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Abstract

Little known method is explained for finding velocity and acceleration from positions of a point
which are  equidistant in time.  The adjustment calculus can be a  powerful  tool to reduce the
effect of measurements errors on the estimations of the velocity and the acceleration.  In-class
exercises in kinematics may brings fun to all participants. 
 
1 Introduction

The general purpose of a mechanism is to move a machine element from one position to another.
The type of motion that the element undergoes may be given, or it may be left for the designer to
choose. In either case, it is often  desirable to know how the velocity and acceleration of the element
vary. There is a large variety of graphical and analytical  methods which can be used to solve this
type of  problems.  However, the methods become unsuitable if  the velocity and the acceleration
of a point needs to be determined from a sequence of  displacements measured at equal intervals of
time.

The  examples that follow are  taken from  various areas, and all represent the problems in which
velocity and acceleration have to be determined from the displacements equidistant in time.

(A) A robotic vision system is tracking a fast moving object. The coordinates of a chosen point(s)
on this object can be determined by a computer from the  frames recorded by a vison system every
30 th of a second. To predict the position of the object,  the velocities and accelerations of the recent
point(s) on the trajectory have to be accurately estimated. The problem may be considerably
complicated when the coordinates of the points of interest are measured with significant errors
caused by, for example,  poor resolution and image blurring.

(B) A study of human or animal motion has to be conducted, when the coordinates of the points
marked  on extremities are determined from the consecutive frames of a videotape. Using
information  about  positions of the extremity obtained  for equal time increments, the researchers
may develop acceleration diagrams for the examined individual, which can be used for diagnostic
purposes. P
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Figure 1 Trajectory of a point in Cartesian
space.

(C) Successful design of a cam  mechanism depends on, to a large degree,  selection of the law of
motion of the follower.  After machining, some cams do not perform as well as predicted.
Regardless of the method of machining, the cam profile has always some errors and needs to be
inspected before the cam is put in a machine. The inspection usually consists of measuring the
displacement of the follower corresponding to equal increments of cam angle ( time increments )t).
The measured displacements can be used to determine the acceleration in a real cam  mechanism.

 2. Systematic and random errors.

In all discussed examples, the velocities and the accelerations  can be determined by numerical
methods based on interpolation techniques. Because of the measurement errors and inaccuracies
inherent  to interpolation techniques,  the estimates of the derivatives are not accurate. 
The errors are usually divided into two categories of systematic and random errors.
The measurement  errors usually  result from improper measurement technique, poor precision of
the measuring instruments, their wear, etc. The random errors can only be estimated through
statistical distributions. It is a common practice to assume a normal distribution with the zero
expected value.

Systematic errors result from conditions or procedures that cause a consistent error that is repeated
every time the measurement is performed. The interpolation methods  introduce  their own
systematic errors. The systematic error of the method is understood here as an approximation error
distorting the value of a derivative for a given class of  function. For example, a parabola can be
found to  approximate  a sine function at one selected point, say at 30 degrees. Both the parabola
and sinusoid will have a common point there. However, the slope of the parabola at this  point will
be different  from the slope of the sinusoid. 

3. Determination of velocity and acceleration by method of finite differences

Consider a material point in  three-dimensional space defined by a Cartesian system of coordinates
x,y, and z.  The path of this point in space with its positions marked at equal time increments )t

is shown in Fig.1. Each marked position of the
point has its corresponding x, y, and z coordinates.
We will be interested in finding the velocity and
the acceleration of the point when it is at its i-th
position defined by the coordinates xi, yi, and zi.
The coordinates of the point for the (i-1)-th
position are (xi-1, yi-1, zi-1) and those for the (i+1)-th
position are (xi+1, yi+1, zi+1).
The velocity of the point at  i-th position is a vector
sum of the component velocities in the direction of
x, y, and z axes

where Vx, Vy,  and Vz   are the components of the
velocity in direction of x, y and z axes ,

respectively.
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Figure 2   A straight line trajectory of a point.

The magnitude of this velocity can be calculated from the formula:

Similarly, the acceleration at the i-th point is    

where Ax, Ay,  and Az   are the components of the acceleration in direction of x, y, and z axes,
respectively.
The magnitude of this acceleration is :

The components of the velocity and the acceleration can be easily estimated from the measured
displacements by the method of differences. A procedure for finding  Vx and Ax is explained  in the
section that follows. It is worth noticing here that the velocity and the acceleration of a point moving
on a three dimensional path can be reduced to analysis of straight line paths created by projections
of the point to x, y, and z axes.

Consider a straight  path of a  point as shown in Fig. 2. Let us assume that the distances for  the
point on the path and measured from some reference point are known for a given and constant time
intervals )t. 
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One can estimate the velocity of the point at the i-th position by taking the arithmetic average of the
average velocities for two segments of the path -- before and after point i:

               (1)

The estimate of the acceleration for the same position can be calculated from the difference of the
same average velocities for the segments, divided by the time increment )t2:

(2)

Using the derived formulas one can easily estimate the velocity and the acceleration for any
point of the trajectory.
When the process has to be repeated for many positions of the point, the work can be simplified
by tabulating the calculations (see Table 1).
Let us assume that the consecutive positions of the point measured at a constant time intervals
are x1, x2, ..., xi-1, xi, xi+1.  The number of the measurement is entered in the first column, and the x
coordinate of the point, measured from some arbitrary reference point,  is entered in the second
column. The third column is that of the so-called first differences. The entries in this column are
obtained by subtracting the values of two adjacent numbers from the second column of positions
according to the rule:

(3)  
                 

The subscript (i-1/2) in formula (3) indicates that  the rows of this column are  shifted by
half of the row with respect to the rows of the first column.Similarly, the  column of the second
differences can be obtained. The rows of this column are aligned with the rows of the first
column. The values di for this column are obtained from the values of the first differences by
subtracting the adjacent values : (xi+1 - xi) - (xi - xi-1). After simplifications we get:

                 
(4) P
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Once the columns for the first and the second differences are filled out the estimates of the
velocity and the acceleration can be easily obtained. One can easily notice that the first and
second differences correspond to the numerators of the expressions for the velocity (1) and the
acceleration (2). To obtain the estimate of the velocity  one has to calculate the arithmetic
average of two adjacent values of the first differences, and to divide the result by )t.

To get estimates of the acceleration, the values of the second differences have to be divided by
()t)2. Formulas (1) and (2) give good estimates of the velocity and the acceleration for the
displacement data with no errors. If errors are present in measurements the errors for the
acceleration quickly accumulate resulting in huge errors (sometimes several hundred percent).
This is a well known problem encountered in computing higher order derivatives by numerical
methods.
To reduce the error for the acceleration (for the this error is rather small) one has to reduce errors
in the displacement data. J Oderfeld [1] proposed the method based on a polynomial
interpolation of original displacement data, and use of the Stirling interpolation formula for
equidistant knots. The interpolation formula can be differentiated to get the acceleration. In this
method a cubic polynomial fitted to seven points at a time is used in the so called “marching
point” scheme. Though all this seems quite complicated,  the resulting procedure (a formula) is
surprisingly  simple.

To obtain a better value of the acceleration for the i-th line of the Table (J. Oderfeld called it the
adjusted acceleration) one has to perform simple calculations on the value of the second
difference for this line and the adjacent five lines (above and below the i-th line).
The calculations are done according to the formula:

where *2 represents second differences.

To explain the procedure better, imagine a rectangular piece of paper with the constants of the
above-given  expression written in one column, as shown in Table 1 ( part marked with label P).
The constant 0.310 is aligned with the line for which a better value of the acceleration is
required (row 11 in Table 1). Now, pairs of numbers have to be multiplied, one from the column
of the  second differences, the other one from the piece of paper. The results of multiplications
have to be added up. The obtained result is the so called adjusted second difference. If this result
is divided   by )t2 it correspond to the adjusted acceleration. This acceleration has random errors
significantly reduced. The systematic errors are still present, but as J. Oderfeld showed, in
amount  less than 0.2% of the maximum value of the acceleration.
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Figure 3 Comparison of the second differences to the adjusted second differences.

The above-described operation can be written as:

      a11 = [-1.8000@(-0.025) -0.9000@(-0.025)-0.8000@0.015-0.7000@0.130-0.1000@0.250+
+0.3000@0.310 + 0.3000@.250 + 0.4000@0.130 + 1.8000@0.015 + 0.0000@(-0.025) +
+1.0000@(-0.025) ] = 0.1615

Figure 3 shows a comparison of adjusted and unadjusted second differences for data given in
Table 1.  One can clearly see how the method  is  smoothing the data and reducing the errors. 
The 24 values of the  displacement in Table 1 represent a periodic motion (like in a mechanism).
To find the first and second differences for all rows of the Table, one has to “extend” the

displacement data at the beginning and the end. The seven last displacements form the end of
the first column can  be copied to seven lines preceding the first line. The same operation can be
done to provide displacements after line 24.

For nonperiodic motion  it will be impossible to find the adjusted accelerations for the first five
and the last five rows of the table. There will be no data to obtain some of the first and the
second differences. The described procedure is much faster than interpolation method by
polynomials of high order (advantage when robotic vision is used). It is worth noticing that the
values of the constants used in (5), and the numbers on the piece of paper, are always the same.
They never change with rows of the table or type of the  problem.

Formula (5) was derived by J.Oderfeld , but details of derivations were omitted in the
publication.  The procedure for the velocities was not derived at all. Many years  later, the author
of this paper returned to  the subject  to find better ways to reduce error in  second differences, 
and re-derived the formula. The reader may find derivation in the Appendix to this paper. P
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4. Classroom  applications. 

The adjustment calculus is a tool that allows to solve serious engineering problems . The author
taught this method to the students taking MECH 342 (Kinematics and Dynamics of Machinery)
and MECH 442/842 (Intermediate Kinematics). All practical assignments were in categories
described in Section 1 of  this paper. 

The adjustment calculus is well suited to find velocities and accelerations of links of
complicated mechanisms. Usually in these cases analytical methods  present for the students
impossible to overcome difficulties. However, finding positions of the links is relatively easy
and requires only the knowledge of trigonometry. If positions of an interesting link are found for
equal increments of crank angle (which correspond to a constant and known time intervals  )t )
then finding the acceleration by the adjustment calculus is trivial. The students turned out to be 
very practical, and in some assignments skipped analytical part at all. Some of them found the
needed sequence of interested displacements from AutoCAD drawing of  the mechanism shown
in various positions.

Another interesting assignment in class of kinematics is  “decoding” of the acceleration of the
cam follower for a real cam. A real camshaft is needed for this exercise. The camshaft has to be
placed in the bearings (or centers) so that it can be rotated. A shop dial indicator with flat foot  is
used instead of the follower. The cam is rotated at constant intervals of angle (usually 15o

interval is sufficient) and position of the follower is measured for each position. Now, the
adjustment calculus can be used to determine the acceleration of the follower. Comparison of the
values of the accelerations obtained from the second differences and the values of the adjusted
accelerations shows how inaccurate would be the  method of pure finite differences.

Another, worth recommendation exercise is testing demonstrations given bywith sward weilding
and boards breaking warriors can be checked out from  any Block Busters video store. One
demonstration usually makes great impression on the  students. It shows a black-belt artist, with
a samurai sward, trying to split  the head of a black-belt who is sitting on the floor. At the
critical moment the sitting person clasps the approaching blade of the sward with two hands and
slows it down to a safe stop. The video was analyzed in the classroom on a VCR with a stop
frame feature. Each frame of the video was frozen on the screen and position of a point on the
sward was measured relative to a chosen reference point.  The acceleration of the blade was
calculated by the method of the adjustment calculus. Looking at the numbers it was obvious that
the sward was slowing  down to give a chance the person to stop it.

5. Conclusions.

The almost unknown in this country method of the adjustment calculus gives the students power
to find accelerations when analytical methods are too cumbersome or practically impossible.  
The procedure is repetitive and encourages students to write their own  computer programs. The
adjustment calculus may brings  good time to the classroom in a form of interesting experiment
that  engages  all the students. P
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Figure 4 positions of a point measured  without errors (circles) and
with errors (triangles).

Appendix.

Derivation of the formula for the adjusted velocity and the acceleration.

The method of the Adjustment Calculus developed by J. Oderfeld is  based on a polynomial
curve fit, and uses  the concept of the “marching point”. The  concepts behind the method will
be explained, so that the  user can understand its limitations.

Let us assume that N displacements  of a  point at constant intervals of time equal to h ,were
recorded without any errors (see Fig. 4 , points represented by small circles).
Should the displacements be recorded with an instrument that introduces a measurement error,
then the set of points  would be slightly different as marked in the same drawing with small
triangles. The  task is to find the acceleration of the point for the i-th position, as accurately as
possible. 
One could propose the following procedure. Out of N points available only seven points will be
initially considered: the i-th point of interest, and three points on each side.

To simplify derivations, the origin of the coordinate system is always moved, so that  time 
corresponding to the point of interest is zero (see Fig. 5).
A cubic polynomial is fitted (in the sense of the least squares method) to approximate seven
consecutive displacements,  fi-3, fi-2, fi-1, fi, fi+1, fi+2, fi+3:
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Figure 5 Cubic polynomial fitted to seven points.

The choice of the cubic polynomial is arbitrary, and any polynomial of the k-th order could be
used, on condition that k < N-1. The advantage of the cubic polynomial is that it is the lowest 

degree polynomial which  can approximate a function with  inflection  point. Additionally,  the
amount of work needed to determine the numerical values of the coefficients is smaller for low
degree of polynomial.

 
To find the value of the displacement xi with the reduced error, one needs to find the values of
the constants C0 through C3 and evaluate function (6) for t=0. One can easily see that only C0
has to  be determined.
 The deviations of the measurements points from the cubic are shown in Fig.5 and are defined as
follows:
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To determine the coefficients of the cubic, an error function E is minimized:

Requirement (7) leads to a set of four algebraic equations in unknowns C0, C1, C2, and C3:

Solving (8) for C0 we have:

The value of C0 represents the adjusted ( the word adjusted having a meaning “with less error”)
displacement at t=0.

Using (9) and moving the origin of the coordinate system from one point to another, one can
determine the adjusted values of the displacements for all the points. Once this is done, the finite
difference method can be used to estimate the velocity and the acceleration for any chosen point.
One possible approach is application of an interpolation formulas which can be differentiated to
obtain expressions for the velocity and the acceleration.
One reasonable choice is the symmetric Stirling’s formula with equidistant knots.

In the most concise form the Stirling’s formula is:
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where

and  Rr
  is the reminder the  value of which can be determined  from:

In formula (11) 0=rh is an argument which maximizes the  (r+1)st derivative of f(x).

The various order differences *  used in (10) can be explained with help of Table 2.

Table 2 Central differences for discreet values of y given at equal increments of x.

x-2 y-2

*y-3/2

x-1 y-1 *2y-1

*y-1/2 *3y-1/2

x0 y0 *2y0 *4y0

*y1/2 *3y1/2

x1 y1 *2y1

*y3/2

x2 y2 P
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After the adjustment procedure the displacements can be calculated from 

and substituted into (10).  After this tedious work one gets a new version of the interpolation
formula for the y(x), which can be now differentiated with respect to time x to obtain the
estimates of the velocity and the acceleration at the knot positions:

where v(x) is the adjusted first difference, and a(x) is the adjusted second difference.

After differentiation the values of the velocity and the acceleration are calculated for x=0 to
obtain expressions  for v(0)  and a(0).  These formulas will be given in terms of displacements 
f-6, f-5,...f0, ...,f5 and f6.  It is possible to group the terms in  these expressions to see the  first
differences in expression for v(0) and the second differences in the expression for a(0).

Finally, the adjusted first difference ( divide by )t to get the velocity) is:

and the adjusted second difference (divide by )t2 to obtain the acceleration)

All these complicated  transformations mentioned  in this derivation were  done with the
symbolic math software, Maple V. P
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