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Teaching von Mises Stress: From Principal Axes  

To Non-Principal Axes 
 

 

 

Abstract 

 

The von Mises stress is an equivalent or effective stress at which yielding is predicted to occur in 

ductile materials. In most textbooks for machine design,
1-7

 such a stress is derived using principal 

axes in terms of the principal stresses 1σ , 2σ , and 3σ  as 
1/2

2 2 2
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σ σ σ σ σ σ σ′  = − + − + −   

In their latest editions, some of these textbooks for machine design began to show that the von 

Mises stress with respect to non-principal axes can also be expressed as 
1/2

2 2 2 2 2 21
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2
x y y z z x x y y z z xσ σ σ σ σ σ σ τ τ τ′  = − + − + − + + +   

However, these textbooks do not provide an explanation regarding how the former formula is 

evolved into the latter formula. Lacking a good explanation for the latter formula in the text-

books or by the instructors in classrooms, students are often made to simply take it on faith that 

these two formulas are somehow equivalent to each other. This paper is written to share with 

educators of machine design and other readers two alternative paths that will arrive at the latter 

general form of the von Mises stress: (a) by way of eigenvalues of the stress matrix, (b) by way 

of stress invariants of the stress matrix. When used with the existing material presented in the 

textbooks, either of these two paths will provide students with a much better understanding of the 

general form of the von Mises stress. The contributed work is aimed at enhancing the teaching 

and learning of one of the important failure theories usually covered in a senior design course in 

most engineering curricula. 
 

 

I.  Introduction 

 

Poncelet and Saint-Venant
8
 proposed using the strain-energy in a ductile material to determine 

when failure of the material would occur. Maxwell
8
 expanded the idea by showing that the total 

strain energy could be divided into distortional and volumetric terms, but he never extended the 

idea further. A distortion-energy theory was prompted from the observation that ductile materials 

stressed hydrostatically exhibited yield strengths greatly in excess of the values given by simple 

tension tests. It was then postulated that yielding was related somehow to the angular distortion 

of the stressed element, rather than that yielding was a simple tensile or compressive phenome-

non. Nowadays, the distortion-energy theory for ductile materials states that yielding occurs 

when the distortion strain energy per unit volume reaches or exceeds the distortion strain energy 

per unit volume for yield in simple tension or compression of the same material. 

 

Using principal axes, we can first decompose the state of stress at a point that is given in terms of 

the principal stresses 1σ , 2σ , and 3σ  into the sum of two states: (a) a state of hydrostatic stress 
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due to the stresses avσ  acting in each of the principal directions and causing only volume change, 

(b) a state of deviatoric stress causing angular distortion without volume change, where 
 

 

                                                               1 2 3
av

3

σ σ σσ + +
=  (1) 

 

Such a decomposition of state of stress is illustrated in Fig. 1. The decomposition of a state of 

stress into a hydrostatic state and a deviatoric state is very useful in applications in plasticity, 

thermoelasticity, fluid dynamics, and other fields of engineering science. 
 

 

 
                                 (a)                                  (b)                              (c) 

 

Fig. 1  Decomposition of state of stress into a hydrostatic state and a deviatoric state 

 

In simple tension, we have, by Hooke’s law, 
 

                                                                        Eσ ε=  (2) 
 

where σ  is the stress, ε  is the strain, and E is the modulus of elasticity. Therefore, the strain 

energy per unit volume for simple tension is 
 

                                              2

0 0

1 1
2 2

u d E d E
ε ε
σ ε ε ε ε ε σ= = = =∫ ∫  (3) 

 

For the state of stress in Fig. 1(a), we readily write the total strain energy per unit volume as 
 

                                                         ( )1 1 2 2 3 3

1
2

u ε σ ε σ ε σ= + +  (4) 

where 

                                                          [ ]1 1 2 3

1
( )

E
ε σ ν σ σ= − +  (5) 

                                                          [ ]2 2 3 1

1
( )

E
ε σ ν σ σ= − +  (6) 

                                                          [ ]3 3 1 2

1
( )

E
ε σ ν σ σ= − +  (7) 

 

in which ν  is the Poison’s ratio. Substituting Eqs. (5) through (7) into Eq. (4), we get the total 

strain energy as 
 

                                      ( )2 2 2

1 2 3 1 2 2 3 3 1

1
2

2
u

E
σ σ σ ν σ σ σ σ σ σ = + + − + +   (8) 

 

By letting av1 2 3σ σ σ σ= = =  in Eq. (8), we obtain the strain energy associated with hydrostatic 

loading, or only volume change, as 
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                                    ( )2 2 2

1 2 3 1 2 2 3 3 1

1 2
2

6
u

E
ν σ σ σ σ σ σ σ σ σ−  = + + + + + v

 (9) 

 

Clearly, the distortion energy per unit volume is  
 

du u u= −
v
 

We obtain that 
 

                                 
2 2 2

1 2 2 3 3 1( ) ( ) ( )1

23
du

E

σ σ σ σ σ σν  − + − + −+
=  

 
 (10) 

 

Note that 0du =  if 
1 2 3σ σ σ= = ; i.e., no distortion exists in hydrostatic state of stress. 

 

For simple tensile test of a ductile material, we have 1 ySσ = , 
2 3 0σ σ= = , and Eq. (10) reduces 

to 

                                                                   21

3
ydu S

E

ν+
=  (11) 

 

where yS  is the yield stress in tension for the material. By the distortion-energy theory, as stated 

earlier, yield is predicted to occur if the value of 
du  in Eq. (10) equals or exceeds the value of 

du  

in Eq. (11). In other words, yield occurs whenever 
 

                                          

1/2
2 2 2

1 2 2 3 3 1( ) ( ) ( )

2
yS

σ σ σ σ σ σ − + − + −
≥ 

 
 (12) 

 

Therefore, the left side of Eq. (12) represents an equivalent or effective stress at which yielding 

of any ductile material is predicted to occur. This stress is usually denoted as σ ′  and is known as 

the von Mises stress: 
 

                                       
1/2

2 2 2

1 2 2 3 3 1

1
( ) ( ) ( )

2
σ σ σ σ σ σ σ′  = − + − + −   (13) 

 
 

The derivation of this form of the von Mises stress is based on the principal axes and arrives at 

the final result that is, of course, expressed in terms of the principal stresses 1σ , 2σ , and 3σ . 

 

However, normal and shear stresses may be present at many locations of the machine parts that 

are subjected to either static or dynamic loads. Thus, the state of stress is often expressed in 

terms of the normal stresses xσ , yσ , and zσ , and the shear stresses x yτ , y zτ , and z xτ , where the 

coordinate axes are non-principal axes. Since it is desirable in design to expeditiously determine 

the factor of safety against either static or fatigue failure, an effective way is needed to properly 

combine normal and shear stresses, at a point, into a single value (equivalent to σ ′ ), which can 

be used to compare with the yield strength of the material. 

 

Recently published machine design textbooks began to show, without explanation, that the von 

Mises stress with respect to non-principal axes can also be expressed as 
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2 2 2 2 2 21
( ) ( ) ( ) 6( )

2
x y y z z x x y y z z xσ σ σ σ σ σ σ τ τ τ′  = − + − + − + + +   (14) 

 

Most students have little idea how Eq. (13) is evolved into Eq. (14) for the general form of σ ′ . 
In this paper, we present two alternative paths that will lead from Eq. (13) to Eq. (14). 
 

 

II.  Arriving at the General Form of σ ′ via Eigenvalues of the Stress Matrix 

 

Neglecting couple stresses (or body moments), we know that “cross-shears” are equal; i.e.,  
 

                                                yx xyτ τ=           
zy yz
τ τ=           

xz z xτ τ=  (15) 
 

Thus, the state of stress at point O of the coordinate system Oxyz in the material is given by the 

symmetric stress matrix 
 

                                                             

x xy z x

xy y yz

z x yz z

σ τ τ
τ σ τ
τ τ σ

 
 =  
  

ı  (16) 

 

where the xyz axes are generally not principal axes. The principal stresses 1σ , 2σ , and 3σ  at O 

of the material are given by the eigenvalues of the stress matrix ı , which are simply the roots of 

the characteristic equation 
 

                                                      0

x xy z x

xy y yz

z x yz z

σ λ τ τ
τ σ λ τ
τ τ σ λ

−
− =

−
 (17) 

 

 

Upon expansion, Eq. (17) becomes the cubic equation 
 

 

                                                         3 2

1 2 3 0I I Iλ λ λ− + − + =  (18) 

where  

                                                                1 x y zI σ σ σ= + +  (19) 
 

 

                                              
2

2 2 2   

y y z x x yx z x

y z z x y yz x z

x y y z z x xy yz zx

I
σ τ σ τσ τ
τ σ τ στ σ

σ σ σ σ σ σ τ τ τ

= + +

= + + − − −

 (20) 

 

 

                                                              
3

x xy z x

xy y yz

z x yz z

I

σ τ τ
τ σ τ
τ τ σ

=  (21) 

 

 

The roots of Eq. (18) are the principal stresses 1σ , 2σ , and 3σ  at O of the material. The values 

of the principal stresses depend only on the applied loads and cannot be influenced by the choice 

of orientation of the xyz coordinate axes at point O. This means that the values of 
1 2 3,  ,  and I I I  
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given by Eqs. (19) through (21) must remain unchanged for all choices of orientations of the xyz 

coordinate axes at point O. 

 

If the xyz coordinate axes at point O coincide with the principal axes at point O, the “cross-

shears” vanish and the values of 
1 2 3,  ,  and I I I  can be expressed in terms of just the principal 

stresses as 
 

                                                                
1 1 2 3I σ σ σ= + +  (22) 

 
 

                                                           2 1 2 2 3 3 1I σ σ σ σ σ σ= + +  (23) 
 
 

                                                                    
3 1 2 3I σ σ σ=  (24) 

 
 

Based on Eqs. (19) and (22), we write 
 
 

                                                        1 2 3 x y z
σ σ σ σ σ σ+ + = + +  (25) 

 
 

Based on Eqs. (20) and (23), we write 
 
 

                                 2 2 2

1 2 2 3 3 1 x y y z z x xy yz zx
σ σ σ σ σ σ σ σ σ σ σ σ τ τ τ+ + = + + − − −  (26) 

 
 

Squaring both sides of Eq. (25) and using Eq. (26), we write 
 
 

                               

( )
( )
( ) ( )

2 2 2
1 2 3 1 2 2 3 3 1

2 2 2

2 2 22 2 2
1 2 2 3 3 1

2

2

2 2

x y z x y y z z x

x y z xy yz zx

σ σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ σ τ τ τ

+ + + + +
= + + + + +
= + + + + + + + +

 (27) 

 
 

From Eq. (27), we get the relation 
 
 

                                        ( )2 2 22 2 2 2 2 2
1 2 3 2x y z xy yz zx

σ σ σ σ σ σ τ τ τ+ + = + + + + +  (28) 
 
 

Based on the von Mises stress in Eq. (13) and Eqs. (28) and (26), we write 
 
 

                      

( )
2 2 2 2

1 2 2 3 3 1

2 2 2
1 2 2 3 3 11 2 3

2 2 2 2 2 2

2 2 2

2 2 2

2 ( ) ( ) ( ) ( )

          ( ) 22

2( ) ( )4          
( ) ( )              2 2

          (2( ) 2

x y z xy yz zx

x y y z z x xy yz zx

x y z x y

σ σ σ σ σ σ σ
σ σ σ σ σ σσ σ σ

σ σ σ τ τ τ
σ σ σ σ σ σ τ τ τ

σ σ σ σ σ

′ = − + − + −
+ ++ + −=

= + + + + +
+ ++ +− +

= + + +− 2 2 2

2 2 2 2 2 2

) 6( )

          ( ) ( ) ( ) 6( )

y z z x x y y z z x

x y y z z x x y y z z x

σ σ σ σ τ τ τ

σ σ σ σ σ σ τ τ τ

+ + + +

= − + − + − + + +

 (29) 

 
 

Therefore, we conclude that the following general form of the von Mises stress has been 

proved and is true: 
 

                         
1/2

2 2 2 2 2 21
( ) ( ) ( ) 6( )

2
x y y z z x x y y z z xσ σ σ σ σ σ σ τ τ τ′  = − + − + − + + +   (30) 

 

Q.E.D. 
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III.  Arriving at the General Form of σ ′ via Invariants of the Stress Matrix 

 

The fact that the values of 
1 2 3,  ,  and I I I , as shown in Eqs. (19) through (24), must and do re-

main unchanged under any choice of orientation of the xyz coordinate axes (i.e., under any 

coordinate transformation) at point O means that they are invariants of the stress matrix at point 

O. This is well-known to those who are familiar with the field of continuum mechanics.
9-12

  

 

Using principal axes and principal stresses 1σ , 2σ , and 3σ  at O, we have earlier derived and es-

tablished the von Mises stress as 
 
 

                                       
1/2

2 2 2

1 2 2 3 3 1

1
( ) ( ) ( )

2
σ σ σ σ σ σ σ′  = − + − + −   (13)  (Repeated) 

 

Using the first two stress invariants in Eqs. (22) and (23), we write 
 
 

                                   

( ) ( )
( ) ( )

22

1 2 1 2 3 1 2 2 3 3 1

2 2 2
1 2 3 1 2 2 3 3 1

2 2 2

1 2 2 3 3 1

2 6 2 6

               2 2

( ) ( ) ( )               

I I σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ

− = + + − + +

= + + − + +

= − + − + −

 (31) 

 
 

From Eqs. (13) and (31), we see that 
 
 

1/2
2

1 2

1
2 6

2
I Iσ ′  = −   

 
 

Thus, the von Mises stress can be expressed in terms of stress invariants 
1 2 and  I I  as follows: 

 
 

                                                                  2

1 23I Iσ ′ = −  (32) 
 
 

Note that Eq. (32) is independent of the choice of the coordinate system and is the most general 

form of the von Mises stress. 

 

Using the stress invariants in Eqs. (19) and (20), we write 
 

 

                              

( ) ( )
( ) ( )

2

1 2

2 2 2 2

2 2 22 2 2

2 2 2 2 2 2

3

3

3

1
( ) ( ) ( ) 6( )

2

x y y z z x xy yz zxx y z

x y z x y y z z x xy yz zx

x y y z z x x y y z z x

I I

σ σ σ σ σ σ τ τ τσ σ σ

σ σ σ σ σ σ σ σ σ τ τ τ

σ σ σ σ σ σ τ τ τ

−

+ + − − −= + + −

+ += + + + + +−

 = − + − + − + + + 

 (33) 

 
 

Substituting Eq. (33) into Eq. (32), we conclude that the following general form of the von 

Mises stress has been proved and is true: 
 

 

                         
1/2

2 2 2 2 2 21
( ) ( ) ( ) 6 ( )

2
x y y z z x x y y z z xσ σ σ σ σ σ σ τ τ τ′  = − + − + − + + +   (34) 

 

Q.E.D. 
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IV.  Machine Element Design: Use of von Mises Stress and Assessment 

 

At the institution where the authors teach in the Department of Mechanical Engineering, the 

course MEEG 4103 Machine Element Design is a course for mainly seniors in the curriculum. 

The specified prerequisite to this course is MEEG 3013 Mechanics of Materials

 

. In Machine 

Element Design, we explain and emphasize the theories of failure resulting from either static 

loading or fatigue (i.e., dynamic loading) as well as the design of components commonly used in 

modern machines.  

The tension test is uniaxial (i.e., “simple”) and elongations are largest in the axial direction; 

therefore, strains and stresses can be measured and inferred up to “failure.” However, the state of 

stress at a point of a machine component is usually not “simple.” Today the generally accepted 

failure theories (or yield criteria) used to evaluate machine components manufactured from duc-

tile materials are  

Ɣ maximum shear stress theory,  

Ɣ distortion energy theory,  

Ɣ Coulomb-Mohr theory.  

In the distortion energy theory, yielding occurs when the von Mises stress σ ′  is reached, or 

exceeded, by a state of stress in the machine component.  

 

We endeavor to present the derivations explaining how the von Mises stress in Eq. (13) is 

evolved into the general form in Eq. (14) in the course MEEG 4103. Such an endeavor enables 

us to achieve the following two educational benefits: (a) students see the importance and are 

convinced via derivations that the two forms of the von Mises stress σ ′  in Eqs. (13) and (14) are 

truly equivalent, (b) any “uneasiness” or “compelled faith” in the minds of the students, who use 

the general form of the von Mises stress in Eq. (14), is dispelled. The students appreciate having 

been exposed to the alternative stories behind the general form of the von Mises stress in Eq. 

(14). Compared with students who took the same course where the explanations and derivations 

for Eq. (14) were omitted, the students exposed to these derivations have now an increased sense 

of confidence in this class, and they did better in the quizzes and tests involving the use of von 

Mises stress, such as in computing the factor of safety for the machine components subjected to 

static or dynamic loads. 

 

 

 

V.  Concluding Remarks 

 

When the xyz coordinate axes at point O coincide with the principal axes, the “cross-shears” va-

nish and the normal stresses ,  ,  and yx zσ σ σ  become the principal stresses 1σ , 2σ , and 3σ  on 

the principal planes. Therefore, the general form of the von Mises stress obtained in Eqs. (30) 

and (34) nicely degenerates into the form in Eq. (13). In other words, the path from Eqs. (30) and 

(34) to Eq. (13) is an easy and direct one-way street. Nevertheless, there is no obvious clue as to 

how one can go from Eq. (13) to Eqs. (30) and (34). 
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For many years, machine design textbooks presented only the von Mises stress in the form of Eq. 

(13). Only in recent years, machine design textbooks began to show, without explanation, that 

the von Mises stress with respect to non-principal axes can also be expressed in the form of Eq. 

(14). This paper is written to share with educators of machine design and other readers a couple 

of ways that may be used to explain how Eq. (13) is evolved to arrive at Eq. (14). It is aimed at 

enhancing the teaching and learning of one of the important failure theories usually covered in a 

senior design course in most engineering curricula. 
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