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TESTING STRATEGY IN MULTIPROCESSOR SYSTEMS WITH CUBE 

CONNECTIONS 
  

Abstract 

    

A college-level textbook for covering testing strategy of a multi-computer system does not exist.  

This paper documents different methods of testing in which the author teaches in networking and 

fault-tolerant computing courses. System-level testing approach in multi-computer systems in 

particular hypercube is the subject studied in this paper.  An n-dimensional hypercube multi-

computer system, or an n-cube for short, contains 2
n
 processors each of which is a self-contained 

computer with its own local memory.  Each processor is assigned a unique n-bit address.  Two 

processors are linked if and only if their addresses differ in exactly one bit position.  Therefore, 

each processor has direct communication links to n other processors. One-step testing of 

hypercube which involves only one testing phase during which processors test each other is 

discussed.  Two different kinds of one-step testing are considered: one called the precise one-

step testing and studied earlier by other authors and the other called the pessimistic one-step 

testing and studied first by author in the context of application to hypercube.  One of the two 

main results presented here is that the degree of testability of the n-dimensional hypercube where 

n > 4, increases from n to 2n-2 as the testing strategy changes from the precise one-step strategy 

to the pessimistic one-step testing strategy.  The other main result is the that if the fault bound, 

i.e., the upper bound on the possible number of faulty processors, is kept to the same number n in 

both cases of precise and pessimistic testing, then the pessimistic strategy requires (n/2)+1 

testing links per processor whereas the precise strategy requires n testing links per processor.  A 

procedure for selecting (n/2+1)*n/2 (2-way) links in an n-cube for use as testing links is 

presented. 

 

1. Introduction 

 

Recently hypercube multi-computer systems have become a subject of considerable interest to 

the instructors teaching the networking or fault-tolerant computing courses.  An n-dimensional 

hypercube multi-computer system, or an n-cube for short, contains 2
n
 processors each of which is 

a self-contained computer with its own local memory.  Each processor is assigned a unique n-bit 

address.  Two processors are linked if and only if their addresses differ in exactly one bit 

position.  Therefore, each processor has direct communication links to n other processors.  

 

Preparata et al. 
16

 proposed an approach in which processors test each other and the test results 

are collected and analyzed to determine faulty processors.  This approach of mutual testing based 

system appears to fit well with large scale homogeneous multi-computer systems 
2, 4, 5, 6, 12, 14, 17

.  

The approach is based on the use of an assumption or a priori knowledge on the fault bound, i.e., 

the upper bound on the possible number of faulty processors that might exist at any given time.  

Two different strategies for implementing the testing approach were discussed in 
16

.  One 

strategy is called the one-step testing or the testing without repair and under this strategy there is 

only one testing phase and one repair/replacement phase.  Therefore, efforts are made to locate 

all faulty processors in the testing phase and thereafter the repair phase in which all identified 

faulty processors are repaired follows.  The other strategy is called the sequential testing or the 
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testing with repair and this strategy may involve several iterations of the testing and repair 

phases. 

 

The maximum number of faulty processors that may exist in a system at any given time without 

invalidating the testing strategy is called the degree of testability of the system under the selected 

testing strategy.  Therefore, if the fault bound known or assumed exceeds the degree of 

testability under the given testing strategy, then the testing strategy cannot be applied.  The 

degree of testability is a function of the testing connections (i.e., the set of "tester-tested 

connections") among the processors. 

 

The original work in 
16

 was based on the repair strategy in which only those processors that were 

truly faulty were replaced.  Therefore, the strategy may be called a precise testing strategy.  Later 

Kavianpour 
7, 9, 10, 11

 proposed a strategy under which a set of r or fewer processors containing all 

faulty processors and possibly some processors of unknown status were identified and repaired.  

This strategy may be called a pessimistic testing strategy.  The motivating factor here is that 

under the precise testing strategy, a situation where a good processor is completely surrounded 

by t-1 or less faulty processors, where t represents the fault bound, must not occur because the 

status of the isolated processor cannot be determined.  Therefore, the degree of testability under 

the precise strategy becomes low.  Under the pessimistic strategy, such an isolated processor is 

treated as a potentially faulty processor and replaced.  An important property common to both 

precise and pessimistic testing strategies is that no faulty processors will remain undetected and 

unrepaired.  While the pessimistic strategy might involve wasteful replacement of some 

operational processors, it has an advantage over the precise strategy in that the degree of 

testability becomes higher. 

 

The pessimistic testing strategy under which up to t' processors may be replaced/repaired where 

t' is the fault bound, is called the (pessimistic) t'/t' testing strategy 
9
.  It turns out that under the 

t'/t' strategy at most one fault-free processor may be replaced 
3, 20

.  In the remainder of this paper, 

the term pessimistic testing refers to the pessimistic t'/t' one-step testing.  A procedure for finding 

minimum connection patterns among a given set of processor nodes that enable pessimistic 

testing was developed in 
15

.  A procedure for identifying the processors to be repaired under the 

pessimistic testing strategy was developed in 
20

.  Also an efficient (polynomial time) technique 

for determining the degree of testability for a given multi-computer system under pessimistic 

testing was developed in 
18

. 

It has been known for quite some time that the degree of testability of an n-cube under the 

precise strategy is n 
1,13

.  This paper presents a proof that the degree of testability of the n-cube, 

where n > 3, increases from n to 2n-2 as the testing strategy changes from the precise one-step 

strategy to the pessimistic one-step testing strategy.  (Although the algorithm in [18] can be used 

to find the degree of testability of any individual hypercube, the closed form relation between an 

arbitrary-sized hypercube and its testability does not follow directly from the algorithm.)  When 

the fault bound adopted in an n-cube is the maximum number, i.e., 2n-2, then the pessimistic 

testing requires the use of all inter-processor links as testing links.  However, it is shown here 

that if the fault bound is kept to the same number n in both cases of precise and pessimistic 

testing, then the pessimistic strategy requires only (n/2+1) testing links per processor whereas the 

precise strategy requires n testing links per processor.  A procedure for selecting (n/2+1)*n/2 bi-

directional links in an n-cube for use as testing links is also presented. 
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In section 2, basic terminologies are introduced together with a graph model of a multi-computer 

system defined in 
16

.  Section 3 then presents the results on the degree of testability of the n-cube 

under the pessimistic one-step testing strategy.  The result on selection of testing links to realize 

the testability of degree n is presented in section 4.  Section 5 provides a conclusion of the paper. 

 

2. A Graph Model of a Multi-Computer System and System-Level Testing 

 

A multi-computer system is represented by a graph called the testing graph. The testing graph is 

a digraph G(V,E), where V is the set of nodes representing processors and E is the set of directed 

edges representing the testing links (i.e., the inter-processor links used as tester-tested 

connections) between the processors.  Associated with each processor there are the tester set of 

processors and the tested set of processors.  The outcome of a test in which processor vi tests 

processor vj is denoted by aij, and aij = 1 if processor vi indicates that processor vj is faulty 

whereas aij = 0 if processor vi indicates that processor vj is fault-free.  If vi is faulty, then 

outcome aij is unreliable.  In the case of a hypercube, each testing link is bi-directional and thus 

can facilitate two testing links in opposing directions.  A set of test outcomes of a multi-

computer system that are analyzed together to determine faulty processors is called a syndrome 

of the system.  A syndrome analyzer that orders the processors to test others via testing links, 

collects the test results, and determines the set of nodes to be repaired.  The connection between 

the syndrome analyzer and the processors of a hypercube may be either point-to-point serial links 

or a multi-access serial bus with the broadcast capability. 

 

Definition 1: A multi-computer system is precisely one-step t-fault testable if given the fault 

bound t, all the faulty processors can be correctly identified after a testing phase.   

 

Later Kavianpour 
7, 9, 10

 defined t'/t' fault testability as a part of introducing the concept of 

pessimistic testing. 

 

Definition 2: A multi-computer system is pessimistically one-step t'/t' fault testable if given the 

fault bound t', t' or fewer processors that include all the faulty processors present and possibly 

some processors of unknown status can be identified for replacement after a testing phase. 

 

Some of the basic properties of the hypercube connection are now introduced.  The Hamming 

distance d between two processors in the n-cube is the number of bit positions where the binary 

representations of the addresses of the two processors differ from each other.  A path in a 

hypercube is represented as a sequence of processors in which every two consecutive processors 

directly connected to each other.  A path is also represented as a sequence of connected edges, 

each representing an inter-processor link.  The number of links on a path is called the length of 

the path in the hypercube.  By the nature of the hypercube connectivity, the length of the shortest 

path between two processors is the same as the Hamming distance between the two. The 

connectivity of a cube is the minimum number of nodes whose removal results in a disconnected 

cube.  It was shown in 
1
 that an n-cube has connectivity n.  

 

Hakimi and Amin 
8
 obtained the following two conditions that are sufficient to assure that a 

system of N processors is precisely one-step t-fault testable: 1) N > 2t+1, and 2) node 
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connectivity > t.  Since the n-cube has connectivity n and the number of processors is 2
n
, satisfies 

the condition, N > 2n+1, for n > 3, the n-cube is precisely one-step n-fault testable 
1, 14

. 

      

3. Pessimistic One-Step Testing of Hypercube 

 

3.1 Basic properties of the pessimistic testing strategy 

      

The main result presented in this section (about the degree of testability of the n-cube under the 

pessimistic testing strategy) is built upon some properties discovered earlier.  These properties 

are summarized below. 

      

Property 1:  A multi-computer system is pessimistically one-step t'/t' fault diagnosable if and 

only if the number of tester for any 2p processors is greater or equal to (t'-p+1) for 1 < p < t'. 

 

Therefore, the greatest t' that satisfies the condition is the degree of testability of the system 

under the pessimistic testing strategy. 

 

3.2 The degree of testability of the n-cube under the pessimistic testing strategy 

 

An important property regarding the connectivity of the n-cube that can be utilized in 

determining the degree of testability is the following: 

  

Property 2: In the n-cube where, any pair of processors can be tested by at least 2n-2 other 

processors.  If the Hamming distance between two processors is either 1 or 2, then the number of 

other processors that can test the two processors is exactly 2n-2. 

         

Based on this property a faulty n-cube with the fault bound of 2n-2, all faulty processors can be 

removed by replacing at most 2n-2 processors. 

 

Property 3: The degree of testability of the n-cube under the pessimistic one-step t'/t' fault testing 

strategy, where n > 3, is 2n-2. 

   

Experiment 1: The following experiment simulated in the networking course. In a 4-cube, each 

of 2
4
 processors can test four immediate neighbors and vice versa.   According to Property 3, a 4-

cube is pessimistically one-step 6/6 fault diagnosable.  Therefore, if the fault bound is 6, we can 

repair a faulty 4-cube in one step by replacing at most 6 processors.  In the 4-cube assume five 

processors 0, 2, 3, 5, and 9 are faulty.  An analysis of the syndrome indicates that the five 

processors 0, 2, 3, 5, and 9 are definitely faulty and the status of processor 1 is unknown.  

Therefore, the system can be repaired by replacing six processors 0, 1, 2, 3, 5, and 9.  Good 

processor 1 is replaced because it can be tested only by four other faulty processors and thus no 

reliable information about its status can be made available.  Note that with a 4-cube the precise 

one-step testing strategy can be used only when the fault bound is four or less.  

 

4. Pessimistic one-step testing of the n-cube with reduced testing connections 

 In the preceding section it was shown that the n-cube could be tested by use of the pessimistic 

one-step testing strategy with the fault bound set to as high as 2n-2.  When the fault bound 
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adopted is the maximum number, i.e., 2n-2, then the pessimistic testing requires the use of all 

inter-processor links as testing connections.  That is, the number of testing connections used per 

processor is n.  Similarly, when the precise one-step testing strategy is used and when the fault 

bound adopted is the maximum number allowed under the strategy, i.e., n, the precise testing 

requires the use of all inter-processor links as testing connections.  However, if the fault bound is 

kept to the same number n in both cases of precise and pessimistic testing, then the pessimistic 

strategy requires significantly fewer testing connections than the precise strategy does.  In fact, 

the number of testing connections required under the pessimistic strategy is (n/2+1) connections 

per processor. 

 

In order to prove this, a method for constructing proper testing connection patterns will be given 

in the following.  The key issue here is how to remove (n/2-1) links per processor from an n-cube 

such that the remaining links can be used to facilitate n/2+1 testing connections per processor 

which enable the pessimistic one-step testing of the n-cube under the fault bound of  n. 

 

Procedure 1: Consider processor pi in an n-cube where n > 3 and 0 < i < 2
n
-1 and the binary 

address vector.  Let r represent n/2 for the sake of convenience.  

 

Case 1) i < 2
n-1

: Remove the link from processor pi to processor pj if their address bits (i.e., 

binary address vector of pi and pj) differ only in one of the (r-1) least significant bit positions. 

 

Case 2) i > 2
n-1

: Remove the link from processor pi to processor pj if their address bits differ in 

one of the following bit positions: (n-r+1)-th, or (n-r+2)-th,..., or (n-1)-th bit positions.  

 

Experiment 2: The following experiment simulated in the networking course. Consider a 4-cube.  

According to Case 1 of Procedure 1, links between pairs of processor (0, 1), (2, 3), (4, 5), and (6, 

7) will not be used in testing since their address bits differ in the 1st bit position. Also according 

to Case 2 of Procedure 1, links between pairs of processors (8, 12), (9,13), (10, 14), and (11, 15) 

will not be used in testing since their address bits differ in the 3rd position.  

 

Property 4: An incomplete n-cube produced by Procedure 1, has connectivity n/2+1. 

 

Property 5:  In an incomplete n-cube produced by Procedure 1, any pair of processors can be 

tested by at least n other processors.  If the Hamming distance between two processors is either 1 

or 2, then the number of processors that can test the two processors is exactly n or n+1. 

 

Property 6:  An n-cube with the fault bound of n, can be tested by the use of pessimistic one-step 

testing with n/2+1 testing connections per processor. 

 

Experiment 3:  A 4-cube in which n/2+1 = 3 inter-processor links emanating from each processor 

are used as testing connections.  This 4-cube is obviously not precisely one-step 4 fault 

diagnosable, but it is pessimistically one-step 4/4 fault diagnosable.  Through an exhaustive case 

analysis one can verify that the condition in the Property 1 is satisfied.  For example, faulty 

processors 0, 1, 2, and 3 can be tested under the pessimistic one-step strategy.  
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A practical implication of Property 6 is that even if some links in the n-cube are broken, the one-

step pessimistic testing of the 2
n
 processors is possible as long as the fault bound does not exceed 

n.   

 

5. Conclusion 

 

System-level testing approach in multi-computer systems in particular hypercube has been the 

main subject of discussion in this paper.  The regular structure of a hypercube makes teaching of 

testing strategy easier. Through our findings, the degree of testability of the n-cube increases as 

the testing strategy changes from the precise one-step strategy to the pessimistic one-step 

strategy.  The pessimistic one-step testing appears to be a highly attractive strategy for use in 

hypercube systems, considering the high degree of testability that it provides, the relatively small 

number of tester-tested connections that it uses, and the uselessness of a processor of unknown 

status surrounded completely by faulty processors in typical application environments. Many 

important questions such as the testability of different networks such as mesh, pyramid, and star 

with some broken links remain unanswered.  

 

Teaching different testing strategies in a networking or fault-tolerant computing course is a 

relatively new subject.  A college-level textbook covering testing strategy of a multi-computer 

system does not exist. This paper documents different methods of testing in which the author 

teaches in a networking and fault-tolerant computing courses. These results could be 

supplemented with the textbooks used in these courses. 
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