
2006-1149: TEACHING THE INTRODUCTORY COMPUTER-PROGRAMMING
COURSE FOR ENGINEERS USING MATLAB AND SOME EXPOSURE TO C

Asad Azemi, Pennsylvania State University
Asad Azemi is an associate professor of Engineering at Penn State University. He has received
his B.S. degree from UCLA in 1982, M.S. degree from Loyola Marymount University in 1985,
and Ph.D. degree from University of Arkansas in 1991. His professional interests are in nonlinear
stochastic systems, control systems, signal estimation, bio-computing, and use of computers in
undergraduate and graduate education.

Laura Pauley, Pennsylvania State University
Laura Pauley is a Professor of Mechanical Engineering and the Arthur L. Glenn Professor of
Engineering Education at Penn State University, University Park. Since 2000, she has also served
as the Professor-in-Charge of Undergraduate Programs in Mechanical and Nuclear Engineering.
Dr. Pauley teaches courses in the thermal sciences and conducts research in computational fluid
mechanics. She received her Ph.D. from Stanford University in 1988.

© American Society for Engineering Education, 2006

P
age 11.1231.1

Teaching the introductory computer programming course for

engineers using Matlab and some exposure to C

Abstract

The introductory computer programming course for engineers is usually taught using the C++

programming language. This work describes our current effort, as a pilot project, which can be

used in an evaluation process by those departments that would like to substitute Matlab for C++.

Those who would like to continue the current practice, but are looking for more challenging

problems or projects involving Matlab can also use the project outcome. The main reason

behind switching to Matlab from C++ is the fact that many engineering faculty at Penn State, in

various departments, have recognized that the current courses teaching programming skills using

C++ are not fully utilized in later required courses in the curriculum. Increasingly in

undergraduate courses in various engineering disciplines, Matlab is being used for problem

solving. Robotics projects, which include using Handy Board and Interactive C programming,

were added to illustrate an application of programming which students can relate to and enjoy, as

well as helping them to improve their software and algorithm design skills for real-time

applications. A discussion of the advantages and disadvantages of conducting a computer

programming course in this format, including three different course formats that we have used

are included.

I. Introduction

Computer programming has been part of the engineering curriculum since the dawn of the

computer age. The course is typically taught during the freshman or first semester of the

sophomore year to ensure that students have sufficient programming background for solving

problems in engineering courses. Although the assignments usually require some mathematical

and/or basic physics/engineering background, the course is focused around programming

concepts. Most universities use a “teach-a-language” approach in teaching this course, which

means students work with a general purpose programming language (e.g., C++, Java, or

FORTRAN) that is sufficiently flexible to build anything that needs to be built. This approach

provides training in programming, but is so time consuming that there is little opportunity left to

learn about computation.

II. Current practice

The introductory computer programming course for engineers, which was once dominated by

FORTRAN for several decades, was gradually changed to C and later to C++ during the late

1980’s and early 1990’s. Currently most universities require only one computer-programming

course for their engineering students (excluding computer engineering and computer science).

This course is usually taught in C++ and in some cases in Java and FORTRAN. Until the fall

2004 semester at Penn State, we offered two versions of this course (C++ and FORTRAN),

where the C++ version was required by the majority of the departments. The course was

designed to cover fundamental concepts of programming (using C++ or FORTRAN), including

introduction to computers and programming; data types, declaration and displays; assignment

P
age 11.1231.2

and interactive input; selection; repetition; functions; arrays; strings; and input/output methods,

with emphasis on engineering and advanced mathematics problems, and a brief introduction to

Matlab for two weeks. As a pilot project, during fall 2004 two sections of the course, one at the

University Park campus and one at the Delaware County Campus, were offered using Matlab.

The section at the University Park campus was entirely focused on using Matlab and the one at

the Delaware County Campus was designed around twelve weeks of Matlab and three weeks of

C/C++, which was the reversal of our previous practice. Since, fall 2004 both campuses have

continued offering these courses on regular basis. The University Park version of the course has

been adapted as the recommended course for biomedical engineering students. The Delaware

County Campus version of the course is up for evaluation before the end of summer 2006. The

main reason for exposing students to C/C++ was the addition of robotics projects using Handy

Board, which requires knowledge of Interactive C, a special version of C that was designed for

running on a small 8-bit microprocessor-like the Handy Board’s 68HC11. Robotics design

projects were added to illustrate an application of programming that students can relate to and

enjoy, as well as helping them to improve their software and algorithm design skills for real-time

applications, and development of teamwork and collaborative skills, as well as improvement of

communication skills, among other things. This work describes our experience at the Delaware

County Campus of Penn State. It covers a brief discussion about the role and benefits of

simulation software packages, our reasons for considering this change, three different course

structures that have been used including topics covered and weekly schedules, sample

programming assignments, challenges and problems associated with this approach, students’

reaction, and finally our recommendations for those who are considering adapting a similar

course.

III. The role and benefits of simulation software packages

The benefits of using simulation software packages, such as Matlab, in various engineering

courses have long been realized by many educators, e.g. [1]-[8]. One of the main advantages of

using these tools is the reinforcement of student understanding of theoretical principles by means

of enhanced graphical aids. Simulation results can be used effectively in the classroom to

emphasize the characteristics of devices and show the similarities and differences that exist

between actual and theoretical characteristics. The simple graphical nature of the simulation

outputs tends to help students understand the operation of mathematically complex system

behaviors. Another equally important advantage is the preparation for analysis and the design of

more complex systems than those that can be treated with pencil and paper, much like the ones

students will see in industry. With these tools, instructors can assign complex design problems

that otherwise would be unrealistic without the help of such software. This is a key advantage

that helps students apply the theoretical principles learned in the classroom to the real world

problems associated with following a design cycle through completion. The benefits of using

these packages in a university setting are confirmed by the number of new textbooks and

revisions of previously printed textbooks incorporating new exercises and problems based on

these packages [9]-[19], among others.

IV. Why Change to Matlab?

P
age 11.1231.3

As was mentioned, the introductory computer programming course for engineers at Penn State,

until fall 2004, consisted of teaching programming skills using C++ or FORTRAN with a limited

exposure to Matlab. It has been recognized by many engineering faculty at Penn State, in

various departments, that teaching programming skills using C++ or FORTRAN was of limited

value because these languages were rarely used again. Instead, increasingly in undergraduate

courses in various engineering disciplines, they are using Matlab for problem solving.

Moreover, Matlab and its toolboxes, due to ease of use and functionality, have become important

tools for simulation based engineering research and even in some experimental setups.

Therefore, we considered a pilot project to teach the programming course mainly using Matlab,

with a limited exposure to C/C++. The limited exposure to C/C++ was added to accommodate

the addition of robotics projects using Handy Board and to satisfy those departments that feel

their students need to have a general understanding of one of these programming languages.

Moreover, we are looking into the possibility of eliminating our linear algebra course and

covering the bulk of the topics in the Matlab-based programming course. It should be mentioned

there are few universities that either have converted their computer programming course to

Matlab [20] or offer different sections of the course with Matlab and C++/Java options [21].

V. Course Structure

We started with an ambitious plan to teach the fundamental programming concepts, using

Matlab, in addition to robotics-based programming projects, using Interactive C. The initial

schedule (fall 2004) included twelve weeks of Matlab and three weeks of C/C++, which was

later modified to four weeks of C/C++ so that we can cover more examples using functions. The

C/C++ portion of the course included data types, declaration and display, assignment and

interactive input, and functions. Interactive C specific syntaxes and functions were covered

during the lab hours. The Matlab portion included Matlab editor/debugger, data types,

declaration and displays, assignment and interactive input; collections, indexing, and selection,

repetition, functions, plotting and model building, input/output methods, numbers and precision;

topics in linear algebra, and an introduction to numerical calculus. Modular programming, using

functions, and plotting were heavily emphasized throughout the course, see table 1. The second

structure was used during summer 2005 where C/C++ and robotics portion were dropped and

emphasis on linear algebra and numerical calculus were increased. It should be mentioned that

the course was offered on an experimental 3-week format, see table 2. The third structure, used

during the fall 2005 semester, was put together based on past course offering experiences. C

exposure in this model was limited to the necessary information for learning Interactive C

programming that was used for the assigned robotics projects. By doing so, we were able to

dedicate more time on topics that our experiences indicated as crucial for improving student

learning, such as modular programming in general, functions, role of functions and function

formats, in particular. Table 3 presents the detailed daily schedule for this format. Three sample

assignments from fall 2005 offering are also included in this paper.

VI. The Robotics Project

As was mentioned, robotics design projects were added to illustrate an application of

programming that students can relate to and enjoy, as well as helping them to improve their

software and algorithm design skills for real-time applications, and development of teamwork

P
age 11.1231.4

and collaborative skills, as well as improvement of communication skills, among other things. In

order to keep the emphasis on programming and not on robotics design, Carnegie Mellon’s C-

Based Robotics package was purchased. The package includes a step-by-step design of a

tankbot and programming examples in Interactive C. Students were encouraged to use the

tankbot in their projects. The final robotics project was our level-one “rescue mission”

competition. Rescue mission competition is a more complex version of the original Trinity

College “fire fighting” competition.

VII. Challenges/Problems and Recommendations

Matlab has been designed as a tool for simplifying technical calculations/simulations. It has not

been designed to be a “programming language.” With this in mind, some basic programming

rules such as variable declarations have been relaxed. This constitutes a challenge in conducting

a programming course using Matlab, so that it does not turn into a “teach-a-package” course.

Therefore, if one looks at Matlab from a purely computer science point of view, it would not be

the choice to teach programming courses. Another difficulty that we faced was the limited

available resources in using Matlab as a programming language, versus the wide range of books

that are published for use with general purpose programming languages. The course textbook

[22] was chosen from a limited textbook collection [22]-[25] based on having more challenging

engineering based problems. Unfortunately, looping and selection programming concepts were

used in chapter 2 of the textbook, before these concepts were fully covered, for plotting and

evaluating several complex mathematical problems. We consider this a shortfall of the textbook.

Our recommendation for those who are considering using [22] is to skip those sections of chapter

2 that include such discussions/problems.

Based on our experience teaching two programming languages is useful only if the intent is to

gain some exposure in one of the languages. As far as students’ learning fundamentals of

programming is concerned, the combination of more C++ and some exposure to Matlab worked

better than more Matlab and some exposure to C++, The more Matlab and some C/C++ exposure

can be improved if the C/C++ portion is focused on few specific projects and applications, than

just general teaching of the language. In order to improve students’ understanding of general

programming principles, a greater emphasis on modular programming and functions are need

during Matlab portion. An early exposure to functions is recommended. Robotics projects are

useful in many respects but should be structured in such a way that follows the programming

topics that are being discussed in the lectures and does not divert the focus of the course to an

introduction to robotics course. In order to achieve this requirement, information regarding

design, parts, and sensors should be readily available to students. With some modification, we

intend to keep the robotics projects in the course. Based on our experience, if the course is solely

focused on Matlab, with no C/C++, adding additional topics from linear algebra can justify the

elimination of an additional course in this subject area.

VIII. Students' Reaction

Students' response to this approach was very positive. In spite of some difficulties with robotics

projects, they all liked the idea of programming the robots. The only negative response was that

they had to purchase Matlab!

P
age 11.1231.5

Conclusion

In this paper, we have presented our experience in conducting an introductory programming

course for engineers using Matlab, with addition of some robotics based programming projects.

By taking a “teach-a-language” approach using Matlab, we can teach general purpose language

skills and concepts and take advantage of its computational/graphical capabilities. This will give

us the ability to discuss more advanced engineering/mathematical problems in a short period of

time, which cannot be accomplished with general purpose programming languages. We should

keep in mind that the main reason behind offering a programming course for engineering

students is to help them with their future scientific computational tasks. We believe that Matlab

can be used to serve this purpose. The fact that the majority of engineering jobs (excluding

computer engineering which is not part of our discussion) do not require programming, but may

require problem solving, should also justify the use of Matlab in engineering programming

courses. Moreover, since Matlab is an integrated part of many advanced engineering courses and

textbooks, an early exposure to this software is beneficial.

References

[1] T.W. Martin, A. Azemi, D. Hewett, and C.P. Schneider, “PSpice in Electrical Engineering Laboratories,”

Proceedings of the 1992 ASEE Annual Conference, pp. 1307-1308.

[2] D. Andrews, A. Azemi, S. Charlton, and E. Yaz, “Computer Simulation in Electrical Engineering

Education,” Proceedings of the 1994 ASEE Gulf-Southwest Section Meeting, pp. 77-82.

[3] A. Azemi and E. Yaz, “PSpice and MATLAB in Undergraduate and Graduate Electrical Engineering

Courses,” Proceedings of the 24th Frontiers in Education Conference, pp. 456-459, 1994.

[4] E. Yaz and A. Azemi, “Utilizing MATLAB in two Graduate Electrical Engineering Courses,”

Proceedings of the 25th Frontiers in Education Conference, pp. 2c6.1-2c6.4, 1995.

[5] A. Azemi and C. Stook, “Utilizing MATLAB in Undergraduate Electric Circuits Courses,” Proc. of the

26th Frontier in Education Conference, Salt Lake, UT, vol. 1, pp. 599-603, 1996.

[6] A. Azemi and E. Yaz, “Utilizing SIMULINK and MATLAB in a Graduate Nonlinear Systems Analysis

Course,” Proc. of the 26th Frontier in Education Conference, Salt Lake, UT, vol. 1, pp. 595-599, 1996.

[7] A. Azemi, and E. Yaz, “Using MATLAB in a Graduate Electrical Engineering Optimal Control Course,”

Proceedings of the 27th Frontier in Education Conference, pp. 13-17, 1997.

[8] A. Azemi, and E. Yaz, “Using Graphical User Interface Capabilities of MATLAB in Advanced Electrical

Engineering Courses,” Proceedings of the IEEE Control and Decision Conference, pp. 4549-4554, 1996.

[9] R. Dorf, and R. Bishop. Modern Control Systems, ninth edition. Addison-Wesley Publishing Company,

2001.

[10] G. Franklin, J. Powell, and Emami-Naeini. Feedback Control of Dynamic Systems. fourth edition.

Prentice Hall, 2002.

[11] M. Roden. Analog and Digital Communication Systems. Discovery Press, 2003.

[12] S. Haykin. Communication Systems, fourth edition. John Wiley, 2001.

[13] J.G. Proakis, and M. Salehi. Contemporary Communication Systems Using MATLAB. Brooks/Cole

Publishing Company, 2000.

[14] L.H. Turcotte, and H.B. Wilson. Computer Application in Mechanics of Materials Using MATLAB.

Prentice Hall, 1998.

P
age 11.1231.6

[15] D.M. Auslander, J.R. Ridgely, and J.D. Ringgenberg. Control Software for Mechanical Systems: Object-

Oriented Design in a Real-Time World. Prentice Hall, 2002.

[16] P.I. Kattan. MATLAB Guide to Finite Elements. Springer-Verlag, 2003.

[17] B.D. Harper. Solving Statics Problems in MATLAB. John Wiley, 2002.

[18] R.C. Gonzalez, E. Woods and S.Eddins. Digital Image Processing Using MATLAB, Prentice Hall, 2004.

[19] D.T. Kaplan. Introduction to Scientific Computation and Processing. Brooks/Cole, 2004.

[20] M.E. Herniter, and D.S. Scott, “Teaching Programming Skills with MATLAB,” Proceedings of the 2001

ASEE Annual Conference, session 1520.

[21] P.E. Devnes, “MATLAB and Freshman Engineering,” Proceedings of the 1999 ASEE Annual

Conference, session 3353.

[22] W.J. Palm III. Introduction to MATLAB 7 For Engineers. McGraw-Hill, 2004.

[23] A. Gilat. MATLAB: An Introduction with Application. John Wiley, 2004.

[24] F. Gustafsson and N. Bergman. MATLAB for Engineers Explained. Springer-Verlag, 2003.

[25] David C. Kuncicky. MATLAB Programming. Prentice Hall; 2004.

P
age 11.1231.7

Course Schedules

Table 1: First Delivery Course Format: Fall 2004 Schedule (partial table; full table can be

accessed at: http://www.engr.de.psu.edu/cmpsc201/fall04/cmp201_m.htm)

Week Activities Assigned

Problems

1 Course outline; History of computing; Inside a computer; Programming

and Programming languages unit1.doc; Basics of the C++ environment;

unit 2_1.doc; Working with the C++ compiler;

cout, data type, arithmetic operators, formatting, variable declaration;

OK Handout

2 Interactive C programming and Handyboard.

C++: Variable declaration;

Quiz #1;

Handout

3 C++: Variable declaration (cont.); unit2_2.doc

Interactive C programming and Handyboard.

C++: Assignment & interactive input; unit3.doc

Quiz #2;

Handout

4

C++ functions; Functions-1.doc;

Interactive C programming and Handyboard. Example Programs.

C++ functions (cont.); Functions-1.doc;

Quiz #3;

Handout

5 Chapter 1: overview of Matlab: unit1.ppt

Interactive C programming and Handyboard.

Quiz #4

1.23; 1.27; 1.28

1.29; 1.30

6 Chapter 2: 2.1-2.2; unit2.ppt

Interactive C programming and Handyboard.

Chapter 2: 2.3-2.5

Quiz #5;

2.20; 2.21

2.25; 2.26

2.37

Table 2: Second Delivery Course Format: Summer 2005 Schedule (partial table; full table can be

accessed at: http://www.engr.de.psu.edu/cmpsc201/su05/cmp201_m.htm)

Week Day Date Activities Assigned

Problems

1 M May 16 Course outline; History of computing; Inside a

computer; Programming and Programming languages.

Chapter 1: Overview of Matlab

Chapter 1 (cont.): The programming elements of

Matlab; program documentation.

Problem Solving

1.23; 1.27; 1.28 K

1.29; 1.30

1 T May 17 Chapter 2: 2.1-2.2

Chapter 2: 2.3-2.5

Problem Solving

Quiz 1

2.20; 2. 21; 2.25;

2.26

P
age 11.1231.8

1 W May 18 Chapter 2: 2.3-2.7

Chapter 3: Functions and Files

Problem Solving

Quiz 2

2.37; 2.42; 2.46;

2.49

1 R May 19 Chapter 3 cont.; Control Structures

Functions and Control Structures

Problem Solving

Quiz 3

3.14; 3.17

(DUE 5/23)

1 F May 20 Chapter 3 cont.; Control Structures

Control Structures (cont.)

Problem Solving

Quiz 4

4.17; 4.18

(DUE: 5/23)

Table 3: Third Delivery Course Format: Fall 2005 Schedule (partial table; full table can be

accessed at: http://www.engr.de.psu.edu/cmpsc201/fall05/cmp201_m.htm)

Week Day Date Activities Assigned

Problems

1 T Aug. 30 Course outline;

Introduction to robotics, Interactive C, and Handyboard.

Pass out the Lego part list inventory.

Setting up the teams (due 9/6/05)

Have the links ready for downloading E-educator and IC.

Lego kits

inventory
Weekly HW:
Handout
DUE: 9/6/05K

1 W Aug. 31 History of computing; Inside a computer (20 page)
Programming and Programming languages: Unit1.doc (5 pages)
Program Check List & program Elements

1 F Sept. 2 Chapter 1: Overview of Matlab
Ü 1.1: Matlab Interactive Sessions
Ü 1.2: Menus and the Toolbar
Ü 1.5: Matlab Help System
Ü 1.4: Controlling Input & Output
Ü 1.4: User Input

2 M Sept. 5 Labor Day Holiday

2 T Sept. 6 Collecting the Lego inventory lists.

Steps required for design, building, and testing of a robot

Description of the course project and the “Rescue Mission” project

IC programming unit 1

HW#1: Hello world type programming

Weekly HW:
2.20; 2.22; 2.25;

2.26
DUE: 9/12/05

Lab HW#1

Due:9/13/05OK

2 W Sept. 7

Chapter 2: Numeric, Cell and Structure Arrays
Ü 2.1: Arrays (11 pages)
Ü 2.2: Multidimensional Arrays (3 pages)

P
age 11.1231.9

Ü

Quiz #1

2 F Sept. 9

Chapter 2: Numeric, Cell and Structure Arrays (cont.)
Ü 2.3: Element-by element operations (14 pages)
Ü 2.4: Matrix operation (10 pages)

Helping with the homework

3 M Sept. 12 Chapter 2: Numeric, Cell and Structure Arrays (cont.)
Ü 2.5: Polynomial Operation Using Arrays (5 pages)
Ü 2.6: Cell Arrays (5 pages)

Quiz #2

Weekly HW:
2.37; 2.42; 2.49
DUE: 9/19/05

Lab HW#2

Due:9/20/05

3 T Sept. 13 IC programming HW #1 due

Different motors: DC, Stepper and Servo

IC programming: motors

3 W Sept. 14 Chapter 2: Numeric, Cell and Structure Arrays (cont.)
Ü 2.7: Structure arrays (6 pages)

Chapter 3: Functions and Files
Ü 3.1: Elementary Mathematical Functions (7 pages)
Ü 3.2: User-Defined Functions: functions without arguments

3 F Sept. 16 Chapter 3: Functions and Files (cont.)

Ü 3.2: User-Defined Functions: functions with arguments

Sample Problems:

Sample #1: Linear Algebra

Write a Matlab program that will display a menu, which will let the user to:

1. Enter coefficients of a system of linear equations [In this part you should first ask for the

number of equations, number of variables and then their corresponding coefficients.]

2. Find out if the system has solution and the nature of the solution (exact, infinite, or no

solution), and display appropriate messages or give out the solution.

3. Exit

Make sure:

Follow the “Program Elements” guidelines*.

Sample #2: Integration of a user defined polynomial or function

P
age 11.1231.10

Write a Matlab program that will display a menu, which will let the user to:

1. Enter coefficients of a polynomial [This part should ask for the degree and then for the

coefficients.] or a function in string format.

2. Integrate the polynomial or the function; limits are entered by the user.

a. Different integration schemes should be presented to the user as submenu for this

part. If using Simpson, Lobatto, or Trapezoid the user enters the limits of

integration, and error tolerance.

3. Integrate the polynomial or function.

4. Exit

Make sure:

Follow the “Program Elements” guidelines*.

Sample run for both polynomial and function should be included.

Sample #3: Differentiation of user defined polynomials or functions

Write a Matlab program that will display a menu, which will let the user to:

1. Enter coefficients of up to two polynomials or two functions in string format [This part

should first ask for the number of polynomials, then their degree and finally for the

coefficients.]

2. Differentiate each polynomial.

3. Plot the polynomials and its derivative on the same graph [use subplots if two

polynomials choice was selected]

4. Obtain derivative of the quotient of the polynomials [if two-polynomial choice is

selected]

5. Exit

Make sure:

Follow the “Program Elements” guidelines*.

Sample run for both polynomial and function should be included.

*“Program Elements” guidelines described a typical Matlab program with expected

documentations.

P
age 11.1231.11

