
u r
R p

x

r

R

u r velocity R radius vis ity

p

x
pressure gradient

( ) ( )[ ( ) ]

( ) ; ; cos

.

= − −

= = =

=

2
2

4
1

µ
∂
∂

µ
∂
∂

                    
                                                                                                                                Session 1380

      The Use of Conic Sections in Basic Mechanics Courses: Some Examples
                                             
                                                                Josué Njock Libii                    
                                               School of Engineering and Technology
                                       Indiana University - Purdue University Fort Wayne
                                                Fort Wayne, Indiana 46805-1499  USA

Conic sections appear in the discussion of many concepts  in basic mechanics courses. The
purpose of this paper is to illustrate some common topics in which they appear. The paper gives
eight examples of the use of conic sections in mechanics. It states the equation of the conic
section in each case and defines the important physical variables involved in the equation. In
each case, a reference is given from which the interested reader can get the derivation of
equations and other relevant details. It is hoped that these illustrations can be of use to instructors
of mathematics if they need to illustrate how conic sections are used in a variety of applications.

                               Conic sections in the study of the Mechanics of fluids:

 a) Steady Flow of a viscous fluid in a circular pipe: Hagen-Poiseuille’s equation

 If u(r) is the  velocity in the axial direction and r is the radial distance, then (ef. 1), 
(see Figure 1, for a graphical  illustration)

b) Movement of the free surface of a liquid in a tank draining under gravity.
We consider the efflux of a liquid of constant density rho through an orifice of cross sectional
area Ao, located at the bottom of  a cylindrical tank  of cross section At.
Typically, one  considers  a cylindrical tank of inside cross sectional area At. The tank is oriented
such that its axis of symmetry is vertical. The tank contains a fluid of constant mass density 
which  can exit the tank through a circular orifice of cross sectional area Ao that is
axisymmetrically located at the bottom of the tank. If  the initial height of the free surface of the
fluid is  ho  and the instantaneous height is h, one can write Bernoulli’s equation between two
points that are assumed to belong to the same streamline. As a first approximation, this equation
leads to an explicit expression of the height as a function of time, which is given by
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Where td = the theoretical time it takes the free surface to travel a distance ho. This time is also
the theoretical time it takes to drain the tank completely; and to is the time at which the draining
process started, ( Ref. 2).  Plots of such  draining curves ( theory & exp) are shown in Figure 2. 

 c) Liquid in rigid-body motion with constant angular velocity.

Consider  a container in the shape of a circular cylinder with a horizontal cross section that is
partially filled with liquid. When the container is rotated at constant angular velocity about its
vertical axis, there is will no relative motion of fluid particles after a short time. And the  liquid
rotates with the cylinder as if  the liquid and the cylinder constituted one rigid body. The shape of
the free surface is a paraboloid of revolution, Figure 3. The trace of this paraboloid in any vertical
plane that contains the axis of symmetry of the cylinder is a parabola the equation of which is
given by ( Ref. 1).

Where
ho =  the initial height of liquid above the bottom of the container;
g = the local  acceleration of gravity;
w = angular velocity of the container about its vertical axis;
R = inside radius of the cylinder;
r = radial distance from the axis of the cylinder.

d)  The Rankine’s  combined vortex
It consists of a circular cylindrical vortex with its axis vertical in a liquid that moves under the
action of gravity, the upper surface of the liquid being exposed to atmospheric pressure.
If the origin is taken in the axis of the vortex and as far from the free surface as possible, and
letting the z-axis point downwards, it can be shown that  the free surface is made up of  a
parabola and a hyperbola the equations of which are shown below ( Ref. 3).

where  a is  the radius of the circle that represents the horizontal  cross section of the vortex tube
of vorticity omega. These curves are illustrated in  Figure 4. P

age 3.581.2



y y x x
g

v
x x

x y origin

angle of inclination

g acceleration of gravity

v initial speed

= + − − −

=
=
=
=

0 0
0

2 2 0
2

0 0

0

2

sin

cos
( )

cos
( )

( )

. .

. .

.

,

θ
θ θ

θ

1 1
1

1
1

0

1

1

1

0 0 0
2

0
2

0
2

0 0
2

0 0 0
2

0

0

r r

GM

r v

GM

r v

e
C r v

GM
eccentricity C

r

GM

r v

e circle

e parabola

e ellipse

e hyperbola

r position

r initial position

v initial velocity

M Mass of the earth

G gravitational cons t

e e

e

e

e

= − +

= = = −

=
=
<
>
=
=
=
=

=

( )cos

( )
; ( ).

; .

;

;

;

.

.

. . .

. tan

θ

                                                        Motion of a Projectile

The free flight motion of a projectile in the absence of air resistance  is often studied using
rectangular components. In the x-y plane, where x is horizontal and y is vertical, the equation of
the trajectory is given by

 

See Figure 5.
                         Space Mechanics: Free -Flight Trajectory of a Satellite

 The equation of the free-flight trajectory of a particle under central force motion due to, say,
electrostatic or gravitational forces, is given in polar coordinates  by ( Ref. 4 )

See Figure 6. P
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                                                     Bending Moment Diagrams

The bending moment diagram for a beam of length, L,  that is supported on knife edges at its
ends and that carries a uniform load distribution, q, is a parabola, Fig. 7. When the origin of the
coordinate system is made to coincide with the left support and oriented such that the x-axis runs
along the length of the beam, then the bending moment M (x) is given by (Ref. 5) 

                         Free Vibration with Damping due to material Hysteresis

When damping is caused by friction between the internal planes of a solid material that slip and
slide relative to each other as the material moves and undergoes deformation, a plot of  the load
vs. deformation curve  shows the formation of a hysteresis loop. The energy lost during one
complete cycle of oscillation in such a system is conventionally assumed to equal the area
enclosed by the loop, Fig. 8. This loop can be approximated by an ellipse generated by a  spring
viscous damper arrangement ( Ref. 6). The equation of the ellipse is then given by

Conclusions

Conic sections are common in basic courses of mechanics. Math instructors who wish to show
how conic sections are used in physics and engineering can find many examples in  textbooks of
engineering mechanics and even more in the research literature. In this paper, we have shown
many examples of such applications.  Given the wide availability of plotting software nowadays,
plotting the functions for the conic sections used in this paper is a  relatively easy task once one
chooses appropriate numerical values for the parameters identified in the equations. It is even
better to plot the same function many times by varying the parameters involved in order to
visualize their effects on the geometric properties of the curve. P
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