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Introduction 

 Tellegen’s theorem [1][2] has been applied to several electrical systems that are linear or 

nonlinear, reciprocal or nonreciprocal, time-variant or time-invariant, and so forth.  Tellegen’s 

theorem states that the total power delivered to all the components of an electrical network is 

zero [1][2].  This result has profound consequences in that the sum of the products of voltages 

and currents should be zero.  If the voltage and current variables of a circuit are interchanged, we 

get an equivalent circuit with the same total delivered power.  The two circuits are equivalent in 

terms of Kirchoff’s Laws and topological equivalence [1][2].  However, there is no dependence 

on the components of the circuit.  For example, one may be a nonlinear resistive circuit and the 

other may be a linear circuit.  The significant implication of Tellegen’s theorem comes from the 

fact that two or more circuits with the same power constraints can be configured with no 

restrictions on linearity, time-invariance and method of analysis.  The practical implication 

comes in the design process where students can exmine several equivalent networks and use for 

example, the simpler one in part of a design. So far, the discussion has centered about analog 

electrical networks only.  Tellegen’s theorem has been extended to discrete systems used in 

discrete signal processing [3].  This provides the derivation of different structures and a desirable 

one is chosen to suit the other properties required for a design.  In this paper, we show that 

Tellegen’s theorem can be extended to other types of systems.  We consider mechanical, fluid 

and thermal systems. 

Across and Through Variables 

 It is known that these four systems (electrical, mechanical, fluid and thermal) can be 

given a unified treatment by the use of across-variabes {av(t)} and through-variables {tv(t)} [4].  
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It is to be noted that for each system these variables are different and Table 1 gives these 

variables, along with their units. 

System Across-variable av(t) Through-variable tv(t) 
Electrical Voltage (volts)     v(t) Current (amperes)    i(t) 

Mechanical 
(Translational) 

Velocity     v(t) 
(meters/second) 

Force          f(t) 
(Newtons) 

Mechanical 
(Rotational) 

Angular Velocity    ω(t) 
(radians/second) 

Torque   T(t) 
(Newtons)(meters) 

Fluid Pressure difference    p(t) 
(Pascals or 

Newtons/meter2) 

Flow rate       q(t) 
(meter)3/second 

Thermal Degree Difference θ    oC 
(oCelsius) 

Heat Flow     ϕ(t) 
(watts) 

 

 Table 1 Across and Through Variables for Different Types of Systems 

In each system, there will be mathematical relationships between av(t) and tv(t) 

depending on the property or physical element.  These are: 

av(t) = k1 tv(t)                                                       (1a) 

[ ]
dt
tv(t)d kav(t) 2=                                                    (1b) 

∫= dt tv(t) kav(t) 3                                                    (1c) 

The relationship (1a) corresponds to that of a resistor or equivalent; the relationship (1b) 

corresponds to that of an inductor or equivalent;  and the relationship (1c) corresponds to that of 

a capacitor or equivalent.  These relationships are not required in the statement of the extended 

Tellegen’s theorem that we propose.   However, they are required in the analysis.  The analysis 

may be carried out either in the time-domain or in the Laplace transform domain.  The Laplace 

transform domain equations corresponding to Eqs. (1a), (1b) and (1c) are given below: 

Av(s) = k1 . Tv(s)                                                    (2a) 

Av(s) = (sk2) . Tv(s)                                                (2b) 

Tv(s) 
s

k
  Av(s) 3 







=                                                   (2c) 

These equations are given assuming that the initial conditions are zero.  If initial conditions are 

present, they are added as suitable sources. 
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 Table 2 gives the equations in the Lapalce-transform domain (and hence the impedances) 

in the above-mentioned systems corresponding to Eqs. (2a), (2b) and (2c). 

 
 Resistance  {Eq.(2a)} Inductance {Eq.(2b)} Capacitance  {Eq.(2c)}

Electrical V(s) = R I(s) V(s) = (sL) I(s) 
sC
I(s)V(s) =  

Mechanical 
(Translational) 

 
F(s) = b V(s) 

(b = damper constant)
V(s) 

s
kF(s) =  

(k = spring constant) 

 
F(s)=(sm) V(s) 

(m = mass in kg) 
Mechanical 
(Rotational)  

T(s) = B ω(s) 
(B = damper 

constant) 

(s) 
s
KT(s) ω=  

(K = spring constant) 

T(s) = (sJ) ω(s) 
(J = moment of inertia 

in (kg.meter2)  
Fluid P(s) = Rf Q(s) P(s) = (sLf) Q(s) 

Q(s) 
sC

1P(s)
f








=  

Thermal 
(s) 

R
1(s)

Thermal

θϕ =  
 

(Does not exist) 
 

ϕ(s) = (sCf) θ(s) 

 
Table 2 Laplace Transform Relationships Between Across and Through Variables for Different 

Types of Systems 

 From Table 2, it is noted that a damper is the mechanical equivalent of a resistor and the 

spring is the mechanical equivalent of an inductor. The mechanical equivalent of a capacitor is 

either mass or moment of inertia. For fluid systems, the notions of resistance, inductance and 

capacitance exist. A tank is the physical realization of a capacitor. For thermal systems, only the 

concepts of resistance and capacitance exist. 

Application of Tellegen’s Theorem To All Four Systems 

 Let Na be the equivalent electrical network of a system and let Nb be another electrical 

equivalent network of the same system in that both Na and Nb have the same topology. The 

extended Tellegen’s theorem that we propose has four parts and they are given below.  The 

relationships are written in the Laplace-transform domain.  However, similar relationships can be 

written in the time-domain also. 

Relationship (1):  

∑
=

=
B

1k
akak 0  (s)Tv . (s)Av                                               (3a) 

Relationship (2): P
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∑
=

=
B

1k
bkbk 0  (s)Tv . (s)Av                                               (3b) 

For both equations (3a) and (3b), B is the number of branches in the network graph and is the 

same in both the systems. The subscript ak refers to the kth branch of Network Na. Similarly, the 

subscript bk refers to the kth branch in Network Nb. The summation is taken over all the 

branches. Hence, in Network Na, the branches are numbered as a1, a2, and so on.   Similarly, in 

Network Nb, the branches are numbered as b1, b2, and so on. The relationships in equations (3a) 

and (3b) can readily be interpreted as the consequence of the Law of Conservation of Energy in a 

system. For example, in an electrical system, the sum of the products of voltage and current 

(which is the power) in each branch is equal to zero. 

Relationship (3): 

∑
=

=
B

1k
bkak 0  (s)Tv . (s)Av                                               (3c) 

Relationship (4): 

∑
=

=
B

1k
akbk 0  (s)Tv . (s)Av                                               (3d) 

Equations (3c) and/or (3d) can be interpreted as the sum of the products of the av’s (or tv’s) in 

Network Na and the tv’s (or av’s) in Network Nb will always be equal to zero. The following 

examples illustrate the above concept. 

Example 1 – Mechanical System 

 Figure 1(a) shows a mechanical system (called Na) and Figure 1(b) shows its equivalent 

circuit in the Laplace-transform domain. 

1ab

2am2ak
1am1ak

1av

sav

2av

(a) (b) (c)

 
 

Figure 1(a) A mechanical system designated as Na 
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(a) (b) (c)

1aZ 3aZ

2aZ 4aZ+

−
(s)Vsa

(s)V1a (s)V2a
1aF

2aF

3aF

4aF

 
Figure 1(b) The equivalent circuit of Figure 1(a) in the Laplace transform domain 

The impedances are given by               

2a1a
4a

2a
3a

1a
2a

1a
1a smb

1 Zand 
k
sZ,

sm
1 Z,

k
sZ

+
====                       (4) 

Analysis yields 

( )
( ) ( )4aa3a24a3a2a1a

sa4a3a2a
1a ZZZZZZZ

(s)V ZZZ
(s)F

++++
++

=                              (5a) 

( )
( ) ( )4aa3a24a3a2a1a

sa4a3a
2a ZZZZZZZ

(s)V ZZ
(s)F

++++
+

=                              (5b) 

( )
( ) ( )4aa3a24a3a2a1a

sa4a
4a3a ZZZZZZZ

(s)V Z
(s)F  (s)F

++++
==                              (5c) 

V1a(s) = F2a(s) Z2a                                                    (5d) 

V2a(s) = F4a(s) Z4a                                                    (5e) 

 We shall now consider another mechanical system (called Nb) shown in Figure 2(a) and 

its Lapalce-transform domain equivalent circuit in Figure 2(b). 

2bb

1bm

1bk

2bk

2bv

1bv
1bb

sbv

 
Figure 2(a) The mechanical system called Nb. P
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(a) (b) (c)

1bZ 3bZ

2bZ 4bZ+

−
(s)Vsb

(s)V1b (s)V2b
1bF

2bF

3bF

4bF

 
Figure 2(b) The Laplace-transform equivalent circuit of Figure 2(a) 

The impedances are given by  

 
2b2b

4b
2b

3b
1b

2b11b smb
1 Zand 

k
sZ,

k
s Z,bZ

+
====                               (6) 

Analysis yields 

( )
( ) ( )4bb3b24b3b2b1b

sb4b3b2b
1b ZZZZZZZ

(s)V ZZZ
(s)F

++++
++

=                              (7a) 

( )
( ) ( )4bb3b24b3b2b1b

sb4b3b
2b ZZZZZZZ

(s)V ZZ
(s)F

++++
+

=                              (7b) 

( )
( ) ( )4bb3b24b3b2b1b

sb4b
4b3b ZZZZZZZ

(s)V Z
(s)F  (s)F

++++
==                              (7c) 

V1b(s) = F2b(s) Z2b                                                    (7d) 

V2b(s) = F4b(s) Z4b                                                    (7e) 

 Figures 1(b) and 2(b) show that networks Na and Nb have the same topology.  It is readily 

verified that all the four relationships given in Equation (3) are satisfied.  Specifically, Equation 

(3a) becomes 

- VsaF1a + (Vsa – V1a)F1a + V1aF2a + (V1a – V2a)F3a + V2aF4a = 0                 (8a) 

Equation (3b) becomes 

- VsbF1b + (Vsb – V1b)F1b + V1bF2b + (V1b – V2b)F3b + V2bF4b = 0                 (8b) 

Equation (3c) becomes 

- VsaF1b + (Vsa – V1a)F1b + V1aF2b + (V1a – V2a)F3b + V2aF4b = 0                 (8c) 

Equation (3d) becomes 

- VsbF1a + (Vsb – V1b)F1a + V1bF2a + (V1b – V2b)F3a + V2bF4a = 0                 (8d) 
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Example 2 – Fluid System 

 Figure 3(a) depicts a fluid system which we can denote as Na and figure 3(b) shows the 

electrical circuit equivalent which has the same topology as the circuit in Figure 1(b). 

  (t)psa

(t)p1a (t)p2a

1afC 2afC

1afR1afL
+ −

2afL

 
Figure 3(a) A fluid system designated as Na 

  

(a) (b) (c)

1aZ 3aZ

2aZ 4aZ+

−
(s)Psa

(s)P1a (s)P2a
1aQ

2aQ

3aQ

4aQ

 
Figure 3(b) The equivalent circuit of Figure 3(a) in the Laplace transform domain 

The impedances are given by  

   
1RsC

R
  Z,sL  Z,

sC
1  Z,sLZ

1af2af

1af
4a2af3a

1af
2a1af1a +

====  

Figure 4(a) depicts a fluid system which we can denote as Nb and figure 4(b) shows the electrical 

circuit equivalent which has the same topology as the circuit in Figure 2(b). The fluid systems of 

this example are equivalent to the mechanical systems of example 1. The circuit topologies of the 

mechanical and fluid systems are all identical. 
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Figure 4(a) The fluid system called Nb. 

 

 

(a) (b) (c)

1bZ 3bZ

2bZ 4bZ+

−
(s)Psb

(s)P1b (s)P2b
1bQ

2bQ

3bQ

4bQ

 
 

Figure 4(b) The equivalent circuit of Figure 4(a) in the Laplace transform domain 

The impedances are given by 

    
1RsC

R
 Z,sL  Z,R Z,RZ

3bf1bf

3bf
4b1bf3b2bf2b1bf1b +

====  

The analysis and verification of Tellegen’s theorem proceeds in an identical manner as for 

Example 1. 

Summary and Conclusions 

 In this paper, it has been shown that Tellegen’s theorem, enunciated for electrical systems 

so far, can be applied to other types of systems like mechanical, fluid and thermal systems also.  

Though one example of a pair of mechanical systems and one of a pair of fluid systems are given 

(due to space considerations), similar examples can be given for other systems also.  This paper 

makes a thrust at multidisciplinary engineering education by showing that a powerful theorem in 

circuit theory can be applied in other systems thereby further enforcing the isomorphism among 

various systems. 

(t)psb

(t)p1b

(t)p2b

1bfR

2bfR

3bfR1bfL

1bfC

+ −
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 It is suggested that courses in Circuits, Statics, Dynamics and Fluids integrate Tellegen’s 

theorem and our extension to provide students with a better insight across enginering disciplines.  

This will partially address the demand of industry for acquiring engineers with a broad set of 

skills and a comprehension of diverse prctical applications and who can move across rather 

artificial program boundaries with great ease. 
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