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I. INTRODUCTION AND MOTIVATION

The concept of “Principal Object of Knowledge” or POK’s was introduced in the 
“Colloquial Approach Environments” (Arce, 1994) to enhance the student learning and to 
promote a more efficient habit in engineering students to master difficult concepts. The 
tool was then extended to include a variety of subjects (Arce, 2000) in fluid mechanics, 
mass and energy balances, and continuum theory just to name a few examples. In this 
article, we discuss the role of the catalyst particle or pellet as a rich example of POK for 
students interested in learning about transport in porous media and heterogeneous 
reactions. The pellet is a multiscale-domain environment where diffusion process and 
heterogeneous reaction take place. The mathematical description of this transport and 
reaction system is complex and it exemplifies many multiphase and multicomponent 
systems (see, for example, Arce, 1994) very relevant to many engineering majors including 
Chemical, Biomedical, and Environmental Engineering.

The analysis of the literature shows that heterogeneous reactions and catalysis is a very 
populated subject. There are classical textbooks (Levenspiel, 1981) that introduces the 
students using somewhat simplistic models that quickly convey the information to the 
student and reach a mathematical description capable of obtaining concentration profiles 
and effectiveness factors. Others textbooks (see, for example, Fogler, 1992) presents a 
more “rigorous” introduction to the formulation of models and makes, also, connection 
with applied aspects such as the effectiveness factor determination and calculation. 
Textbooks with more sophisticated mathematics (Aris, 1969; Aris, 1979) takes a more 
pragmatic point of view and directly concentrates on a beautiful mathematical analysis 
with implications to practical aspects. Aris (1976) also has reported useful techniques to 
obtain information of a reaction-diffusion equation without actually solving the equation.

Based on the brief description presented above, it is a trained reader’s choice to select one 
of these textbooks to read about the subject. It will, probably, be a matter of taste for this 
class of readers to chose one of these texts and enjoy the journey. Those more interested 
in the “back of the envelope calculations” will most likely be very comfortable with the 
simple and “global” type of analysis, i.e., Levenspiel’s view. Others, with a more 
mathematical oriented taste will feel at home reading Aris’s masterful treatise in diffusion 
and reaction. The spectrum of contributions could accommodate all levels that places in 
between these two limits.

The dilemma, however, seems not to be the same for the untrained reader—most likely the 
students! This class of readers will wonder how a complicated problem in two phases with 
reaction on the walls may be modeled as a domain with homogeneous reactions. Others 
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may adventure a trial in a more sophisticate description but, perhaps, will not survive the 
mathematical machinery. Therefore, in spite of the fact that the subject of transport and 
reaction in heterogeneous media is populated with contributions, there is a need for a 
systematic approach of learning, based on first principles and that concludes with the 
overall or macro transport equations. This approach must follow a complete and logical 
sequence of steps. 

In this contribution the authors will present an overall view of the status regarding 
problem where diffusion and reaction are involved from the point of view of the student 
learning and then present an “effective” and progressive approach to learn (sequentially) 
fundamental concepts. These will highlight the Catalytic Pellet as a very rich environment 
to learn about multiples (transport) scales and the role of multiphase process of a current 
relevancy in Chemical, Biomedical, and Environmental applications.

MORE PROGRESSIVE LEARNING APPROACHESII.

For systems with more than one phase and the presence of transport and reaction, it is 
usually a non-trivial task to introduce students to their physical as well as mathematical 
description. This is exactly the case of a catalytic pellet. It has two main phases, one the 
gas and the other the solid support with the active material. Instructors tend to use a view 
that renders the system to a simple case of homogeneous domain with just one phase and 
bulk reaction (see, for example, Levenspiel, 1981). While this approach brings the 
engineering equations, the inexpert reader, i.e., the students are left with a number of 
answered questions and a very confusing picture of the system. There is, however, a very 
logical and progressive approach that helps students to understand deeply the nature of 
systems such as the catalytic pellet and that follows a building block of knowledge (Arce, 
1994). It includes the following main steps:

[Realistic physical pictureà rigorous mathematical descriptionàprocess of 
homogenizationà engineering modelà solutionàinterpretation]

This is a very logical and a sequential series of steps that promote understanding of the 
system, offer an opportunity to the students to review concepts in previous courses, and 
give the chance to apply mathematical concepts learned in engineering math courses. In 
addition, the method promotes the overall student confidence in “engineering” an equation 
to describe the behavior of a complex situation. Several steps related to this progressive 
approach are detailed below.

A Sound Pedagogical Environment:1.

A systematic and progressive approach (Arce and Arce-Trigattti, 2000) to derive 
engineering equations in a catalyst pellet would be a more efficient and far less confusive 
exercise than those currently introducing the students by a “story telling” about 
“homogeneous reactions” in a true heterogeneous media.   In general, students in 
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engineering majors are quite comfortable with learning basic physical aspects of a problem 
and, then identifying a mathematical description that mimics closely the physics that they 
have “visualized”.  For example, it is quite rational to introduce students to a pore domain, 
within a catalytic pellet, where diffusion and (heterogeneous catalytic) reaction take place. 
Diffusion is present as the only transport mechanism inside the pore cavity so that 
reactants can travel from the bulk to the surface of the pore domain. Since the reaction is 
catalytic, students based on kinetics or physicochemical concepts have no problem in 
recognizing that it is located at the walls of the pore domain and, therefore, no reaction is 
present in the bulk of such pore. Furthermore, students that are familiar with heat surface 
sources can trivially associate this situation with a process at the boundary of the domain 
where diffusive fluxes and sources (i.e., reaction) must be involved. It is the equivalent 
situation to that of the heat conduction and heat generation with heterogeneous sources, a 
concept already introduced in the heat transfer course.

The physical description offered above is very realistic and strait forward to comprehend. 
There is no approximation, no “mysterious” concepts involved and no story-telling in the 
presentation. It is, therefore, a sound pedagogical and progressive description of a very 
complex phenomenon in a non-trivial domain. This description is very appealing to derive 
a mathematical description of the diffusion-reaction process inside the pore cavity. In fact, 
students that have already taken heat transfer and mass transfer usually find this situation a 
simple variation of the examples that they already encountered in the previous courses. 
What is needed next is the derivation of the differential model that involves the equation 
and the associated boundary conditions. This description constitutes the basis for the 
derivation of an engineering model useful for the calculation of the reactant concentration 
profiles.  This is accomplished below.

A Robust and  Progressive Approach  2.

Based on the physical description given in section 1, above, the student here recognizes 
that the reaction in a catalyst pellet takes place at the surface (as it should be) and reactant 
must diffuse from the porous mouth towards the catalytic surface. Clearly, there is no 
homogeneous reaction within the domain of the pore cavity.  Therefore in the general 
species continuity equation (Bird et al., 2001):
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the reaction term must be dropped; furthermore, if the pellet is under steady-state 
condition, then the time-derivative is also dropped.  Therefore, equation (1) reduces 
simply to
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                                                          (2)

If the students have been properly introduced to incompressible flows  (Bird, et al, 2001), 
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equation (2) is of the similar nature to that known as the incompressibility condition.  To 
this point only transport concepts have been used by the student to derive the conservation 
or engineering equation.  At this stage of the analysis, the geometry could be brought to 
the picture.  If the rectangular geometry is the choice, then equation (2) reduces to
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Now if, as it was stated before only diffusion is present, by using the Fick’s law, equation 
(3) reduces to:
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where the x-direction is the axial-direction in the porous cavity and the y-direction is the 
transversal-direction.  Now, the student easily can identify boundary conditions for 
equation (4).  This equation is identical to the Laplacian of the temperature where students 
focus on conduction heat transfer in a 2-D domain.  By recognizing that the only transport 
mechanism is diffusion, by continuity of fluxes at the wall, and by remembering that the 
reaction takes place at the wall, the following boundary condition is easily written.
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At this stage of the analysis, chemical engineering  reaction concepts may be brought into 
the analysis. For an undergraduate student, RA (CAw) is usually assumed of first order to 
become

( ) ( ) AwAwA CTkCR =                                                         (6)

By using the same guidelines as before, the following boundary conditions are easily 
identified.
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As mentioned before, the model above is very similar to those derived in heat transfer 
where now the source term is explicitly identified as a chemical reaction.  This 
similarity enhances the student understanding of the system and reinforces the concept 
already described.  The differential model (4-7) is a straightforward description of the 
physics present in the pore. Since the mathematical description follows very closely the 
physics description of the system under analysis, the students find it very appealing and 
very attractive leading to no confusion in the concepts and promoting an excellent 
understanding of the system.  No storytelling is needed to write down such a model in 
this approach! Just a sound pedagogical environment and a very rational and very 
rigorous mathematical description will do the job.

Process of Homogenization. 3.

The question is now, how can the student simplify the model and have a more 
“homogeneous view” of the problem?  This is a typical question in transport 
phenomena problems where a more “global view” is desired to achieve meaningful 
results form either the measurement point of view and or the solution approach to the 
model stated in section 2, above. Two approaches will be discussed during the 
presentation:

A- Simple Averaging Procedure.  By applying all area-averaging (i.e. please see 
definition of bulk concentration in Bird et al, 2001) to equation (4), the result will yield 
an ordinary differential equation in two types of concentration variables.  One is the 
“local” concentration, CA, evaluated at the pore wall and the other is the area-averaged 
concentration variable, <CA>.  This aspect is not trivial and it requires  a very intensive 
effort from the students to realize that this situation needs a resolution before we can 
proceed to generate an engineering equation. One of such conditions and, in order to 
solve the model, the student must recognize that the following approximation is a 
possible “closure” to the problem:

>≈< AwallA CC                                                        (8)

Which implies a very specific type of situation within the pore.  This aspect will 
promote an interesting discussion among the students to identify what are these 
physical situations.  Equation (8) is, in fact, one of the simplest “closure” procedures 
to have an engineering equation of the type.
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Which is a “homogeneous” model for the pore domain where KG now becomes a 
“global” constant with basic parameters of the model.  Students most likely will not 
have any confusion from where equation (9) was derived.  The students will recognize 
here that equation (9) is a “homogeneous” conservation equation for the pore but in 
the area-averaged variables, <CA> rather than the local concentration, CA, features by 
equation (4) and with modified or “effective” coefficients (KG) rather than local 
coefficients such as the one identified in equation (4). Equation (9) is the basis now for 
additional engineering concepts such as the Effectiveness Factors (see, for example, 
Aris, 1974). Within the framework presented here, this concept could be viewed as a 
further step in the homogenization process in the catalytic pellet.

B – A Rigorous Averaging Procedure.  By applying the procedure suggested, for 
example, by Whitaker (1983,2000), a more involved area-averaging procedure can be 
applied.  This procedure yields an “effective” or “global” reaction rate with a 
constitutive equation that features various parameter involved in the problem.  In 
short, this procedure will identify a more rigorous equation for the KG parameter 
identified in equation (9).  By studying this equation, the student is able to identify the 
various physical conditions capable of being represented by the “homogeneous” or 
area-averaged model.  Details about this approach may be found in Whitaker (2000) 
and a discussion on them will be conducted during the session. A procedure such as 
this is perhaps more likely suited for a graduate level course.

III. ASSESSMENT

The assessment of the implementation of this approach in two different courses at the 
FAMU-FSU College of Engineering has shown a very promising trend. The students 
have been able to clearly perform better in exercises that involved conceptually the 
identification of quantities related to “global” parameters such as averaged 
concentration and “effective diffusion” as oppose to “local” concentration values and 
molecular diffusion. Students interviews at the end of the course have confirmed the 
mastering of the concepts and that they have achieved, in general, a deeper 
understanding of the different aspects in a heterogeneous system with diffusion and 
reaction. Furthermore, the platform of knowledge developed seems to be a very good 
tool to attack other more sophisticated systems such as a collection of pores in a 
catalytic particle. In addition, students have expressed their satisfaction in using 
concepts of engineering mathematics to develop “applied” models that are efficient in 
handling complex situations in transport and reaction.

IV.       CONCLUSION

The article presents an analysis of the importance of a pellet as an environment where 
multi-scale transport process take place and introduces a systematic and progressive 
approach to derive differential models of the homogeneous types in a catalyst pellet. 
The approach avoids the storytelling methods followed in many classical textbooks.  
The same approach can be extended to include engineering equations valid for the 
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entire pellet.

Once this approach has been introduced, the student in a rational fashion can extend 
the analysis from one-single porous cavity to a complete pellet.  The procedure has 
shown that enhances the chances of the students to understand how a “homogeneous” 
type of description can be used as a useful approximation for describing the process of 
diffusion and reaction in a heterogeneous domain.

 Some of the key benefits introduced by the approach presented here from the students 
point of view include: a- A realistic description of the physics of the situation, b- A 
clear identification of the role of the molecular diffusion and surface reaction, c- A 
chance to reinforce concepts already learned in previous courses, d- The opportunity 
for the students to apply math concepts learned in the engineering math courses, e-A 
clear chance of building blocks of knowledge in a sequential approach and f- Avoiding 
the use of story-telling arguments to derive engineering equations.

This approach also allows the students to enjoy the activities to “find things out” as 
Feynman used to say (Feynman, 1999).  In fact, based on what we saw in our courses, 
the process of connecting the basic physics with the mathematical description creates a 
learning environment that will help the students to become a confident and alert 
individual.  In many instances, the mathematical level required does not go beyond the 
one reached by the student in an undergraduate engineering math course.  This 
approach differs in a remarkable way to that of “believe me this is the way that you 
must analyze this problem.”  Within this framework, the instructor tells the student a 
story about considering a “homogeneous” reaction with an effective diffusion 
coefficient and proceeding to write equations of change by using (usually) a shell 
balance for a “homogeneous” system! In contrast, the approach shown here follows a 
systematic procedure to derive conservation (engineering) equations in heterogeneous 
media.
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