
Paper ID #40592

The ScorBot Toolbox for MATLAB: An Open-Source Hardware Interaction
and
Simulation Library for the Intelitek SCORBOT-ER 4u Educational Robot

Prof. Michael Dennis Mays Kutzer, United States Naval Academy

Michael D. M. Kutzer received his Ph.D. in mechanical engineering from the Johns Hopkins University,
Baltimore, MD, USA in 2012. He is currently an Associate Professor in the Weapons, Robotics, and
Control Engineering Department (WRCE) at the United States Naval Academy (USNA). Prior to joining
USNA, he worked as a senior researcher in the Research and Exploratory Development Department of
the Johns Hopkins University Applied Physics Laboratory (JHU/APL). His research interests include
robotic manipulation, computer vision and motion capture, applications of and extensions to additive
manufacturing, mechanism design and characterization, continuum manipulators, redundant mechanisms,
and modular systems.

Dr. John S Donnal
Dr. Carl E. Wick Sr., United States Naval Academy

Dr. Carl Wick is currently a Professional Lecturer with the Biomedical Engineering Department of the
George Washington University where he provides technical assistance and advice to capstone project
students. Previously he was associated with the U.S. Na

©American Society for Engineering Education, 2023

The ScorBot Toolbox for MATLAB:
An Open-Source Hardware Interaction and Simulation Library

for the Intelitek SCORBOT-ER 4u Educational Robot

Abstract
An open-source software tool developed for the Intelitek SCORBOT-ER 4u Educational Robot
with a MATLAB front-end is presented. This “ScorBot Toolbox” provides a documented,
user-friendly, and open-source tool for installation, hardware interaction, kinematic modeling, and
visualization using MATLAB. This paper describes the motivation, development, features, and
limitations of the ScorBot Toolbox; and illustrates its capabilities in the context of in-person and
remote project-based learning (PBL). Source code, documentation, and installation functions for
the ScorBot Toolbox are available at https://github.com/kutzer/ScorBotToolbox.

1 Introduction
The SCORBOT-ER 4u Educational Robot (Intelitek Inc, Derry, NH) is a five Degree-of-Freedom
(DoF) articulated manipulator with an integrated 65 mm (2.6 in) stroke, electric gripper. The
SCORBOT-ER 4u manipulator is a lightweight, 10.8 kg (23.8 lbs) system with a maximum linear
speed of 700 mm/sec (27.6 in/sec). Though not a collaborative manipulator, this low-mass and
low-speed system leverages a belt-drive design to create a low-inertia platform that is safe for
educational use. Similar to its industrial counterparts, the SCORBOT-ER 4u system includes a
manipulator, controller, teach pendant, and proprietary programming environment [1]. Figure 1
summarizes the SCORBOT-ER 4u system.

Figure 1: Summary of the SCORBOT-ER 4u Educational Robot system comprised of a manipula-
tor, controller, teach pendant, and proprietary programming environment (SCORBASE).

In 2011, Esposito et al presented the “MATLAB Toolbox for the Intelitek Scorbot (MTIS)” [2]
which provides basic interaction between a 32-bit version of MATLAB running on a Windows
Operating System (OS) and the Intelitek SCORBOT-ER 4u. The motivation and inspiration for
MTIS were driven by: (1) a desire to increase hands-on exercises shown to particularly benefit
visual and experiential learners [3]; (2) the popularity of Intelitek SCORBOT manipulators in
education during the 1990s and early 2000s; and (3) a desire to follow a then-recent trend of
providing free, open-source software for robotic education and research.

As described by [2], MTIS successfully provides a MATLAB front-end for interacting with the
USB version of the SCORBOT-ER 4u. MTIS’s functionality is based on a United States Naval
Academy (USNA) developed “MTIS Intermediary DLL” allowing MATLAB to interact with an
“Intelitek Name Mangled DLL.” For clarity, the “Intelitek Name Mangled DLL” refers to
USBC.dll [4] which is included as part of the Intelitek SCORBASE software [1]. Beta testing of
MTIS indicated that the tool was generally well-received by students in an introductory robotics
course, and the only documented complaint related to moderate or frequent instances of the MTIS
software crashing [2].

Inspired by the success of MTIS and over five years of interaction with MTIS in a classroom
environment, the ScorBot Toolbox was developed incrementally with the following design goals:
(1) Usability, (2) Consistency, and (3) Stability.

This paper describes the development and use of the ScorBot Toolbox. The ScorBot Toolbox
provides a series of seamless, self-contained MATLAB functions allowing users to control a
SCORBOT-ER 4u, receive feedback from a SCORBOT-ER 4u, model elements of the
SCORBOT-ER 4u, and create 3D rendered visualizations of the SCORBOT-ER 4u.

This paper is organized as follows: Section 2 describes work to improve the usability of the
ScorBot Toolbox through installation and version control tools, 64-bit support, and visualization
tools for cross-platform compatibility; Section 3 describes the organization, naming, syntax, and
visual debugging capabilities of the toolbox; Section 4 describes methods implemented to reduce
and eliminate crashes, provide straightforward error handling and descriptions, and bug tracking
tools implemented within the toolbox. Section 5 provides a comparison between MTIS and the
ScorBot Toolbox, provides a comparison between hardware and simulation syntax, and describes
an example of the PBL laboratory uses of the toolbox’s “digital twin” capabilities leveraged
during COVID hybrid learning. Section 6 discusses the implications of the results presented in
Section 5 and includes a summary of qualitative student feedback. Finally, Section 7 summarizes
the conclusions that can be drawn from this work and discusses related future work.

2 Usability Considerations
This section describes efforts to improve the usability of the ScorBot Toolbox through installation
and version control tools, 64-bit support, and visualization tools for cross-platform compatibility.
Section 2.1 describes the installation and version control approach used; Section 2.2 describes the
approach to providing 64-bit support; and Section 2.3 describes visualization tools developed to
provide cross-platform compatibility.

2.1 Installation and Version Control
Installation, update, and version control capabilities are motivated by a desire to rapidly provide
toolbox updates including capabilities expansions and bug fixes. The ScorBot Toolbox software is
maintained using a Git repository hosted by GitHub, Inc. Hosting through GitHub provides both
reliable version control and trusted integration with the MATLAB Central File Exchange. As a
result, archived branches are accessible for download and extraction using the MATLAB “unzip”
function.

First-time installation of the ScorBot Toolbox [5] requires several manual steps and loosely
mimics the installation procedure of MTIS:

1. Download “ScorBotToolbox.zip” (or alternate filename)
2. Unzip “ScorBotToolbox.zip”
3. Open MATLAB as an administrator
4. Change your MATLAB Current Directory to the location containing contents of the

unzipped ScorBotToolbox
5. Run installScorBotToolbox

6. (Optional) Manually move “ScorBotToolbox Example SCRIPTS” to a location of your
choosing

Unlike MTIS, the ScorBot Toolbox includes automated installation and update functions.
Automated installation, housed in the installScorBotToolbox function, executes the
following steps:

1. Download, unzip and install required toolboxes and support packages [6–10]
2. Find and close open and/or running toolbox components
3. Find and remove old toolbox versions
4. If a 64-bit Windows OS is used

(a) Install, configure, and authorize “ScorBotServer”
(b) Copy toolbox hardware-related functions and support files to the toolbox root

([MATLAB Root], ’toolbox’, ’scorbot’).
(c) Copy the latest version of USBC.dll from the SCORBASE directory to the

ScorBotServer directory.

5. Copy toolbox modeling and simulation-related functions and support files to the toolbox
root ([MATLAB Root], ’toolbox’, ’scorbot’).

6. Rehash the MATLAB toolbox cache.

Including this installation function in a known location within the toolbox enables a simple
update function to download and unzip the archived toolbox branch (using the MATLAB “unzip”
function), and execute the toolbox-specific install function. The resultant update procedure for the
ScorBot Toolbox is as follows:

1. Open MATLAB as an administrator
2. Run ”ScorUpdate”

This reliable automation for installing and updating the ScorBot Toolbox provides a pipeline for
rapid updates and bug fixes. Further, applying this install/update functionality to other toolboxes
enables the “install required toolboxes and support packages” functionality. This secondary
benefit allows generic functions to be maintained separately and used outside of the ScorBot
Toolbox context. The use of Git provides version control and branching capabilities that simplify
development, and the selection of GitHub provides streamlined interaction with existing
MATLAB functionality.

2.2 64-bit Support
The requirement for 64-bit support is driven by the following: (1) the last release of MATLAB
supported on a 32-bit Windows OS was R2015b; (2) MATLAB 64-bit versions cannot load 32-bit
Windows OS DLLs; (3) Intelitek will only release a 32-bit Windows OS version of the USBC
DLL; and (4) the MTIS Intermediary DLL must be 32-bit to interact with the USBC DLL.

Support for 64-bit, therefore, requires the introduction of an additional intermediary that: (1)
supports simple MATLAB interaction; and (2) can access and interact with the 32-bit MTIS
Intermediary DLL. This is accomplished with the introduction of the “ScorBotServer” executable.
When run, ScorBotServer creates a local web server wrapper for the MTIS Intermediary DLL.
This allows MATLAB to access MTIS Intermediary DLL functions using encoded URLs, and
receive feedback from the MTIS Intermediary DLL through JSON messages posted to said
encoded URLs. A summary of this can be found in Figure 2.

Figure 2: The communication structure of the ScorBot Toolbox. Hardware-related toolbox func-
tions communicate with the MTIS Intermediary DLL through the ScorBot Server with encoded
URLs.

To ensure ease of use: (1) ScorBot server is installed and configured automatically during the
installScorBotToolbox process; and (2) when interacting with hardware, the ScorBotServer
is initialized automatically as a background application using the system function in
MATLAB.

2.3 Cross-Platform Compatible Simulation Tools
The 32-bit Windows OS limitation imposed by the USBC DLL provided by Intelitek restricts
hardware interaction with the SCORBOT-ER 4u to a Windows OS running natively on a PC or
virtual machine (VM). To support non-Windows users without access to a Windows VM, the
ScorBot Toolbox is built to include kinematic simulation and visualization tools that mimic
hardware functionality. These tools allow users to interact with a kinematically equivalent model
and high-fidelity 3D visualization of the SCORBOT-ER 4u rather than the physical
hardware.

Leveraging timer-based callback functions in MATLAB, the ScorBot Toolbox simulation tools
move the robot in the background, allowing a user to continue to interact with the MATLAB
simulation as they would with the physical robot hardware. This provides the capability to write
simulation programs that translate directly to programs written for hardware.

Figure 3: True SCORBOT-ER 4u hardware (left) compared to the 3D visualization included with
the ScorBot Toolbox simulation (right).

3 Design for Consistency
The ScorBot Toolbox leverages a function naming convention inspired by MTIS. All user-level
MATLAB functions within the toolbox begin with “Scor” followed by one or more modifier(s)
that identify the specific toolbox function. Table 1 summarizes the 43 core functions included
with the ScorBot Toolbox.

Table 1: Summary of key function names within the ScorBot Toolbox. For non-empty cells,
columns labeled Modifier∗ indicate optional modifiers and columns labeled Modifier indicate re-
quired modifiers.

Base Name Modifier∗ Modifier Modifier∗ Modifier Modifier
1 Scor Sim Init
2 Scor Home
3 Scor Sim GoHome
4 Scor Sim WaitForMove
5 Scor Sim IsMoving
6 Scor Sim Get BSEPR
7 Scor Sim Get XYZPR
8 Scor Sim Get Pose
9 Scor Sim Get Gripper

10 Scor Sim Get Speed
11 Scor Get PendantMode
12 Scor Sim Set Delta BSEPR
13 Scor Sim Set Delta XYZPR
14 Scor Sim Set Delta Pose
15 Scor Sim Set Gripper
16 Scor Sim Set Speed
17 Scor Set PendantMode
18 Scor BSEPR 2 XYZPR
19 Scor BSEPR 2 Pose
20 Scor XYZPR 2 BSEPR
21 Scor XYZPR 2 Pose
22 Scor Pose 2 BSEPR
23 Scor Pose 2 XYZPR

As an example, the Row 1 of Table 1 indicates that the functions ScorInit and ScorSimInit

exist; Row 12 indicates that the functions ScorSetBSEPR, ScorSimSetBSEPR,
ScorSetDeltaBSEPR, and ScorSimSetDeltaBSEPR exist; and Row 18 indicates that only
ScorBSEPR2XYZPR exists. Table 2 provides descriptions of the modifiers, and each function
contains detailed help documentation resembling the help documentation available with native
MATLAB functions.

Table 2: Descriptions of optional and required modifiers used in ScorBot Toolbox key function
naming.

Modifier Description

Sim
Functions containing “Sim” interact with the simulation environment rather
than hardware.

Delta
Functions containing “Delta” prompt a relative movement of the hardware
or simulation rather than an absolute movement relative to the system’s base
frame.

Init
Functions containing “Init” prompt an initialization procedure for the hard-
ware or simulation.

Home Functions containing “Home” prompt a homing procedure for the hardware.

GoHome
Functions containing “GoHome” prompt a movement to the home position
for the hardware or simulation.

WaitForMove
Functions containing “WaitForMove” pause MATLAB execution until a
movement of the hardware or simulation has finished.

IsMoving
Functions containing “IsMoving” return a logical value indicating whether
or not the hardware or simulation is moving. A value of “true” is returned
if movement is occurring when the function is called.

Get
Functions containing “Get” query information from the hardware or simu-
lation.

Set
Functions containing “Set” send information related to or triggering an ac-
tion by the hardware or simulation.

BSEPR
Functions containing “BSEPR” accept or return the 5-element joint config-
uration (in radians) of the hardware or simulation. This is defined as a 1× 5
array [b (rad), s (rad), e (rad), p (rad), r (rad)]

XYZPR
Functions containing “XYZPR” accept or return the 5-element task con-
figuration of the hardware or simulation. This is defined as a 1 × 5 array
[x0 (mm), y0 (mm), z0 (mm), p0 (rad), r (rad)]

Pose

Functions containing “Pose” accept or return a 4×4 array element of SE(3)
(the special Euclidean group in three dimensions) defining the pose (posi-
tion and orientation) of the hardware or simulation end-effector relative to
the system’s base frame.

Gripper

Functions containing “Gripper” accept or return a positive scalar value de-
scribing the gripper state of the hardware or simulation in millimeters. A
value of 0 (mm) indicates that the gripper is closed, and a value of 70 (mm)
indicates that the gripper is fully open. The “Set” variations of these func-
tions also accept string arguments of “Open” and “Close” to fully open or
close the hardware or simulation gripper.

PendantMode
Functions containing “PendantMode” query hardware or prompt the user to
change the teach pendant setting of the hardware between teach and auto.

2
Functions containing “2” indicate a conversion between configuration or
pose information. As an example “ScorBSEPR2XYZPR” will accept a 5-
element joint configuration, and return a 5-element task configuration.

4 Addressing Errors, Bugs, and Crashes
This section describes efforts to address errors, bugs, and crashes in the ScorBot Toolbox.
Section 4.1 describes methods to provide error descriptions and mitigation recommendations;
Section 4.2 describes error logging tools created to identify and fix recurring bugs; and Section 4.3
describes efforts to identify and eliminate the causes of ScorBot Toolbox crashes.

4.1 Error Handling
The ScorBot Toolbox considers three key types of errors:

1. Function Syntax Errors - errors triggered by calling hardware or simulation functions with
improper syntax.

2. Function Input Out-of-Bounds Errors - errors triggered by attempting to set hardware or
simulation values, or convert values outside of the prescribed limits.

3. Hardware Errors - errors triggered by hardware and communicated via the USBC DLL.

Addressing Function Syntax Errors and Function Input Out-of-Bounds Errors is a straightforward
exercise in understanding the proper function syntax and variable limits. As functions are created
and documented, code to describe and throw these errors can be added before the function is
deployed. In general, errors are thrown using the MATLAB error function. In practice, some
errors were shifted to warnings based on severity and consequence, and descriptions were
modified based on student and instructor feedback.

Addressing Hardware Errors requires interpretation of the integer values returned by the USBC
DLL. The extensive comments within the “Error.h” header file [11, 12] included with the
installation of the Intelitek SCORBASE software provide verbal descriptions of many of the
errors returned by the hardware. The function ScorParseErrorCode is included with the
ScorBot Toolbox to parse, provide verbal interpretation, and mitigation strategies for these
hardware-related errors.

The introduction of ScorParseErrorCode provides the ancillary benefit of allowing specific
hardware errors to be flagged as fatal. In the event of a fatal error, the user is notified that: (1) the
hardware is in an unrecoverable state, (2) this type of fatal error can be avoided in the future using
described strategies, and (3) a restart is required to continue working with the hardware. While
surprisingly simple, identifying these errors eliminates crashes by ceasing communication with
the USBC DLL and allows users to save work before restarting. This one realization alleviated
much of the frustration associated with the ScorBot Toolbox.

Stopping all hardware interaction following a fatal error proved somewhat complex. This is
caused because the ScorBot Toolbox is modeled after MTIS. As a result, it consists of a large
number of individual functions as compared to creating one or more custom objects (e.g. objects
associated with a hardware and/or simulation class). To compensate, the ScorBot Toolbox
introduces a hidden figure that acts as a pegboard for sharing background information across
functions (including fatal error codes) and ensuring proper shutdown procedures using delete
callback functions.

4.2 Error Logging and Bug Identification
Despite the noteworthy improvements associated with the error handling described in Section 4.1,
intermittent and seemingly unpredictable errors continued to impact the performance of the
ScorBot Toolbox. To track and identify the source of these issues, a series of error tracking and
logging functions were created and included with the toolbox. Much like error logging in a
commercial product, these functions create and update an error log that is saved on the local
machine.

Contained within a single text file, a new error log is created each time the SCORBOT is
initialized. A line is added to the error log in the event of a hardware error or use of a “ScorSet”
command to interact with hardware. Lines within the error log contain the following
information:

1. A date and time stamp
2. A USBC DLL error code or 0 if no error is present
3. A movement or error identification flag identifying log entries prompted by:

• Error state;
• Absolute movements evolving linearly in joint space;
• Absolute movements evolving linearly in task space;
• Relative movements evolving linearly in joint space;
• Relative movements evolving linearly in task space; or
• Movements of the gripper.

4. Current joint configuration (if prompted by an error state or ScorSetGripper command)
or desired joint configuration (if prompted by a “ScorSet*” command, excluding gripper
commands).

5. Current gripper state (if prompted by an error state or a “ScorSet*” command, excluding
gripper commands) or desired gripper state (if prompted by a ScorSetGripper
command).

These logs provide sufficient information to re-create errors associated with hardware interaction
and provide insight into the patterns used by students during individual laboratory exercises. In
general, these error logs provided insight to improve error descriptors to avoid incorrect
sequences of commands and identify additional fatal errors and sequences of errors resulting in a
crash. Additionally, these logs provided evidence suggesting the need for basic functionality like
the ScorSetUndo command that allows a user to move to a previous waypoint.

4.3 Addressing Crashes
The introduction and use of error logging described in Section 4.2 further reduced the instances of
crashes in the ScorBot Toolbox, but it did not fully eliminate their occurrence. In some instances,
the sequence of events recorded in an error log associated with a crash would not reproduce a
crash. In other instances, the sequence of events would reproduce a crash at one laboratory
station, but not another.

For these cases, two culprits were identified:

1. Loose connections between the SCORBOT-ER 4u Controller and Teach Pendant; and
2. Out-of-date and/or mismatched configuration and library files

The SCORBOT-ER 4u Controller and Teach Pendant are connected using RJ11 cables that
degrade with use. Unplugging the Teach Pendant from the Controller, even momentarily, causes
the USBC DLL to crash. When this happens while running MTIS, MATLAB will crash entirely.
When this happens running ScorBot Toolbox on a 64-bit Windows OS, ScorServer will crash. In
both instances, some or all of the software must be reinitialized.

To reduce and potentially eliminate reliance on the Teach Pendant, the ScorBot Toolbox includes
ScorSimTeachBSEPR and ScorSimTeachXYZPR with guided interfaces that allow the user to
interact with the simulation environment using the number pad of the keyboard. Screenshots of
the user interface for ScorSimTeachBSEPR and ScorSimTeachXYZPR is shown in Figure 4.
These simulated movements can then be applied to hardware using combinations of the
“ScorSimGet*” and “ScorSet*” commands.

Figure 4: Guided interface allowing the user to interact with the ScorBot Toolbox simulation
environment in joint space (“BSEPR”, left), and in task space (“XYZPR”, right).

Crashes apparently due to out-of-date and/or mismatched configuration and library files are
highly unpredictable and notably frequent. Before the fix described below, these crashes occur if
and when SCORBASE is upgraded after the ScorBot Toolbox was installed. Upgrading
SCORBASE causes a mismatch between the configuration files and USBC library files used by
the ScorBot Toolbox and SCORBASE. It is still unknown whether crashes were directly caused
by this mismatch, but synchronizing the configuration and library files does fix the issue.

The function ScorConfigurationSync is included with the toolbox to ensure these
configuration and library files are the same. Additionally, the automatic use of
ScorConfigurationSync during installation and updates reduces the likelihood of
mismatched files.

5 Results
For preliminary comparison, the capabilities of MTIS are compared to the ScorBot Toolbox.
Assuming the utility of all content, capabilities are quantified in terms of the number of unique
MATLAB functions, unique internal MATLAB functions (if applicable), unique MATLAB
example scripts, total lines of actionable code, and total lines of comments. A summary of this
comparison can be found in Table 3.

Table 3: Comparison between MTIS and the ScorBot Toolbox in terms of measurable attributes to
the code. Note that the ScorBot Toolbox leverages code from five support toolboxes/packages that
are automatically installed during installation and updates.

MTIS [13] ScorBot Toolbox [5] Support Toolboxes [6–10]
Unique functions 34 128 243
Internal functions 0 12 41

Unique scripts 2 16 24
Lines of actionable code 846 18,986 33,752

Lines of comments 636 10,216 16,082

The contents of Table 3 attempt to quantify the difference in capabilities between MTIS and the
ScorBot Toolbox. From Table 3, the total number of “unique functions” installed with MTIS is
34; and the total number of “unique functions” installed with the ScorBot Toolbox is 372 (128
ScorBot-specific functions and 243 support functions). In this context “unique functions” are
defined as individual “*.m” files following the MATLAB function syntax. An “internal function”
is defined in-line, within a “unique function,” and accessed only by the “unique function”
containing it. “Unique scripts” are individual “*.m” files not containing the MATLAB function
syntax. These “unique scripts” typically represent examples for new users.

As an alternative comparison, the final two rows of Table 3 compare the total number of
actionable code and comment lines contained within MTIS and the ScorBot Toolbox. In this
comparison, a “line of actionable code” is defined as a string containing valid MATLAB syntax
separated by a linefeed, colon, or comma not preceded by an ellipsis or percent symbol. A “line
of comments” is any string beginning with at least one percent symbol and ending with a linefeed.
Lines contained between block-comment symbols are ignored in this analysis. From Table 3, the
total number of “lines of actionable code” installed with MTIS is 846; and the total number of
“lines of actionable code” installed with the ScorBot Toolbox is 52,738 (18,986 ScorBot-specific
lines of code and 33,752 lines of support code). The number of “lines of comments” included
with MTIS is 636 and 26,292 for the ScorBot Toolbox (10,216 ScorBot-specific comments, and
16,082 support code comments).

A general example of the digital twin capabilities included with the ScorBot Toolbox is
highlighted in a comparison between Algorithm 1 and Algorithm 2. Each algorithm demonstrates
initialization, basic movements, data acquisition, and gripper commands. Algorithm 1 provides
this example using the simulation environment; and Algorithm 2 provides this example using
commands controlling the SCORBOT-ER 4u hardware. Comparing lines between Algorithm 1
and Algorithm 2 shows the similarity in syntax between the simulation and hardware tools.

Algorithm 1: ScorBot Toolbox simulation example demonstrating: (1) initialization of the
SCORBOT-ER 4u simulation; (2) a linear movement in task space; (3) a standard “wait for move”
(pausing MATLAB’s execution until the movement completes); (4) a linear movement in joint
space, data acquisition during a movement; (5) basic gripper commands; (6) and a command re-
turning the SCORBOT-ER 4u simulation to the home configuration.

1 % Initialize ScorBot Toolbox Simulation
2 sim = ScorSimInit;
3 % Render 3D simulation geometry
4 ScorSimPatch(sim);
5

6 % Define desired waypoints as end-point XYZPR positions/orientations
7 XYZPR_i(1,:) = [500,-200,570,0,-2*pi/2];
8 XYZPR_i(2,:) = [500, 200,270,0, 0*pi/2];
9

10 % Convert waypoints to BSEPR
11 BSEPR_i(1,:) = ScorXYZPR2BSEPR(XYZPR_i(1,:));
12 BSEPR_i(2,:) = ScorXYZPR2BSEPR(XYZPR_i(2,:));
13

14 % Explore movement: Linear task movement with joint space waypoint
15 ScorSimSetBSEPR(sim,BSEPR_i(1,:),'MoveType','LinearTask');
16 ScorSimWaitForMove(sim);
17 % Explore movement: Linear joint movement with task space waypoint
18 ScorSimSetXYZPR(sim,XYZPR_i(2,:),'MoveType','LinearJoint');
19 % Collect movement data
20 XYZPRs = [];
21 BSEPRs = [];
22 while ScorSimIsMoving(sim)
23 XYZPRs(end+1,:) = ScorSimGetXYZPR(sim);
24 BSEPRs(end+1,:) = ScorSimGetBSEPR(sim);
25 end
26 % Explore movement: Open the gripper using a character array
27 ScorSimSetGripper(sim,'Open');
28 ScorSimWaitForMove(sim);
29 % Explore movement: Close the gripper using a scalar value
30 ScorSimSetGripper(sim,0);
31 ScorSimWaitForMove(sim);
32 % Return simulation to the home position
33 ScorSimGoHome(sim);
34 ScorSimWaitForMove(sim);

Algorithm 2: ScorBot Toolbox hardware example demonstrating: (1) initialization and homing
of the SCORBOT-ER 4u hardware; (2) a linear movement in task space; (3) a standard “wait for
move” (pausing MATLAB’s execution until the movement completes); (4) a linear movement in
joint space, data acquisition during a movement; (5) basic gripper commands; (6) and a command
returning the SCORBOT-ER 4u hardware to the home configuration.

1 % Initialize SCORBOT-ER 4u Hardware
2 ScorInit;
3 % Home hardware
4 ScorHome;
5

6 % Define desired waypoints as end-point XYZPR positions/orientations
7 XYZPR_i(1,:) = [500,-200,570,0,-2*pi/2];
8 XYZPR_i(2,:) = [500, 200,270,0, 0*pi/2];
9

10 % Convert waypoints to BSEPR
11 BSEPR_i(1,:) = ScorXYZPR2BSEPR(XYZPR_i(1,:));
12 BSEPR_i(2,:) = ScorXYZPR2BSEPR(XYZPR_i(2,:));
13

14 % Explore movement: Linear task movement with joint space waypoint
15 ScorSetBSEPR(BSEPR_i(1,:),'MoveType','LinearTask');
16 ScorWaitForMove;
17 % Explore movement: Linear joint movement with task space waypoint
18 ScorSetXYZPR(XYZPR_i(2,:),'MoveType','LinearJoint');
19 % Collect movement data
20 XYZPRs = [];
21 BSEPRs = [];
22 while ScorIsMoving
23 XYZPRs(end+1,:) = ScorGetXYZPR;
24 BSEPRs(end+1,:) = ScorGetBSEPR;
25 end
26 % Explore movement: Open the gripper using a character array
27 ScorSetGripper('Open');
28 ScorWaitForMove;
29 % Explore movement: Close the gripper using a scalar value
30 ScorSetGripper(0);
31 ScorWaitForMove;
32 % Return hardware to the home position
33 ScorGoHome;
34 ScorWaitForMove;

Beyond syntax matching, the ScorBot Toolbox simulation environment includes functions to
further enhance the digital twin capabilities by providing context and expanded capabilities
allowing the simulation to mimic the physical ScorBot-ER 4u setup at USNA. These functions
include ScorSimPatch, ScorSimLabBench, ScorSimDraw, ScorSimPlaceBlock,
ScorSimGripBall, ScorSimCheckerBoard, and ScorSimGetSnapshot. Figure 5, Figure 6,
and Figure 7 provide examples of the context and capabilities added by these functions.

Figure 5: Basic kinematic simulation created using ScorSimInit (Left); rendered robotic com-
ponents added to simulation using ScorSimPatch (Center); and lab bench and noisy background
added to simulation using ScorSimLabBench (Right).

Figure 6: Rendered simulation and lab bench with block added using ScorSimPlaceBlock

and gripped ball added using ScorSimGripBall (Left); and simulated image created using
ScorSimGetSnapshot (Right).

Figure 7: Rendered simulation and lab bench with block added using ScorSimPlaceBlock and
gripped calibration checkerboard added using ScorSimCheckerBoard (Left); and simulated im-
age created using ScorSimGetSnapshot (Right).

A specific example of these expanded digital twin capabilities is shown in the comparison
between Figure 8 and Figure 9. Figure 8 shows the annotated instruction used as part of an
in-person drawing exercise leveraging the SCORBOT-ER 4u hardware. Figure 9 shows
screenshots of the equivalent, digital twin exercise used during remote learning. Note that
Figure 9 uses the ScorSimDraw function included with the toolbox. In both hardware and
simulation drawing exercises, students can: (1) create desired drawings relative to a paper-fixed
coordinate frame, and (2) establish a transformation relating the paper-fixed frame to the robot
base frame. These drawing tools are utilized in PBL exercises exploring inverse kinematics, linear
movements in joint space, and the robot Jacobian.

Figure 8: Annotated images of the SCORBOT-ER 4u used for instruction figures as part of a
robotic drawing exercise using physical hardware.

Figure 9: Screenshots of the ScorBot Toolbox simulation environment used for a simulated robotic
drawing exercise during remote learning.

An additional example of the expanded digital twin capabilities is shown in Figure 10. In this
example, students use simulated camera images to explore color-based image segmentation and
binary object properties. Beyond fundamental image processing exercises, this simulated image
capability can be used to explore robot/camera calibration, explore the use of camera feedback for
grasp pose approximation, and explore applications of fixed-camera visual servoing.

Figure 10: Simulated camera image of the ScorBot Toolbox simulation environment including ren-
dered lab bench and block. This image includes an overlay highlighting the color-based segmenta-
tion of the block and the principal angle of the binary generated by the segmentation. Additionally,
text is included in the upper left showing calculated values for the segmented object area, Hu’s first
moment invariant, and Hu’s second moment invariant.

6 Discussion
The results presented in Section 5 provide a preliminary comparison between the capabilities of
MTIS and the ScorBot Toolbox. This comparison is quantified using an analysis of the code
included with each toolbox. Table 3 suggests that the ScorBot Toolbox is a more capable and
complete tool for use with the SCORBOT-ER 4u. This is further reinforced by the efforts
summarized in Section 3 and Section 4. Section 3 describes the efforts taken to create a consistent
naming convention, while Table 1 and Table 2 concisely summarize the key functions for both
hardware and simulation interactions. This directly addresses the imperfect results for the
ease-of-use user survey presented in [2]. Section 4 describes the extensive work to handle errors,
identify and eliminate bugs, and identify and eliminate crashes. This work directly addresses the
imperfect results of the stability survey described in [2]. These efforts suggest that an equivalent
survey conducted on the ScorBot Toolbox will result in improved student opinions when
compared to MTIS.

The simulation tools and digital twin capabilities described in Section 5 provide a robust set of
functions for use in a remote learning setting or as a complement to hardware interactions during
in-person learning. These tools were used extensively as part of an Introduction to Robotics
course offered to engineering students during the COVID-19 pandemic. During the of Fall 2020,
courses at USNA began in a fully-remote setting and concluded with nearly three weeks of
in-person learning. This unique transition meant that students interacted exclusively with
simulation tools for the majority of the semester and were asked to complete a hands-on final
project using the SCORBOT-ER 4u hardware. Even with no prior hardware experience, the
similarity in syntax and extensive visualization tools included with the simulation environment
gave students the necessary background to succeed in a hardware-based final project. Further, the
anonymous, end-of-semester student opinions provided broadly positive feedback with statements
including “[simulation] labs helped prepare for the final project,” “[the] strongest features were
the labs,” and “the labs really were the strongest features of the course due to the practical
application of what we were learning.” Qualitatively, this suggests that the simulation tools
included with the ScorBot Toolbox provide an effective digital twin for the SCORBOT-ER 4u
hardware.

In general, the ScorBot Toolbox provides capabilities that complement existing coursework
relating to robotics and computer vision. In an undergraduate setting, topics including rigid body
kinematics and the pinhole camera model can provide powerful examples of the application of
linear algebra while the robot Jacobian provides a straightforward application of partial
derivatives. As a result, portions of the ScorBot Toolbox can be applied broadly across a variety
of engineering disciplines to motivate core topics.

7 Conclusions and Future Work
This paper presents an open-source software tool developed for the Intelitek SCORBOT-ER 4u
Educational Robot with a MATLAB front-end. The ScorBot Toolbox provides a documented,
user-friendly, and open-source tool for installation, hardware interaction, kinematic modeling,
visualization, and simulation using MATLAB.

The ScorBot Toolbox addresses the prescribed design goals through extensive work to ensure the
usability, consistency, and stability of the software. As described in Section 2, the ScorBot
Toolbox usability is enhanced using automated installation and version control, 64-bit support for
the Windows OS enabling the use of the latest versions of MATLAB, and simulation tools that
can be used on any MATLAB-compatible OS. Consistency is addressed using a simple naming
convention summarized in Table 1 that allows users to easily identify applicable functions for
given tasks. Lastly, Section 4 describes the extensive efforts to provide detailed error handling
and descriptions, reduction of bugs, and reduction of crashes. The tools developed for this effort
successfully eliminated the majority of issues present in MTIS and successfully eliminated errors
associated with out-of-date and/or mismatched configuration libraries. Additionally, the
ScorSimTeachBSEPR and ScorSimTeachXYZPR provide a teach pendant alternative to help
reduce hardware crashes related to loose teach pendant cables.

In comparison to its predecessor, MTIS, the ScorBot Toolbox provides error handling, improved
stability, simplified installation and updates, consistent function naming and syntax, extensive
function documentation, and kinematic and 3D visualization simulation tools. Unlike MTIS, the
ScorBot Toolbox supports hardware interaction on 32-bit and 64-bit Windows OS, and simulation
tools are operational across all operating systems supported by MATLAB. Results presented in
Section 5 suggest that the ScorBot Toolbox is a more capable and complete tool, and student
opinions summarized in Section 6 suggest that the digital twin capabilities included with the
toolbox provide an effective alternative for hands-on work with the SCORBOT-ER 4u.

Unlike [2], this effort has not included student surveys to quantitatively assess the ScorBot
Toolbox in a classroom setting. While the anonymous, end-of-semester student opinions
described in Section 6 provide broadly positive feedback that qualitatively suggests a positive
assessment, future work will include an evaluation of the tool using structured surveys
administered to a large sample of students taking robotics-related classes.

References

[1] “Scorbase and robocell: Robotic control and simulation software,” accessed: Feb. 8, 2023.
[Online]. Available: https://www.intelitek.com/resources/pdf/
35-1007-4400 G DS01 SW Robocell-Scorbase.pdf

[2] J. Esposito, C. E. Wick, and K. A. Knowles, “A matlab toolbox for the usb intellitek
scorbot,” in 2011 ASEE Annual Conference & Exposition, 2011, pp. 22–61.

[3] R. M. Felder and R. Brent, “Understanding student differences,” Journal of engineering
education, vol. 94, no. 1, pp. 57–72, 2005.

[4] J. C. Mosebo, “The scorbot-er 4u, function reference and notes for the usbc.dll,” 2008,
accessed: Feb. 8, 2023. [Online]. Available:
https://www.theoldrobots.com/book45/USBC-document.pdf

[5] M. Kutzer, C. Wick, and J. Donnal, “ScorBot Toolbox for MATLAB,” 3 2021. [Online].
Available: https://github.com/kutzer/ScorBotToolbox

[6] M. Kutzer, “Transformation Toolbox for MATLAB,” 4 2022. [Online]. Available:
https://github.com/kutzer/TransformationToolbox

[7] ——, “Geometry Toolbox for MATLAB,” 3 2022. [Online]. Available:
https://github.com/kutzer/GeometryToolbox

[8] ——, “Plotting Toolbox for MATLAB,” 4 2022. [Online]. Available:
https://github.com/kutzer/PlottingToolbox

[9] ——, “Patch Toolbox for MATLAB,” 4 2021. [Online]. Available:
https://github.com/kutzer/PatchToolbox

[10] ——, “WRC MATLAB Camera Support,” 4 2022. [Online]. Available:
https://github.com/kutzer/WRC MATLABCameraSupport

[11] B. Mirko, “Error.h commenting included with scorbase 7.0.9.8,” 6 1993, accessed:
Feb. 8, 2023. [Online]. Available:
https://downloads.intelitek.com/Software/Robotics/ER-4u/Previous Versions/
PLTW Robocell Scorbase Setup 7.0.9.8.exe

[12] Shimon, “Error.h commenting included with scorbase 7.0.9.8,” 9 2001, accessed:
Feb. 8, 2023. [Online]. Available:
https://downloads.intelitek.com/Software/Robotics/ER-4u/Previous Versions/
PLTW Robocell Scorbase Setup 7.0.9.8.exe

[13] J. Esposito, “Download the toolbox, mtis files,” accessed: Feb. 10, 2023. [Online].
Available: https://www.usna.edu/Users/weaprcon/esposito/ files/scorbot.matlab/MTIS.zip

