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Abstract  

Robustness and resilience are often thought of in terms of a system's capacity to maintain 
functionality in the face of external perturbations. Robustness is one of the major issues for 
complex networks. The robustness of the network is evaluating if the network's normal functions 
are affected in case of an external perturbation. Improving the robustness of any network system 
requires analysis of its vulnerability to external perturbations1

. The outcome of the analysis would 
be the solution for random failures or adversarial attacks happening to an element of the network. 
The main focus of this paper is to study the evolution of evaluating the robustness of complex 
networks, specifically, the vulnerability of the clustering of the network to the failure of the 
network element. Our specific focus is to identify vertices whose failure will cause critically 
damage to the network by corrupting its clustering3

. Identifying the real problem is key to 
discovering the solution because any significant change made to the clustering, resulting from 
element-wise failures, could reduce network performance. By using the mathematical algorithms, 
we can formulate the vulnerability analysis as an optimization problem, prove its NP-completeness 
and non-monotonicity, and the algorithms that we formulate will identify the vertices most 
important to clustering.   

Keywords: Robustness, Vulnerability, Network, Algorithms, and complex network 

Introduction 

Most complex real-world systems attract the attention of the many engineers studying a 
wide range of fields such as power grid systems, computer science, and social science3.There is 
research done on the structural and dynamic properties of real-world networks, and most networks 
are found to show a power-law degree distribution and scale-free. The vulnerability of a network 
characterizes its inability to withstand the effect of node or link failures. The robustness is the 
ability of a network to remain functional after initial attack either. The robustness can be 
characterized by the integral size of the connected component during a whole attacking period. 
The percolation threshold is the critical fraction of the remaining nodes or links that lead to the 
collapse of the network, which is usually predicted by using a statistical physics method call 
percolation theory5

. The network attack and failure have growing fast time to time. Robustness is 
one of the major issues for the complex network, such as the World Wide Web, transportation 
network, communication network, biological networks, and social information network. The 
robustness of the network evaluates the network normal function is affected in case of external 
perturbation. The Vulnerability is usually used for to indicate the lack of robustness and resilience 
of the complex system. To improve the robustness of the real world system, it is important to 
obtain key insight into structural vulnerabilities of the network representing them. The reason is 



2018 ASEE Mid-Atlantic Spring Conference, April 6-7, 2018 – University of the District of Columbia 

that to analyze and understand the effect of the failure of individual components on the level of 
clustering in the network. Using clustering is the major property of the network. 

METHODOLOGY: COMPLEX NETWORK AND RELATED RESEARCH. 

A complex network has several ways to represent different network methods. Our 
methodology is represented by a graph G with N node, M edges 4

. The purpose of the methodology 
is to show the steps of the complex network. Those are measuring the robustness and manipulating 
the robustness of a network. Our one of the methods is measuring the robustness by using metrics 
which is graph connectivity, the diameter relative size of largest components, and an average size 
of the isolated cluster. There several related has done with this methods, however, ours improving 
their methods5

. The related paper has done such as graph connectivity (Dinh et al. 2012b), 
Laplacian matrix (Fiedles, 1973), and using graph percolation (Collaway et al, 2000). Network 
vulnerabilities can be quantified based on pair-wise connectivity (Dinh et al), Eigenvector 
(Allesina and Pascual, 2009), geodesic length (Holme et al., 2002), etc. Another possible 
measurement relies on the average clustering coefficient proposed by Watts and Strogatz. The Fast 
Adaptive Greedy Algorithm developed by Kuhnle et al is novel and promising. For a 10 node 
simple network, the Fast Adaptive Greedy Algorithm will identify the most important vertices 
whose failure will cause maximum degradation of network clustering.  Further investigation will 
have to be done for a 100 and 500 node network. 

Table for Notations 

N Number of vertices/nodes (N = |V |) 
M Number of edges/links (M = |E|) 
du The degree of u 
N (u) The set of neighbors of u 
T (u) The number of triangles containing u 
C (u), C (G) Clustering coefficients of u and G 

C̃v (u), C̃v (G) G Clustering coefficients of u and G after removing node v 
from  

G[S] The sub-graph induced by S ⊆ V in G 
tr(u, v) The number of triangles containing both u, v. 

 
Figure: 1 Notation.  

 
The Algorithm and Methodology 

In the following, the explanation of the algorithms will be explaining. This algorithm is 
used as a MATLAB code and we are going to give detail notations. 3-4 The first set of notion 
explain the graph representing a complex network which is G= (V, E). V is for the set of N nodes 
and E is the set of edge containing M connections. Node u ∈ V, denote by du and N(u) the degree 
of u and the set of u's neighbors, respectively. Now, we are going to over Triangle free graphs A 
graph and G is said to be triangle-free if no three vertices of G form a triangle of edges. This help 
to verify that the graph G is triangle-free or not is tractable by computing the trace of A, where A 
is the adjacency matrix of G. Next is about clustering measure functions. For that the flowing is 
given a node u ∈ V, there are du adjacent vertices of u in G and there are du (du − 1)/2 possible 
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edges among all u's neighbors. In this area, a couple of references are used to check the latest 
matrix multiplying result which is (Gall, 2014). 

 The local clustering coefficient C(u) is defined: 
 

ሻݑሺܥ                                           ൌ ቊ
ଶ்ሺ௨ሻ

ௗೠሺௗೠିଵሻ
	 														݀௨ ൐ 1

݁ݏ݅ݓݎ݄݁ݐ݋																					0															
         (1) 

T is the number traingle containing u. It is clear that 0 ≤ C(u) ≤ 1 for any u ∈ V for any node v 6= 
u, let ˜ Cv(u) denote the clustering coefficient of u in G [V \{v}]. Finally, define tr(u, v) as the 
number of triangles containing both vertices u and v. In the above we have seen that how the 
clustering coefficients works, now we are going to see the algorithms of average clustering 
coefficient. Theoretically known that the average local clustering coefficient C(G) of a graph G is 
a measure indicating how much the vertices of G tend to cluster together. This is because  0 ≤ C(u) 
≤ 1 for every node u ∈ V, C(G) is also normalized and can only take the value in the range [0,1] 
inclusively. For example, C(G) = 0 when G is a triangle-free graph and C(G) = 1 when G is a 
clique or a collection of cliques. 3-4 The higher the clustering coefficient of G the more closely the 
graph locally resembles a clique.  
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Cv(G) = C (G[V \{v}]) 

 
When we combine in one:  
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Fast Adaptive Greedy 

In in the following, we are going to formulate the CSA problem as an integer program. Let 
(eij )i,j∈V  be the adjacency matrix of G. 

 
Lemma 1. For u ∈ V, T (u) can be calculated in the following way: 
 
                                      2Tሺuሻ ൌ ∑௜∈௏ ∑ ݁௨௜݁௨௜௘೔ೕ௜∈௏                        (2) 

 
Proof: The summand eui euj eij = 1 iff i, j are neighbors of u, and if edge (i, j) is in the 

graph; that is, vertices u, i, j form a triangle. We formulate CSA as an integer program in the 
following way. Let xi = 1 if i is included in the set S, and xi = 0 otherwise. 
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Integer Program 1.  Min  ∑௨∈௏:ௗሺ௨ሻவଵ∑௜∈௏ ∑
௘ೠ೔௘ೠ೔೐೔ೕ௫೔௫ೕೣೠ

ௗ௨ሺௗ௨ିଵሻሺேି௄ሻ௜∈௏  

Such that  ∑ ݑݔ ൏ ݇,௨∈௏  
 

Notice that sum 2 compute the ALCC of the residual graph after removing S. As we see in above 
section, corollary 1 there always exists as a node the removal of which will not increase the ALCC; 
thus an optimal solution to the program is an optimal solution to CSA.   
 
Lemma 2.  In a graph G, the following statements hold:  
 

1. C(G) = 0 if and only if G is a triangle free network.  
2. C(G) = 1 if and only if G is a clique or contain only separated cliques.  

 
 

 
a) b) 

 
   Figure: 2 Nonmonotonicity of ALCC 

 
(i)  Suppose there exists a triangle u, v, w in G. Then C (u) > 0, so C (G) > 0. For the 
converse, if C (G) > 0, there exists u ∈ V such that C (u) > 0. By definition of C (u), there 
exists a triangle u, v, w containing u. 
(ii)  Suppose C (G) = 1. Then, for each u ∈ V, the subgraph induced by {u} ∪ N (u) is a 

clique, from which G is a clique or only separated cliques. The converse follows directly 
from the definition of C (G). 

 
Lemma 3. For any u ∈ V   2ܶ ൌ ∑ |ܰሺݑሻ ∩ Nሺuሻ|௏∈ேሺ௨ሻ                                                            (3) 
 
Proof: For each neighbor v of u, the number of triangles that contain both u and v is |N(u)∩N(v)|. 
Since each triangle containing u contains exactly two neighbors of u, it follows that the summation 
P v2N(u) |N(u) ∩ N(v)| counts twice the number of triangles containing u. 
 
Lemma 4.  For any node  
 

   u ∊	V ଵ

ேିଵ
∑ Cvሺuሻ 	൑ 	Cሺuሻ.௨∈௏ሼ௨ሽ 																																											 	 	 	 														ሺ4ሻ 

 
Proof: To prove this Lemma, we will show the following statements regarding the degree of u:                             

    
ଵ

ேିଵ
∑ Cvሺuሻ 	൑ 	Cሺuሻ.௨∈௏ሼ௨ሽ when du ≤ 2.               (5) 

    
ଵ

ேିଵ
∑ Cvሺuሻ 	൑ 	Cሺuሻ.௨∈௏ሼ௨ሽ when du > 2           (6) 

Eq. (3) is equivalent to ∑ Cvሺuሻ 	൑ ሺN െ 1ሻ	Cሺuሻ.௨∈௏ሼ௨ሽ  

To find ∑ Cvሺuሻ 	൑ ሺN െ 1ሻ	Cሺuሻ.௨∈௏ሼ௨ሽ  we use the fact that removing a non-neighbor node of u 

will not affect the local clustering coefficient C(u), i.e., ˜ Cv(u) = C(u) for v ∈ V \ (N(u) ∪ {u}). 
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There are (N − du − 1) non-neighbors vertices of u in G. Thus the second term of (6) follows. To 
evaluate the first term of Eq. (5). 
 
Lemma 5. Let ଶܰ	(u) = [v ∊ N(u) : d(v) = 2}, வܰଶ	(u) = {v ∊ N(u): d(v) :d(u) >2}. For each u ∊ V, 

  :(g) can be computed in the following way	௨ܥ∆
 

௨ܰ	 ൌ
ଶ்ሺ௨ሻ

ேௗሺ௨ሻሺௗሺ௨ሻିଵሻ
൅ ∑ ସ்ሺ௩ሻሺଵିேሻାଶ௧௥ሺ௨,௩ሻேௗሺ௩ሻିଶ்ሺ௩ሻௗሺ௩ሻ

ேሺேିଵሻௗሺ௩ሻሺௗሺ௩ሻିଵሻሺௗሺ௩ሻିଶሻ௩∊୒ଶሺ୳ሻ ൅ ∑ ்ሺ௩ሻ

ே௩∊୒ଶሺ୳ሻ          (7) 

 
Proof: Denote the contribution of v ∈ G to the average clustering coefficient as cv before the 
removal of u and ĉv after. 

∆C̃u can be written as v∈G cv − ĉv. If v 6∈ N (u) ∪ {u}, then cv = ĉv. If v = u, then 

C୴ െ	C୴ ൌ
2ܶሺݑሻ

ܰ݀ሺݑሻሺ݀ሺݑሻ െ 1ሻ
 

Let v ∈ N>2 (u).  Then before removal of u, v is in T (v) triangles. After removal, v is in T 
(v) − tr(u, v) triangles. Hence 

ܞ۱ ൌ
2ܶሺݑሻ

ܰ݀ሺݑሻሺ݀ሺݑሻ െ 1ሻ
 

And  

C୴ ൌ
2ܶሺݑሻ

ሺܰ െ 1ሻሺ݀ሺݒሻ െ 1ሻሺ݀ሺݒሻ െ 2ሻ
 

hence  

                                                 C୴ െ cˆv ൌ
ସ்ሺ௩ሻሺଵିேሻାଶ௧௥ሺ௨.௩ሻேௗሺ௩ሻିଶ்ሺ௩ሻௗሺ௩ሻ

ሺேିଵሻሺௗሺ௩ሻିଵሻሺௗሺ௩ሻିଶሻ
             (8) 

v∈N>2 (u) 
 

Let v ∈ N2 (u).  Before removal of u, v is in T (v) triangles. After removal, v is in 0 triangles, 
hence the result follows. One important feature of FAGA is that the produced residual ALCC 
values will form a non-increasing sequence. Algorithm 2 Fast Adaptive Greedy Algorithm (FAGA 
- fast greedy) Number the vertices  
from 1 to N such that u < v implies d(u) ≤ d(v). S ← ∅; for e a c h  u ∈ V    do T (u) ← 0; end 
for for e a c h  (u, v) ∈ E   do tr(u, v) ← 0;end for for u ← n to 1 do for e a c h  v  ∈ N (u) with 
v < u   dofor each w ∈ A(u) ∩ A(v) do Increase tr(u, v), tr(v, w) and tr(u, w) by one; 

   Increase T (u), T (v) and T (w) by one; dd u to A(v); end for end for 
end for for i ← 1 to k do for each u ∈ V \ S   do N d(u)(d(u)−1) for each v ∈ N (v) \ S   do if 

d(v) > 2 then end if if d(v) = 2 then ∆C̃u ← ∆C̃u + T (v)/N; end if end for end for umax ← 

arg maxu∈V \S {∆C̃u }; Remove umax from G, add umax to S, and decrease N by one 
for e a c h  (v, w) ∈ E and v, w ∈ N (umax) \ S   do Decrease T (v) and T (w) by one; end for 
end for return S. 

The graph and Complex Clustering Network.  

The graphs shows that some connection in a small group. By setting maxNode to be 
greatest of the node we want to consider, say 10, we can look at the first 10 nodes and their 
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connection but disregard all connections involving nodes which fall outside of the first 10. 2-4 As 
we described, the MATLAB has a function which only requires the input of an adjacency matrix 
and automatically positions the nodes on the graph with coordinated that minimize crossing of the 
lines and clearly show the feature of the graph. Adjacency Matrix is a square matrix representing 
a simple graph of n vertices. Each element aij is 1 when there is an edge from vertex 1 to vertex j, 
and zero when there is no edge.  An adjacency matrix can be used to represent a complex network 
consisting of clusters. Given a simple network of 10 nodes (vertices) in figure 1, the corresponding 
adjacency matrix is computed below: 

 
0 1 1 1 1 0 0 0 0 0 
1 0 0 0 0 1 1 1 0 1 
1 0 0 0 0 1 1 1 1 1 
1 0 0 0 0 1 1 1 1 0 
1 0 0 0 0 0 0 0 0 1 
0 1 1 1 0 0 1 1 1 0 
0 1 1 1 0 1 0 1 1 1 
0 1 1 1 0 1 1 0 0 0 
0 0 1 1 0 1 1 0 0 0 
0 1 1 0 1 0 1 0 0 0 

Figure: 3 Adjacent Matrix of Simple node network. 
 

Conclusions 

            This paper proposes robustness and resilience in term of a system's capacity to maintain 
functionality in the face of external perturbations. Because robustness is a major issue for the 
complex network. The issues of the robustness analyzed and the outcome of the analysis would be 
the solutions for random vulnerability to external perturbations. Main focused of the evolution was 
the vulnerability of the clustering of the network to the failure of the network element. Clustering 
vulnerability is an important aspect in assessing the robustness of complex networks, as the level 
of clustering has significance for a variety of applications, including a silent role in the propagation 
of information in a social network. 5-6 
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