
AC 2012-3546: TEMPLATE-BASED IMAGE PROCESSING TOOLKIT FOR
ANDROID PHONES

Mrs. Santosh Chandana Golagani, University of Texas, San Antonio
Mr. Moosa Esfahanian, University of Texas, San Antonio
Dr. David Akopian, University of Texas, San Antonio

David Akopian is an Associate Professor at the University of Texas, San Antonio (UTSA). He joined the
UTSA in 2003 where he founded the Software Communication and Navigation Systems Laboratory. He
received the M.Sc. degree in radio-electronics from the Moscow Institute of Physics and Technology in
1987 and Ph.D. degree in electrical engineering from the Tampere University of Technology (TUT), Fin-
land, in 1997. From 1999 to 2003, he was a Senior Engineer and Specialist with Nokia Corporation. Prior
to joining Nokia in 1999, he was a member of teaching and research staff of TUT. His current research
interests include digital signal processing algorithms for communication and navigation receivers, mobile
applications, and learning methods. He authored more than 30 patents and 100 publications.

Dr. Can Saygin, University of Texas, San Antonio

Can (John) Saygin is an Associate Professor of mechanical engineering and a research investigator in the
Center for Advanced Manufacturing and Lean Systems (CAMLS) at the University of Texas, San Antonio
(UTSA). He is also the Director of the Interactive Technology Experience Center (iTEC) and the Director
of the Manufacturing Systems and Automation (MSA) Laboratory. He received his B.S. (1989), M.S.
(1992), and Ph.D. (1997) degrees in mechanical engineering with emphasis on manufacturing engineering
from the Middle East Technical University, Ankara in Turkey. In his academic career, he worked at
the University of Toledo (1997-1999) and the Missouri University of Science and Technology (formerly
University of Missouri, Rolla) (1999-2006) before joining UTSA in Aug. 2006. For more, please visit
http://engineering.utsa.edu/˜saygin/.

c©American Society for Engineering Education, 2012

P
age 25.1270.1

 Template–Based Image Processing Toolkit for Android Phones

Abstract

Nowadays smart phones are becoming the most widely used portable devices. Cell phones

significantly enrich daily human life experience by providing ubiquitous access to sophisticated

multimedia features such as voice and data services, short messaging, built-in cameras, Wi-Fi,

Internet, Bluetooth and many more. Attracted by “any time and any place” communication

accessibility many educators explore opportunities to improve student learning by using either

standard phone features or applications dedicated for learning needs. In these scenarios cell

phone is considered as learning content delivery and interaction device. While many such studies

are reported, another aspect hasn’t been explored thoroughly – efficient learning strategies for

smart phone application development itself. This is an important problem for electrical and

computer engineering students as there exist credit hour constraints in curricula, technology

changes very fast, and offering related chain of courses is not very feasible. This paper presents

an approach facilitating the introduction to smart phone application development using short

template projects combined in a template library. The idea is to familiarize students with the

whole development cycle by minimizing code-programming, by having ready-made templates

which can be manipulated for hands-on experience. The complexity of course materials can be

varied using different set of modules, and thus such learning modules can be offered

independently, integrated in other conventional courses or used for outreach. With this concept

the phone application development is demystified, the big picture clarifies, while students can

learn specific insights according to their needs using existing learning tracks. The described

system is created for Android phones but the idea can apply for other platforms as well. The

proposed library offers a convenient user interface to facilitate students to analyze the image

processing techniques by making certain modification in the pre-existing code.

1. Introduction

Modern smart phones transformed to sophisticated personal assistant devices being equipped

with high resolution cameras, internet, text messaging, Wi-Fi and Bluetooth connectivity, etc.

Documents and images can be displayed in different formats and various applications are either

deployed or can be downloaded to enhance student ability to improve their learning.

To certain degree cell phones closed digital gaps as students of different backgrounds and in

different countries own mobile phones. It not surprising, that educators have demonstrated high

interest in transforming cellular phones to a teaching tool. While initially the cell phone was

considered a distractive device
1
.

For example, an early mobile app in smart phones, ‘myHomework’
2
 allows students to track

their homeworks, classes and assignments. Thornton and Houser
3
 used phones to email English

vocabulary words to mobile phones of Japanese University students. They reported better

learning using phones compared to regular study materials on paper: 71% of students have

shown interest in learning English vocabulary on mobile platforms in spite of personal

computers and 93% felt that mobile based education is effective method for teaching. According

to a survey
4
 conducted by the Learning and Skills Development Agency in a project called “m-

learning”, many young adults aged 16 to 24 years who are not involved in schooling showed

P
age 25.1270.2

great interest in using mobile phone games for learning English (49%) and Mathematics skills

(44%). The research facilitated access to learning materials and also investigated different

learning approaches using mobile phones with individuals and groups. Also, Williams
5

suggested that students make use of their cell phones for timing analysis of experiments,

communicating through text messaging for surveys, finding definitions to new terms and

recording lab results using camera.

While cell phones are already used for different educational purposes, this paper illustrates a

different perspective, i.e. teaching application development itself, rather using ready

applications. This is necessitated by the fact, that many engineering systems integrate cell phone

interfaces into their systems to improve usability, and the job market for mobile phone

developers is very hot. Conventional teaching curricula may not quickly adjust to fast changes in

industry as typically a chain of courses would be needed, credit hour limitations of programs

may constrain integrating additional courses, development environments continuously change, or

students may benefit from early exposure to develop various projects.

Our approach is the following. Create a template library of image processing algorithms and an

easy to use user interface to work with these algorithms. Incorporate this library as a toolkit for

mobile application development and training. Then the toolkit can be used both as a template to

learn app development and as a kit for promoting STEM (Science, Technology, Engineering and

Mathematics). I.e., engineering students can manipulate the templates for the possibility to see

the whole development cycle minimizing specific coding efforts. At the same time the

applications related to engineering can be used for outreach to tell prospective students about

electrical and computer engineering programs. Applications may include e.g. image processing

algorithms and control systems using cell phones for remote control through wireless links. Such

short crash course modules can be incorporated in existing conventional courses such as

Communication Systems, Wireless Communications etc., or offered as an independent course.

Even courses, such as Digital Signal and Image Processing can use sample projects for hands-on

experience.

This all is possible because smart phones are created to accommodate external applications.

Particularly Android
6
 became popular recently as an open source platform for Java-based

7

projects. It is a convenient application development and integration environment.

The described toolkit used in this paper is simple and convenient to learn. The user friendly

Graphical User Interface (GUI) is developed to facilitate analysis of image processing techniques

by making certain modification in the pre-existing code of digital image processing concepts

than developing from scratch. Moreover, assuming that users may have limited knowledge on

Java we propose a “learn by example” approach
8
 such that students with various backgrounds

can explore applications of various degree of complexity. Simple “edit–compile–execute”

programming
8
 cycle is used for this paper to minimize code development cycle. And finally, the

modules are offered in a classroom and survey is conducted to reveal the impact of the proposed

strategy.

Figure 1 shows the toolkit running on Android 1.5 emulator. Likewise, it can be deployed in any

Android phone independent of SDK version. The tutorial instructions include (1) SDK

P
age 25.1270.3

installations, (2) template-

toolkit installation, (3)

compiling and application

installations on phones, (4)

sample examples-labs of

code manipulations to

implement projects.

2. Overview of image

processing toolkit

The image processing

algorithms included in the

toolkit are classified as:

Manipulations,

Transformations and

Digital Retouching. The

first category

‘Manipulations’ consist of

straight forward

mathematical arrangement of pixel elements for example, add/subtract, scale, crop, clone,

transpose, skew, and rotate an image.

Figure 2. Menu structure display on Android phone(left hand side). On right side is the full

‘Menu’ structure implemented in this toolkit

Figure 1. Application deployed on Android 1.5 emulator

P
age 25.1270.4

Second category, ‘Transformations’ include algorithms which convert images from spatial

domain to transformed domain and also inverse functions to convert back to spatial domain such

as. Examples are well known transformations such as Discrete Cosine Transform (DCT) and Fast

Fourier Transform (FFT). Finally, ‘Digital Retouching’ includes a set of image evaluation

algorithms for instance, histogram, noise removal and edge detection filters. Figure 2 shows the

menu structure implemented in this toolkit and deployed in an Android HTC phones.

Furthermore,

3. Template Examples

3.1 Demonstration 1- FFT

This template illustrates how to process FFT. Open source FFT Java codes are widely available

for usage, e.g. the package in
9
. The readers refer to

9
 for details on original implementation. FFT

is a fast implementation of Discrete Fourier Transform (DFT) which is used for transforming

signals and images to frequency domain. Many algorithms exploit frequency domain for

processing signals and images. In this demonstration image sizes are limited to powers of two.

As input image is a two dimensional matrix, the Separable two dimensional transform is

performed by applying one-dimensional FFTs to image matrix rows and columns. Since the

output of FFT consists of real and imaginary components, only magnitudes of transformed image

are used for displaying FFT domain results. The Inverse Fast Fourier Transform (IFFT) is then

applied to reconstruct the original image from the transformed image.

Studying shapes in space and frequency domains:

 In practice, assignment examples are assigned to the students to explore on how various

geometric shapes are represented in frequency domain. Figure 3 shows the results of this

assignment. The procedural steps are the following.

1. Perform FFT on shapes like rectangle, square, triangle etc.

2. Also perform FFT on geometrical shapes like circle, sphere, cylinder etc.

3. Observe vertical and horizontal low frequency components concentrated at the center of

square image in frequency domain. One can also observe that FFT of circle image has low

frequency symmetric circular components concentrated at the center. On the other hand, for

triangular image, its FFT has lines perpendicular to the sides of triangle.

In other case, consider different alphanumeric characters to study shapes in frequency domain.

For numerical value 8, its frequency transformation has symmetric property resembling the

shape of ‘eight’. For alphabets X and N, we can observe that the transformed images consist of

bright lines perpendicular to the lines shown in these alphabets. Furthermore, for special

character ‘#’ its transformed image also has multiple lines perpendicular to lines in spatial

domain.

P
age 25.1270.5

(f) (e)

(a) (b) (c) (d)

Figure 3. (a) Rectangle image; (b) Rectangle in frequency domain; (c) Circle image; (d) Circle in frequency

domain; (e) Triangle image; (f) transformed to frequency domain

Figure 4. Alphanumeric images in space domain and their respective FFT images

P
age 25.1270.6

Frequency-domain processing of two images

Image manipulation can be performed in frequency domain. Images can be added, subtracted,

multiplied etc. in frequency domain for various needs, e.g. filtering. Then converted to spatial

domain. The following are the procedural steps to apply FFT on two images:

1. Select two images of same size and size of power of two.

2. Apply FFT on two images.

3. Manipulate transformed (FFT) images by applying add / minus/ multiply / division.

4. Then apply IFFT to reconstruct the original image.

Figure 5 illustrates convolution through multiplication in frequency domain. The following are

the steps to apply convolution: (1) Open two images; (2) Apply FFT on each image; (3) multiply

images in frequency domain and (4) transform the product to spatial domain using Inverse FFT

(IFFT).

The linear property of FFT is explained by adding two images in frequency domain and

transforming them into space domain. The resultant image in space domain is the addition

of two original images. This property is explained as shown in Figure 6.

Figure 5. (a) Original two images; (b) FFT applied; (c) convolution applied and its IFFT

Figure 6 (a) Original two images; (b) FFT applied; (c) Add image FFTs and apply IFFT.

P
age 25.1270.7

3.2 Demonstration 2- DCT

Discrete Cosine Transform (DCT) is used in image and video compression standards. It is

closely related to Discrete Fourier Transform (DFT) but consists of only real valued transformed

coefficients. It tends to accumulate higher energy at low frequency components in the upper left

corner of the transformed image in frequency domain. Subsequently, quantization and lossless

coding are applied to transformed coefficients to obtained compressed representation of images.

A tutorial and an implementation can be found e.g. in
 10

. This template uses separable two-

dimensional DCT approach where-in one-dimensional DCTs are applied on row and column

vectors. The toolkit also contains Inverse Discrete Cosine Transform (IDCT) to retrieve the

original image from the transformed image. In this template the compression properties of DCT

are studied.

E.g. the following algorithm illustrates a general compression concept: 1) Convert color image to

grayscale image; 2) Read image in 8x8 blocks; 3) Apply forwardDCT () to perform DCT .Store

this result in temporary matrix; 4) Apply quantization; Then reconstruct the image in the

following sequence 5) Apply de-quantization; 6) Run Inverse DCT; 7) Apply Normalization.

Two quantization techniques are included in this toolkit: 1) Quantization by dividing DCT

matrix by a factor and round off to nearest integer. This logic is implemented and is ready to use

as shown in Table 1; 2) Quantization retains the low frequency coefficients and nullifies to zero

high frequency ones (zonal thresholding).

(a)

(a)

(a)

(a)

Figure 7 a) Original image; b) grayscale image; c) Quantization using scaling d) Quantization using

zonal zeroing; (r=0); e) reconstructed image.

(a)

 P
age 25.1270.8

Table 1. Code changes for DCT algorithm.

3.3 Demonstration 3- Histogram

Histogram is a graphical representation of pixel intensity value frequencies. This template

illustrates the technique to analyze histogram of 8 bit grayscale images representing 256 intensity

levels. If a color image is selected, convert it to 8 bit grayscale image as shown in Figure 8. The

histogram consisting of low grayscale range indicates darker image while that of high grayscale

range represents brighter image. On the other hand, if the histogram is a narrow graph, it

signifies low contrast image whereas wide graph indicates high contrast image. Manipulations to

image brightness change histogram in reasonably predictable way. In addition, histogram

equalizer can be used to distribute the image intensity uniformly and improves the brightness of

image yielding a flat graph.

 Changes Code

1) To implement quantization

by scaling.

dct_data = dct2.getQuantization_Scaling(dct_data,2)

// dct_data=dct2.getQuantization_Zeroing(dct_data,100)

 2) To implement quantization

by zeroing.

dct_data=dct2.getQuantization_Zeroing(dct_data,100)

// dct_data=dct2.getQuantization_Scaling(dct_data,2)

3) Change the block size from

100 to 40.

dct_data=dct2.getQuantization_Zeroing(dct_data,40)

Figure 8 a) Original image; b) Grayscale image; c) Histogram

d) Negative image; e) Grayscale image f) Histogram

P
age 25.1270.9

The code fragment of histogram is shown in Table 2. In this code, the input image data is read by

using “image.getData()” and stored in byte array. Since the signed Byte ranges from -128 to

128, the histogram array ‘result’ is offset such that element ‘0’ corresponds to signed byte value

Byte.MIN_VALUE. In Figure 8, the histogram of original image and its negative version are

shown. We can observe from the graph that histogram of negative image is the inverse graph

compare to that of the original image.

3.4 Demonstration 4- Hough Transform

Hough transform is used to identify lines, circles or ellipses in images and is quite insensitive to

image noise. The details and implementation samples can be found in e.g.
11

. The important

feature of Hough transform is identify straight lines of shape y mx b  . However, lines in x ,y

coordinates give unbounded values ,therefore, we consider straight line in polar coordinates as

cos sin x y r   where r is the length of the normal from the origin and  is the

orientation of r w.r.t X – axis.

The Hough transform is implemented by

initially transforming each value in (x, y)

plane to polar coordinates. If we plot

curves represented for x, y points on one

line will cross at a single point. These

points represent the common values of r

and theta and stored in a two dimensional

array called ‘accumulator’ wherein for

each value of θ the value of r is calculated

and consequently the value in accumulator

array at (θ, r) is incremented by one. Thus

Accumulator array is filled with values and

peak values are found. Peak values

represent more x ,y points have crossed that curve . Peaks are identified using threshold

public static int[]

computeHistogram(Gray8Image image){

 int[] result = new int[256];// histogram

array of size 256

 …

 byte[] data = image.getData();

 for (int i=0; i<image.getHeight(); i++) {

 for (int j=0; j<image.getWidth(); j++)

{ // byte offset to get data in range of 0-

256

 result [data[i*image.getWidth()+j]-

Byte.MIN_VALUE]++;

 } }

 return result;

 }

1) Read the image pixels in an array

2) Initialize Accumulator Array

“houghArray” to all zeros

3) For each edge point (x, y) in the image

For θ = 0 to 180

 r= xcosθ+ysinθ

 H(θ,r)= H(θ,r)+1

End

End

4) Find the values of (θ, r) where H(θ,r) is

a local maximum

5) The detected line in the given image is r

= xcos θ +y sinθ

Table 2. Code fragment –Histogram Table 3. Algorithm of Hough transform

Figure 9. a) Original image; b) Hough transform.

applied

P
age 25.1270.10

technique and one line is identified per peak. Figure 9 demonstrates detecting straight lines for a

given image using Hough transform. The algorithm steps are illustrated in Table 3.

3.5 Demonstration 5- Gaussian and Mean Filters

This template students illustrates filtering techniques applied on noisy images. Gaussian
smoothing and Mean are linear filters useful to remove Gaussian noise by smoothing the noisy
image. Gaussian smoothing is similar to mean filter but the kernel representation is different
from mean filter. The kernel represents the shape of the Gaussian bell-shaped. The following two
dimensional convolution kernel approximation is used in this template for smoothing a noisy
image which is defined as 1/16 * [1, 4, 6, 4, 1] considering sigma as 1. Mean filter replaces
center value of the kernel with average of all the pixel values in a 3x3 kernel. For example, if the
kernel is defined as [6, 1, 2, 3, 93, 4, 19, 5, 11] the average for the window is 16, so the modified
kernel becomes [6, 1, 2, 3, 16, 4, 19, 5, 11]. The smoothing property depends on the kernel size,
it increases with increase in kernel size but the sharpness of image is reduced.

Figure 10 shows the processed images for mean and Gaussian filters. The following are the

procedural steps to apply filters: 1) Open a noise-free image; 2) Add Gaussian noise; 3) Apply

‘Mean’ or Gaussian filter 4) Examine the filtered images. Table 4 shows simple code changes

wherein users can change kernel size by changing the value of the variable ‘kernelsize’.

 Table 4. Code change examples for “Mean” and “Gaussian” filters

 Changes Code

1) MeanFilter.java: Change kernel size to 4by4.

This is done by changing the value of variables

‘kernelsize’ and ‘total_kernelelements’.

int kernelsize = 4 ;

int total_kernelelements= 16;

2) MeanFilter.java: Sort the kernel in descending

order.

//Arrays.sort(kernel);

sortDescendingOrder (kernel);

3) GaussianSmooth.java: Adjust kernel size to

7by7.

int kernelsize =7,

sumOfKernelValues=32;

int[] kernel = {1,3,7,10,7,3,1};

4) GaussianSmooth.java: Change kernel to

different Gaussian distribution by changing the

kernel elements.

int kernelsize =7,

sumOfKernelValues=64;

int[] kernel = {1,6,15,20,15,6,1};

Figure 10. a) Original image; b) Gaussian noise added; c) Resultant image of Gaussian filter; d)

resultant image of “Mean” filter.

P
age 25.1270.11

4. Learning module offered in class and survey results

A learning module based on the components of the proposed template image processing toolkit is

offered at the University of Texas at San Antonio, Electrical and Computer Engineering

Department, Wireless Communications class exploring application layer. Module duration: 4-

weaks, 2:30h/week, 8 days, 1:15h/day. About thirty-one students have participated in this 8 days

lab session and survey data was collected. Pre-screening data was collected before beginning of

the session to clarify if the students have prior knowledge in programming, and how do they

perceive mobile application development. Students have learned from setting up the Android

development environment and they have executed successfully the given templates by using lab

instruction materials within the lab duration. Consequently, they deployed the application in real

phone and tested the results. Finally, a mini-project was assigned to students followed by a

questionnaire to obtain students view on learning development process and challenges in coding.

The pre-screening survey data is represented in Chart 1 along with the set of asked questions.

The responses of this survey are scaled
12

 down from ‘5-Excellent’, ‘4-good’, ‘3-average’, ‘2-

below average’ and ‘1-bad’. Also, the mean and standard deviation values for the pre-survey

results are shown in Table 5. Most of the students do not have any programming experience. For

example, in response to the first question “How do you grade your programming skills”, only 6%

of the students (mean=2.4) answered positively. 94% of students do not know Java

programming; however they were able to execute these designed templates. 77% of students

(mean =2.71) have perceived that mobile application development is difficult as shown in Chart

1 for Question 3. But, majority of the students (mean =4.12) have shown interest in learning

mobile application development.

The feedback data collected after the lab session is plotted in Chart 2. The students’ responses

are scaled down from ‘5-excellent’ to ‘1-bad’. Also, the mean and standard deviation results are

shown in Table 6. Majority of the students (Mean =3.93) now changed their perception

positively on the difficulty of the mobile application development as shown in Question 1 in

Chart 2. Additionally, most of the students (Mean=4.41) found that the mobile application

development workshop has clarified the general phone application development and integration

Q1) How do you grade your

programming skills?

Q2) How do you grade your

interest in Mobile Application

Development?

Q3) At this point, how do you

perceive the difficulty of mobile

phone programming?

Q4) Do you think that the mobile

application development is a

rewarding career but you have

doubts on possible difficulties

when pursuing it?

 Chart 1: General questions before Lab session

P
age 25.1270.12

process. As a result, 83% of students opted above average (mean =3.89) that they would able to

develop any Android applications. Many of the students (mean=4.34) are satisfied with this

workshop and gave a positive feedback. 86% of students felt convenient to make code changes

even without prior knowledge in Java language. Moreover, most of the students (mean=4.45) are

satisfied with the tutorials and materials offered during Lab session are helpful.

The overall opinion of the students on this Lab session is gathered from second set of questions

as shown in Table 7. This feedback was designed in terms of several aspects such as subject

importance, level of difficulty, usefulness, workshop work load ,etc .Students graded the mobile

application development as excellent (Mean=4.34), interesting (Mean=4.48), easy (Mean=3.72),

useful (Mean=4.41), valuable (Mean=4.31), motivational (Mean=3.34), and effortless

(Mean=3.27). Majority of students suggested that this session motivated them to learn mobile

application development.

Table 5. Students pre-workshop feedbacks

 Questions Mean SD

Q1 How do you grade your programming skills? 2.40 0.90

Q2 How do you grade your interest in Mobile Application Development? 4.12 1.09

Q3 At this point, how do you perceive the difficulty of mobile phone

programming?

2.71 1.05

Q4 Do you think that the mobile application development is a rewarding career but

you have doubts on possible difficulties when pursuing it?

3.90 1.06

Q1) Has this workshop changed your perception on

the difficulty of mobile phone programming?

Q2) Has this workshop changed your perception on

the difficulty of mobile phone programming?

Q3) Do you think that you would be able to

develop Android applications if needed?

Q4) Has this workshop clarified the phone

application development and integration process?

Q5) Might this workshop influence your opinion

on a possible use of Android Application in your

senior design project?

Are your expectations from the workshop met?

Q6) Modifying known applications might help to

overcome programming skill limitations for

beginners?

Q7) Were Android Application Development

tutorials helpful?

Q8) Were PowerPoint presentations helpful?

Chart 2. Application specific questionnaire after Lab

session

P
age 25.1270.13

Table6. Students’ post-workshop feedbacks

 Questions Mean SD

Q1 Has this workshop changed your perception on the difficulty of

mobile phone programming?

3.93

1.31

Q2 Do you think that you would be able to develop Android

applications if needed?

3.89 1.21

Q3 Has this workshop clarified the phone application development

and integration process?

4.41 0.89

Q4 Might this workshop influence your opinion on a possible use of

Android Application in your senior design project?

4.03 1.13

Q5 Are your expectations from the workshop met? 4.34 0.79

Q6 Modifying known applications similar to the project (image

processing toolkit) might help to overcome programming skill

limitations for beginners?

3.79 1.15

Q7 Were Android Application Development tutorials helpful? 4.45 0.81

Q8 Were PowerPoint presentations helpful? 4.31 0.91

Table 7. Students’ general feedback about the workshop

How do you grade Mobile Application Development workshop in general? Mean SD

Excellent 5 - 1 Bad 4.34 0.92

Interesting 5 - 1 Boring 4.48 0.89

Easy 5 - 1 Hard 3.72 0.91

Useful 5 - 1 Useless 4.41 0.85

Valuable 5 - 1 Worthless 4.31 0.91

Motivational 5 - 1 Dry 3.34 1.15

Effortless 5 - 1 Labor-intensive 3.27 0.83

5. Conclusion

Fast learning modules may help to motivate students to learn mobile application development

and prepare workforce in response to current industry needs. We proposed a learning strategy of

using template-solutions for students to navigate through a challenging learning area. An image

P
age 25.1270.14

processing toolkit implemented in Java and integrating various templates is used as such a

training testbed. The development environment is the popular Android platform. The toolkit can

be used by diverse students from novices to advanced users. The beginners can simply play with

images and check various processing scenarios given in menu selections whereas advanced users

can modify the Java code and create their own algorithms. The modules have been offered to

undergraduate electrical engineering students during regular class hours, as a part application

layer coverage of a senior level Wireless Communication course. A survey has been conducted

to evaluate the impact. The results clearly demonstrated that within 8 days, and total of 10h, we

were able to change student attitudes and positively shape student interest in pursuing careers in

mobile application development.

ACKNOWLEDGEMENTS

This work was partly supported by iTEC-UTSA Learning Center and NSF grants 0942852 and
0932339.

REFERENCES

[1] C. David Caverly, R. Anne Ward, J. Michael Caverly "Techtalk: Mobile Learning and Access", Journal of

Developmental Education, vol. 33, Issue 1, pp. 38-39,2p, 2009.

[2] myHomework https://myhomeworkapp.com/ (Accessed on 2011)

[3] Patricia Thornton , Chris Houser, "Using mobile phones in English education in Japan", Journal of Computer

Assisted Learning,vol.21 , Issue 3, pp. 217 - 228, 2005.

[4] "Mobile phones switch young people on to learning", Education and Training , London, vol. 45, Issue 4/5, pp

288-230, 2003.

[5] M. F. Williams, “Cell Phones as Teaching Tools”, Journal of Educational Leadership, vol. 68, No 2, pp. 85-

86, 2010.

[6] Android SDK , http://developer.android.com/index.html (Accessed on 2011).

[7] JAVA tutorial , http://docs.oracle.com/javase/tutorial (Accessed on 2011).

[8] D. Sage and M. Unser, "Teaching image-processing programming in Java," Signal Processing Magazine,

IEEE, vol. 20, No. 6, pp. 43-52, Nov.2003.

[9] Intel. Implementation of Fast Fourier Transform for Image Processing in DirectX 10.

http://software.intel.com/en-us/articles/implementation-of-fast-fourier-transform-for-image-processing-in-

directx-10/ (Accessed on 2011).

[10] S. Manley. DCT – A Java implementation of the Discrete Cosine Transform implementation.

http://www.nyx.net/~smanley/dct/DCT.html (Accessed on 2011)

[11] R. Fisher, S. Perkins, A. Walker and E. Wolfart. Hough transform,

http://vase.essex.ac.uk/software/HoughTransform/index.html (Accessed on 2011)

[12] D. Lang, C. Mengelkamp, R.S. Jäger, D. Geoffroy, M. Billaud, and T. Zimmer, “Pedagogical Evaluation of

Remote Laboratories in eMerge Project”, European Journal of Engineering Education, Vol. 32, No. 1, pp. 57-

72, 2007.

P
age 25.1270.15

