problems that were more open and to develop better design skills. Mean-
while, some students were concerned about the vagueness of expectations. Some students
also suggested better training in leadership for a course that required teamwork. Boehm3

taught students to recognize and manage the risks in software development. The risk factors

P
age 11.1223.4



(a) (b) (c)

1

2

(d)

Figure 1: (a) Initial board configuration of a Yali game. (b) Three legal moves. The white
marble can move to one of the three new locations shown as dotted circles. (c) A marble
can jump over one or multiple marbles. (d) If a marble reaches the destination column (step
1), a side marble can be moved to the starting column (step 2).

were classified into 10 categories, such as personnel, legacy software, and performance. The
students learned the skills to handle these potential problems in software. Even though PBL
can help students apply and learn new skills for solving problems, it is unclear whether PBL
can be still effective when most students lack “basic skills”. Fekete et al.9 discussed the
issues in converting the entire first-year computer science curriculum into PBL. The main
concern was that students might not fully understand some basic concepts and technical
contents, such as complexity analysis, recursion, or inheritance. Their study indicated that
students could learn these concepts well if the problems were constructed appropriately.

Yali Game

We chose the Yali game for the course presented in this paper. This game was chosen for
three reasons. First, the search space of the game strategy is considerably smaller than some
other more complex games such as chess. Second, there were few reference implementations
on the Internet so the students had to design their own strategy. Third, this game was used in
the past and there was a Yali board and 24 marbles in the Software Engineering Laboratory.
Two students could play an actual game using the board. Several students reported that
being able to play a game and move the marbles physically helped them design the strategies
in computers.

Yali is a two-player board game as shown in Figure 1 (a). Several rules were modified by
the contest committee. Each player has 12 marbles, including 4 side marbles. Each player
attempts to move the marbles to the other side. There are three legal moves as indicated
in Figure 1 (b): forward along the same row or diagonally. A marble can also jump over
one or multiple marbles in a single step as shown in Figure 1(c). In the figure, the marble
can jump over one white marble, one white and one black marbles, or one white and two
black marbles. The three locations noted with dotted circles are all legal moves in a single
step. The winner is the first player who moves eight marbles to the other side. Unlike many
other board games in which the two players take turns, in Yali the next player is determined
by the balance (i.e., center of gravity) of the board. As the marbles move forward, the
balance of the board changes. If one player moves more marbles, the board will tilt to the P

age 11.1223.5



other side and the other play can move. For example, if one white marble moves forward in
Figure 1 (a), the center of gravity moves toward the left and the player of the black marbles
can move. Because of this rule, it may not be advantageous to take one move of multiple
jumps because these jumps may allow the opponents to make several moves. If one player’s
move makes the board perfectly balanced, the opponent can make the next move. Once the
board’s balance changes, a player has five minutes to decide the next move. The player loses
if no move is decided within five minutes. In addition to the 8 marbles, there are also 4 “side
marbles” that can be used to improve the balance of the board. When a marble reaches the
end column, the player can take one side marble to the starting column. This may allow the
player to move more marbles by changing the board’s balance.

Course Organization

Team Construction

The problem to be solved by the students was to develop intelligent games that could com-
municate and compete. The problem was given to the students in the first lecture. Very little
details were provided by the instructor or the two teaching assistants about how to solve this
problem. In particular, we did not specify the programming language (or languages) to use.
We did suggest that using the network for communication could allow each team to select
their preferred languages. Totally 26 students took the course; half of them were juniors
and the other half were seniors. Each student had to commit to a one-hour lab session per
week. The students were divided into five teams based on their lab sessions. One team had
six members and each of the other four teams had five members. The team structure was
suggested by the instructor as follows:

• team leader

• secretary: help leader, manage documents, web master, write testing programs

• architect and representative in the contest committee

• integrator and representative in the standard committee

• tester and representative in the quality committee

In the first lecture, each student was required to submit a resume of relevant background,
including a list of familiar tools as shown in Table 1. Some students thought their skills were
between two categories (for example, used and familiar) and did not choose either in the
table. C and Python were required by prerequisites so all students were familiar with C
and Python before taking this course. The lab sessions in the first week were used for team
building. The team members had to introduce themselves and read each other’s resume for
determining the roles in the team. The teaching staff (the instructor and the two teaching
assistants) did not assign the roles in each team.

P
age 11.1223.6



tool / language D H U F
CVS 9 4 6 5
C++ 2 1 7 15
Makefile 2 5 12 5
shell programming 2 3 11 8
Java 9 3 5 7
Python 0 0 12 12
Perl 12 9 2 2
Tcl/Tk 4 2 12 7
gdb 1 3 13 7
ddd 5 7 7 5
UML 16 2 3 3

Table 1: Student background reported in the first week for team building. D: do not know;
H: heard; U: used; F: familiar.

Project Schedule

The project schedule was divided into three stages. Totally, 13 weeks of lab sessions are
graded and each session is 5% of the final grade. The first stage encompassed three weeks.
During the three weeks, each team had to determine the team organization and set up their
development environment. The second stage spanned from the fourth to the eleventh weeks.
In this stage, each team could decide their schedule. Before this stage started, a team had
to submit a schedule. Every week the teaching assistants verified that the team met their
own schedule. A reference schedule was provided by the instructor in the first week and
most teams followed the reference schedule in this stage. For each week of the schedule, if
a team missed its schedule then each member received a 20% penalty for that week and the
team leader received a 40% penalty. If the team met its schedule for the week, the team
leader received a 10% bonus. The third stage started in the twelfth week and ended in the
fifteenth week with the final competition. The third stage consisted of three qualification
tests. (a) In the twelfth week, each team had to demonstrate a working game that could
compete against a human player and another computer. (b) In the thirteenth week, each
team had to use a common game server for playing a game against another computer. We
will explain the game sever later in this paper. (c) In the fourteenth week, each team had
to defeat a “dumb” player at least once in five games. The dumb player randomly selected
a legal move and was created by the contest committee. A team would be excluded from
the competition if the team failed any of the three qualification steps. All five teams passed
the qualification procedure and entered the final competition. Every team was encouraged
to post the latest program (executable without the source code) on their web site in the
fifteenth week so that the other teams could test and improve. The final competition was
held on the last day of the fifteenth week. The sixteenth week was used for the students to
analyze their competition results and to finish the final reports. P

age 11.1223.7



player 1 player 2 spectator(s)

network

game server

Figure 2: Two players communicate through the network. The game server is responsible
for determining the turns and the winner. The server also supports spectators from other
machines.

Game Architecture

Each team was allowed to choose the programming language (or languages) for constructing
the game. In order to communicate, the standard committee was responsible for providing
the communication mechanism and decided to use XMLRPC. XMLRPC allows programs on
different machines to communicate using the Hypertext Transfer Protocol (HTTP). For the
programs, such communication is similar to calling a function even though the implementa-
tion of the function is in another program on a different machine. This is called a remote
procedure call (RPC). The format of the call is flexible by using the Extensible Markup
Language (XML). Figure 2 shows the architecture of the games. Two players communicate
through the network. The game server maintained the current location of every marble,
calculated the board’s center of gravity (and which player to move), and decided the winner.
The server also allowed spectators from other machines. Because a spectator could not move
the marbles, the figure used a one-direction arrow to indicate that the spectator was only
a listener. This architecture allowed the teams to select their preferred languages. Since
Python was taught in a prerequisite course, four teams used Python and C/C++. They
used different tools to build the user interface, including Qt, Glade, and OpenGL. One team
used Java for both the game strategy and the user interface. No team used a very compli-
cated strategy so we did not feel that the choice of languages had any obvious impact on the
competition results.

Discovery and Discussion

Cross-Team Collaboration

The three committees were formed to facilitate cross-team collaboration. The teaching staff
encouraged every team to take advantage of the additional developers from the other teams
in the committees. Among the three committees, the standard committee was considered
the most successful because it worked closely with all teams. The contest committee decided
the rules and wrote the reference player but did not contribute additionally to the five teams.
The quality committee wrote several test programs to ensure that each team’s player could
communicate with the game server. No team requested the contest committee to provide P

age 11.1223.8



a more intelligent player and make the qualification process harder. No team asked the
quality committee to write more test programs. We believe this was due to the following
factors. First, most students worked closely with their team members and they did not treat
the committees as resources. Second, many students were unfamiliar with the concept of
RPC. The students used different programming languages and believed that common test
programs could not be beneficial. Third, there was no grading incentive to improve the
committees. In the future, we will consider separating the teams from the committees and
possibly combining all committees into one. By doing so, the committee members can be
more focused in providing the library and finding other teams’ problems.

Team Management

Each student was required to report weekly efforts through a web site. The report was
divided into the number of hours spent on the project, group meetings, and committee
meetings. The reported numbers were not used for grading so students were encouraged
to report the actual numbers. Each student spent between 55 and 200 hours throughout
the whole semester of 16 weeks. On average, each student spent 100 hours on the project
over the whole semester, including the meetings. The amounts of time varied significantly:
the standard deviation was 45 hours. The median was 83 hours. The student that spent
the most time was the chair of the standard committee because the committee constructed
the game server used by all teams. Group leaders consistently spent more time than their
members across all teams. One group leader suggested that this could have been caused by
the grading policy. One group leader spent 90% more time than the group average. While
there was incentive (bonus and penalty, explained in Section ) for group leaders to meet the
schedule, there was no authority by the group leaders to award or punish under-performing
members. As a result, the leaders had to help those members and, in some cases, took over
those members’ responsibilities in order to meet the schedule. The course used weekly peer
evaluation as part (5%) of the grades but the leaders did not have additional influence on
the grades. One solution is to allow the leaders to participate in the grading process of the
group members. It is unclear, however, whether the other students will respond positively
if their grades are heavily affected by their group leaders.

Game Strategy

Another observation is that the competition did not produce highly sophisticated game
strategies. Two teams decided to use greedy approaches for the game strategy. They assigned
different scores to the columns and moved a marble to achieve the highest score without
considering the opponent’s move. Another team used the min-max algorithm with alpha-beta
pruning without considering any jump over multiple marbles. Because no marble could be
“captured” by the opponent’s marble (like a chess game), many students felt that analyzing
the opponent’s potential moves would provide little information. In particular, one group
discovered a strategy to win by keeping one marble in its original location. As the other
marbles were moved to the other side, the board balance would give the opponent the turn

P
age 11.1223.9



to move. The opponent could encounter a situation when there was no legal move and thus
exceed the five-minute decision limit. This strategy was discovered several days before the
competition and none of the other teams could beat this strategy. The contest committee
decided that it was too late to change the rules and forbid this strategy. This team won
the final competition. In the future, we intend to improve the game strategies in two ways.
First, we plan to change the rules so that, when there is no legal move by one player,
the other player has to move within five minutes. Second, in spring 2005, the reference
player for qualification selected a legal move randomly. All teams successfully defeated the
reference player and entered the final competition. We plan to improve the intelligence in
the qualification process. If this player is more intelligent, the students will have to improve
their strategy in order to qualify for the competition. In Lawrence’s study,13 a four-level
search algorithm was used for competition and beating this algorithm could receive more
points than beating a simpler algorithm. We believe that a better reference player can help
the students set a higher goal and design better strategies.

Concurrent Programming

The game architecture as shown in Figure 2 has three programs running concurrently: the
two players and the game server. Many students did not have experience with concurrency.
Consequently, they did not anticipate some legal sequences of events. For example, the
board’s center of gravity sometimes allows an opponent to move several marbles before
control passes to another player. As a result, one team’s program crashed after receiving the
update from the game server. This was because the team’s program did not expect multiple
marbles to have changed locations at once. Another concurrency related race condition
occurred in an earlier version of the game server. When a player moved a marble and
informed the game server, the game server did not send an acknowledgment. As a result, the
player could move multiple marbles before the game server updated the board configuration
and informed the other player. The problem was solved later by the standard committee
using synchronous communication between the players and the game server. A player could
not move another marble before the first move had been acknowledged by the server. Because
of the nature of this project, we believe it will be helpful to all students if some basic concepts
about concurrent programming, synchronization, and race conditions are introduced early
in the semester.

Intelligence and User Interface

The competition results were 5% of the final grade. We used this small percentage in order
to encourage the students to pay more attention to the development process as well as
documentation and user interface. The user interface was another 5% of the final grade.
Four teams paid special attention to improve their user interfaces. One team added cartoon
characters to the surrounding of the board. Another team used movie posters as the board
background. The third team allowed users to change marble colors. The team that received
the highest score in user interface used OpenGL with three-dimensional view of the board.

P
age 11.1223.10



Two animated figures stood on the opposite sides as the players. A player could change the
camera angle to see the board from the top, the side, or as a player.

One team decided to provide a simple user interface and focused on the game strategy,
even though the teaching staff repetitively reminded the team members that the user interface
had the same weight in grading as the competition result. The team developed two strategies:
a simpler one for testing the user interface and communication and a more complex strategy
for competition. Unfortunately, they did not submit the advanced strategy on time (claiming
to be only three minutes late) and the course policy did not permit any late submission. As
a result, they were forced to use the simple strategy and lost all but one game. The team
received lower scores, compared with the other teams, in both competition and user interface.
This experience may help the team members understand that software development should
be balanced. Focusing on the game strategy without improving the user interface could lead
to lower scores in both. The team also learned the importance of meeting the deadline.

Newsgroups

Six newsgroups were established: one for the whole class and five for the the individual teams.
Most postings in individual groups were related to team management, such as the time for
group meetings and status updates. In the class newsgroup, two types of postings were the
most common. The first type was announcements and clarifications by the teaching staff.
The second type stated problems related to the game server. The game server was exercised
by all groups in many different ways. Moreover, the standard committee was changing the
interface of the server to solve some problems that were not expected earlier. Thus, many
problems about the game server were reported to the newsgroup and the game server was
regularly improved. Sometimes a new version of the game server caused multiple problems
and many students reported problems through the newsgroup. This experience suggested
that a newsgroup was ineffective for the library used by all students. Instead, we would need
a bug tracker for the game server.

Future Offering

Some students suggested that Yali was not challenging enough to develop intelligent strate-
gies for the game. A more sophisticated game should be chosen in the future. Several
students were concerned that their teams could not continue if one member left the team
due to, for example, dropping the course. One suggestion was to announce, in the first
lecture, that during the semester the instructor would randomly change the team members.
This would give the members the opportunities to learn how to handle personnel issues that
could happen in real-world projects. Many students suggested that the source code and the
documents be passed to future students so that they would not have to build everything
from scratch. Finally, a better tracking system could help balance the workload among the
students. We used individual reports to estimate the amounts of time spent on the project.

P
age 11.1223.11



Conclusion

This paper presents a case study of using both competition and collaboration. The students
collaborated in teams and competed against the other teams. The students also collaborated
across teams to develop the game server, a reference player, and test programs. We adopted
several principles in problem-based learning; the problem was to develop computer games
that could compete. We report several observations and provide suggestions to improve
future offerings of the course.

Acknowledgments

Prof. Lu is supported in part by National Science Foundation CAREER CNS-0347466. Any
opinions, findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the sponsors.”

References

[1] J. Armarego. Advanced Software Design: A Case in Problem-based Learning. In Conference

on Software Engineering Education and Training, pages 44–54, 2002.

[2] E. A. Billard. Introducing Software Engineering Developments to a Classical Operating Sys-
tems Course. IEEE Transactions on Education, 48(1):118–126, February 2005.

[3] B. Boehm and D. Port. Educating Software Engineering Students to Manage Risk. In Inter-

national Conference on Software Engineering, pages 591–600, 2001.

[4] E. J. Braude. Software Engineering: An Object-Oriented Perspective. Wiley, 2001.

[5] T. Y. Chen and P.-L. Poon. Experience with Teaching Black-Box Testing in a Computer
Science/Software Engineering Curriculum. IEEE Transactions on Education, 47(1):42–50,
February 2004.

[6] A. Clements. Constructing a Computing Competition to Teach Teamwork. In Frontiers in

Education, pages F1F–6, 2003.

[7] R. Delisle. How To Use Problem Based Learning in the Classroom. Association for Supervision
and Curriculum Development, 1997.

[8] J. Dewey. Democracy in Education. MacMillian, 1963.

[9] A. Fekete, T. Greening, and J. Kingston. Conveying Technical Content in a Curriculum Using
Problem Based Learning. In Australasian Conference on Computer Science Education, pages
198–202, 1998.

[10] F. J. Garcia and M. N. Moreno. Software Modeling Techniques for a First Course in Software
Engineering: A Workshop-Based Approach. IEEE Transactions on Education, 47(2):180–187,
May 2004.

P
age 11.1223.12



[11] A. Karoulis, I. G. Stamelos, L. Angelis, and A. S. Pombortsis. Formally Assessing an In-
structional Tool: A Controlled Experiment in Software Engineering. IEEE Transactions on

Education, 48(1):133–139, February 2005.

[12] J. Kay and B. Kummerfeld. A Problem-based Interface Design and Programming Course. In
SIGCSE Technical Symposium on Computer Science Education, pages 194–197, 1998.

[13] R. Lawrence. Teaching Data Structures Using Competitive Games. IEEE Transactions on

Education, 47(4):459–466, November 2004.

[14] R. S. Pressman. Software Engineering A Practitioner’s Approach. McGraw Hill, 5th edition,
2001.

[15] D. Roins. Problem Based Learning for Math and Science. SkyLight, 2001.

[16] R. T. Yeh. Educating Future Software Engineers. IEEE Transactions on Education, 45(1):2–3,
February 2002.

P
age 11.1223.13


