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The use of MATLAB Live as a technology-enabled learning environment for 

computational modeling activities within a capstone engineering course 
 

 

Abstract 

This full paper presents an implementation of a technology-enabled learning environment such 

as MATLAB Live, used to enhance student experience when engaging with computational 

modeling activities within a capstone engineering course. Computational modeling and 

simulation are key aspects of engineering education. As such, continued progress towards 

understanding and improving student experiences within computational modeling activities is 

paramount for engineering educators. MATLAB Live, allows the users to mix together data 

visualizations, working code, explanations, and other forms of media. This form of discipline-

based technology-enhanced learning environment allows for maximizing scaffolding and 

potentially lessening the cognitive load experienced during the learning activity.  

 

The paper describes how a computational modeling intervention based on educational theories 

and frameworks such as the model-eliciting activity and productive failure, was scaffolded and 

delivered through MATLAB Live. The paper quantitatively and qualitatively identified different 

ways in which students engaged with MATLAB Live and how those differed between student 

programmers' comfort levels. Additionally, quantitative analysis was used to understand the 

effects the intervention had on student self-efficacy. The guiding research questions were: (1) 

How did such technology-supported scaffolded (MATLAB Live) modeling activity experiences 

impact student self-efficacy regarding programming and computational modeling? (2) Based on 

student comfort level with programming (self-efficacy), how did students vary in their reported 

experiences of MATLAB Live? The results of this analysis show that the MATLAB Live 

scaffolding proved beneficial to both novice and experienced programmers, yet student-reported 

benefits differed in key areas. The paper concludes with recommendations for using MATLAB 

Live and similar programs derived from the results of the study. 

 

 

Introduction  

Modeling and simulation are becoming a more fundamental skillset across engineering 

disciplines and other disciplines more broadly. There have been multiple national calls for 

increased computation and computational thinking within the classroom [1], [2]. However, 

within engineering contexts, it has been shown that computation and computational thinking are 

best taught when embedded within disciplinary contexts [3], [4]. With the national calls for 

discipline-based education research, the time has never been better to understand how 

computation can be taught in new and innovative ways within the engineering classroom.  

However, teaching computation and programming within the engineering classroom does not 

come without challenges. Often times, engineering instructors are dealing with overpacked 

curriculum, students who lack confidence or ability within their programming, or lack familiarity 

with the programming environments available and useful to students today [5]. Furthermore, 

gaps continue to exist within racial, gender, and socioeconomic differences [6]. However, recent 

work has shown that integrating programming into the curriculum through the lens of popular 

applications of its use can help broaden participation within computing disciplines [7].  



Innovations in computing environments have given rise to technology-enhanced learning within 

programming environments such as MATLAB Live. These scaffolding techniques allow 

students to directly input equations, text, graphs, and results directly next to the code being 

written. Additionally, instructors can give instructions or break the programming up into sections 

directly within the programming environment. Similar programs have been used within research 

to scaffold computer programming learning [8].  

 

All this has led to the current study, where a discipline-based computing intervention was 

implemented into a capstone level engineering course, in the form of modeling and simulation. 

The study was conducted after seeking and obtaining permission from the university institutional 

review board (IRB). The researchers then took pre-survey and post-survey measurements to 

understand how self-efficacy changed in terms of students modeling and simulation skills. 

Likewise, post-survey data was collected to understand how students experienced the MATLAB 

Live environment. This has led the research to two research questions: (1) How did such 

technology-supported scaffolded (MATLAB Live) modeling activity experiences impact student 

self-efficacy regarding programming and computational modeling? (2) Based on student comfort 

level with programming (self-efficacy), how did students vary in their reported experiences of 

MATLAB Live? 

 

Background 

The use of modeling is not new to engineering education, having been studied extensively with 

all levels and disciplines of engineering [3], [9], [10]. For this study, two bodies of literature 

were primarily used to design the learning intervention for which MATLAB Live was to be 

implemented within model-eliciting activities (MEAs) and modeling-based learning. The 

structure of this learning intervention has been previously reported in the literature [11]. This 

learning intervention was then investigated for impact on student self-efficacy.  

 

Modeling-based learning 

Modeling-based learning, or the use of models for learning in educational environments, has 

been studied broadly in education and specifically STEM education for a long time [12]–[14]. 

Traditionally, many researchers have tried characterizing the modeling cycle into a series of 

steps or phases. For example, Shiflet and Shiflet [15] described the modeling process into six 

phases: (1) analyze the problem, (2) formulate a model, (3) solve the model, (4) verify and 

interpret the model’s solution, (5) report on the model, and (6) maintain the model. Magana [16] 

broke the process into (1) construct models, (2) use models, (3) evaluate models, and (4) revise 

models. Similar modeling processes were described by Louca and Zacharia [17], which directly 

informed the design of this study.  Their modeling process was: (1) collection of observations 

and experiences, (2) construction of the model, (3) evaluation of the model and (4) revision of 

the model. This four-phased process is referred to as modeling-based learning (MbL). During 

Collection of Observations and Experiences, students work to build off of their own experiences 

and collect any necessary data needed to build the model. Often during this phase students begin 

to look into the details of the physical phenomenon that they intend to model. Then, in the 

second phase of Construction of the model, students use that information to formally build the 

model symbolically by putting to work the information and experiences that were gathered 

during the first phase of the process. During the Evaluation of the Model step, students take their 



built model and evaluate through verification and validation. And then finally, in Revision of the 

Model, students modify the model based on the evaluation.  

 

Self-efficacy within Engineering 

It has long been known that self-efficacy can have an impact on student learning [18], [19]. 

However, more recent studies have looked into the effects of self-efficacy within the engineering 

classroom [20], [21]. Within engineering classrooms, gender gaps in self-efficacy have been 

observed [21]. When looking at first-year engineering students, Hutchison et al. [21] found that 

there were nine primary factors that influenced student self-efficacy within the engineering 

classroom: (1) understanding or learning, (2) drive and motivation, (3) teaming, (4) computing 

abilities, (5) availability of help, (6) problem-solving abilities, (7) enjoyment, (8) interest, and (9) 

satisfaction with the course material. In this study, we dive deeper into the computing abilities 

factor to understand how engaging with a modeling-based learning experience impacts student 

self-efficacy and how initial self-efficacy can impact student experiences with scaffolding 

frameworks such as MATLAB Live within computing environments.  

 

Methods 

This study utilizes a mixed-methods approach to analyze the impacts of a model-based learning 

experience to self-efficacy, as well as the effects of self-efficacy on experiences with a 

technology-enabled learning environment such as MATLAB Live.  

 

Participants 

The institution from which data was collected was a large midwestern land-grant university, with 

a large engineering program. Participants were primarily senior-level undergraduate students 

enrolled in a capstone course overviewing food and pharmaceutical process engineering. The 

majority of students had some experience with computer programming, as well as many of the 

prerequisite engineering courses needed to complete a senior design course for their major 

(thermodynamics, fluid mechanics, heat and mass transfer, etc.). The class had slightly more 

females than males and the sample for this study is approximately representative of the entire 

class (n=25, 14 females, 11 males) 

 

For the course, students were expected to develop computational models for various physical 

phenomena (food canning line, freeze-drying process, etc.). Additionally, external to these 

modeling projects, students had a senior design project they worked on, as well as periodic 

homework assignments and quizzes throughout the semester. The class had both a lecture and 

lab portion, with the lecture portion being traditional lecturing with assigned homework and 

quizzes, with the lab section of the course being the time for modeling projects and the senior 

design project.  

 

Learning Design 

The final learning design was developed based on modeling-based learning. The development of 

a four-phase process from these frameworks has previously been reported on [citation blinded 

for peer review]. The four phases of the modeling process that students used during their 

modeling activities were: (1) planning the model, (2) building the model, (3) evaluating the 

model, and (4) reflecting on the model. Table 1 below overviews the tasks that students did 

during each phase of the modeling process.  



 

 

Table 1. Overview of learning design for the modeling projects during the course. 
Phase Student Activity  Deliverable 

Planning the 

model 

Students meet in teams to determine the equations, 

properties, and solution elements that are needed to 

solve the problem.  

Each student individually turns in a 

plan of their computational model.  

Building the 

model 

Students individually (over 2-3 weeks) build their 

model using MATLAB Live templates.  

Each student individually turns in a 

MATLAB Live file of their 

computational model.  

Evaluating the 

model 

Students meet with their original team as well as 

rotate to meet with other teams to understand the 

differences between their own and other models.  

Each student individually turns in a 

write-up that indicates identified 

differences between the different 

models seen.  

Reflecting on 

the model 

Students individually reflect on how they would 

change their model in the future and what they 

would do differently during the modeling process.  

Each student individually turns in a 

reflection report.  

 

Students were asked to list their assumptions and answer disciplinary questions from within the 

MATLAB Live file. Additionally, they were asked to include results within the same file. 

Whereas previously students may have had to write a report and turn in their code separately, 

MATLAB Live allows for students to be able to answer questions and explain their solution right 

next to the code itself.  

 

Data Collection 

A pre-survey looking at the self-efficacy of students was administered prior to the initial 

modeling activity and a post-survey looking at both the self-efficacy as well as the self-reported 

experiences of the students regarding MATLAB Live. Each survey question used a five-point 

Likert scale. Table 2 lists the questions regarding student self-efficacy around computational 

modeling.  

 

Table 2. Pre-survey and post-survey questions evaluating student self-efficacy.  
 

 
Very 

confident 

Fairly 

confident 

Neither Not very 

confident 

Not at all 

confident  

Q1 I have the ability to model systems with 

MATLAB 

     

Q2 I have the ability to design an algorithm      

Q3 I have the ability to write a computer 

program 

     

Q4 I have the ability to visualize data using 

a computer 

     

Q5 I have the ability to implement a 

graphical user interface 

     

 

Additionally, student self-responses regarding experiences with MATLAB Live software were 

measured using additional survey questions after the final modeling assignment of the semester. 

The survey had five multiple-choice questions to evaluate student experiences as well as multiple 

open-ended questions for students to explain their ratings. Table 3 outlines both the multiple-

choice and open-ended survey questions.  

 



 

 

 

 

Table 3. Post-survey questions looking at MATLAB Live experience.  
  Strongly 

disagree 

Disagree Neutral Agree Strongly 

Agree 

Q1 I believe MATLAB Live was more 

beneficial to my learning than traditional 

programming environment. 

     

Q2 I believe MATLAB Live made the coding 

process easier for me than a traditional 

programming environment 

     

Q3 I believe MATLAB Live enhanced my 

ability to visualize my computational model. 

     

Q4 I would prefer to use MATLAB Live as 

opposed to traditional programming 

environments on future projects. 

     

Q5 I would recommend the use of MATLAB 

Live to other instructors for their classrooms. 

     

Q6 What do you feel were the biggest benefits to using MATLAB Live as opposed to traditional programming 

environments during this course? 

Q7 What do you feel were the biggest challenges to using MATLAB Live as opposed to traditional 

programming environments during this course? 

Q8 How could your instructors make these challenges easier to overcome in the future? 

 

The results of these surveys were then analyzed to understand the effects that the learning design 

had on student self-efficacy as well as what students' experience with MATLAB Live had been 

as a scaffolding framework.  

 

Data Analysis 

The study used descriptive and inferential statistics to answer the research questions. Paired t-

tests were used to answer the first research question and intended to explore the difference in 

students’ prior experience with computing and self-efficacy in programming ability. Students' 

responses on the pre-test and post-test regarding their self-efficacy were compared at α = 0.95. 

Any students who did not complete all survey data were not included in the data sample. Table 6 

and Figure 1 demonstrate the results obtained from the t-tests. Cohen d effect size was used to 

compare the effect of the intervention on student self-efficacy. We considered a strong effect size 

when d ≥ 0.8; a medium effect size when d = 0.5 and weak effect size when d = 0.2 [22]. 

 

An exploratory data analysis was conducted to answer the second research question. The intent 

of the exploratory data analysis was to understand the relationship between the student comfort 

level with programming, in general, and the reported experience the students had with the 

MATLAB Lab software. In order to understand the student programming comfort level, the pre-

test self-efficacy data was classified into two categories: comfortable and uncomfortable, based 

on the median of student mean self-efficacy score. Table 4 shows the breakdown between 

comfortable and uncomfortable programming categories.  

 

 



 

 

Table 4. Categorization of Student Comfort Level 
Comfort Level Mean Score 

Comfortable > 3.4 

Uncomfortable ≤ 3.4 

 

Although nearly all students found MATLAB Live to be beneficial in their learning, to further 

explore the impact of the MATLAB Live software on the students, we classified the MATLAB 

Live experience survey responses into three categories: very beneficial, beneficial, and somewhat 

beneficial based on 1/3 and 2/3 quantiles. Table 5 demonstrates the categories of the student 

experience by student comfort level with programming.   

 

Table 5. Categorization of Student Experience with Matlab Live 

 

 

 

 

 

 

Results 

Effects of intervention on self-efficacy 

The results of the analysis showed that students had statistically significant gains reported on 

both Q1 regarding students’ ability to model systems with MATLAB, and Q2 regarding 

students’ ability to design and algorithm (p<.05) after participating in our designed intervention 

scaffolded with MATLAB Live. Additionally, students saw increases in Q3 regarding their 

ability to write a computer program, Q4 regarding their ability to visualize data using a 

computer, and Q5 regarding their ability to implement a graphical user interface, although these 

were not statistically significant increases. Taking all of the scores as a composite self-efficacy 

score and comparing between pre and post surveys also yielded a significant difference 

(p=0.02*). Figure 1 shows the pre and post-survey mean scores and marks significant differences 

between pre and post surveys.  

 

Student Experience Mean Score 

Somewhat Beneficial < 3.8 

Beneficial 3.8 <   ≤ 4.2 

Very Beneficial > 4.2 



 
Figure 1. Self-efficacy gains (* denotes statistical significance) 

 

From Figure 1, it is apparent that there were gains across the board for the students as a whole. 

The researchers looked to see if there were any statistically significant differences between 

student self-efficacy based on reported gender, however, no significant differences were seen in 

either the pre-survey or post-survey data.  

 

Table 6. Results of the paired t-test of student self-efficacy before and after the intervention.  
Pretest 

 
Posttest 

 
Paired t-test 

   

Mean  S.D. Mean S.D. t df p-value Effect size 

3.12 

     

0.70 3.84 0.85 -2.33 24 0.02* 0.55 

 

Student experience with MATLAB Live software 

Additionally, student experiences with the MATLAB Live software were investigated to 

understand how the scaffolding framework can best be used in the classroom, as well as the 

reported benefits, challenges, and best instructional methods when using the MATLAB Live 

software to scaffold computational modeling and simulation problems within an engineering 

classroom.  

 

Figure 2 details the responses of the students for each question on the MATLAB Live experience 

survey.  

 

 

 

* * 



 
Figure 2. Mean responses to the MATLAB Live Experience survey. 

 

 

From Figure 2 it could be inferred that students generally responded very favorably to the 

MATLAB Live framework, with the mean score for each question falling between 3.5 and 4.5. 

However, there were students that found there were some drawbacks to MATLAB Live and fell 

into the somewhat beneficial category for experiences with the program. Table 7 below shows 

the breakdown of students in each category and the reported gender breakdown in each of the 

categories.  

 

Table 7. Student experience by student comfort level with programming and gender.  

  
Very 

Beneficial Beneficial 
Somewhat 

Beneficial 

Comfortable 3 (3f) 4 (2m,2f)  5 (3f,2m)  

Uncomfortable 5 (4m,1f)  3 (2f, 1m) 5 (3f, 2m)  

*f is female, m is male 

 

As can be seen in Table 7, there were multiple students that fell into both the comfortable and 

uncomfortable categories given their prior programming self-efficacy. There are no immediate 

trends in the data, as students of both comfort levels had reported MATLAB Live to be very 

beneficial while others reported MATLAB Live to be only somewhat beneficial. Upon initial 

inspection, it appears that there could be some diminishing benefits for programmers who 

reported they were comfortable with programming and computational modeling, as comfortable 

students are skewed towards somewhat beneficial experiences with MATLAB Live.  

 

In order to better understand why students had either high or low reported benefit to the use of 

MATLAB Live, qualitative questions were analyzed for common reasons both among students 

of low and high comfort with programming to bring out the biggest themes as to benefits 

students saw to the software package and the biggest challenges they saw.  

 

Benefits 



The most prevalent benefit that students reported on was the (1) organization it provides, (2) the 

ability to put text and graphs directly next to the code, and (3) the ability to easily identify and 

debug errors in the code. Regarding the organization it was able to provide students wrote that: 

 

 Organization is more visually striking so its easier to follow. – Student K 

 It organizes the code way better and allows for write-up sections. – Student X 

 

Therefore, students felt that the MATLAB Live framework better organized their solutions as 

opposed to traditional learning environments. Along the same lines, students wrote that the 

solutions were more easily debugged, likely stemming from this increased organization. 

Regarding debugging their solutions, students wrote that: 

 

[MATLAB Live] allowed users to see their work as they went so problems could be found 

earlier and quicker. -Student R 

You can see results immediately and can see what series of code has errors…-Student AO 

  

Additionally, students reported that the ability to easily switch between code and text was useful. 

This again may stem from the organization, in that having these two entities next to each other 

allows for less cognitive processing. Students wrote that: 

 

 I liked being able to easily switch between text and code. – Student Q 

 I could code and type when I needed to, which just made things easier. – Student F 

 

Previous research has reported that proximity and limiting the amount of representational 

holding that students must do in their minds [23]. MATLAB Live puts the graphs, text, and code 

all into one place, thus students no longer have to move between documents, remembering what 

they have seen on previous screens but rather get all information in one place.  

 

Challenges 

The students, however, did list a few challenges associated with their use of MATLAB Live as 

opposed to traditional programming environments. The most prominent challenges students 

reported facing were (1) the running time of code seemed longer, (2) basic understanding of the 

features of MATLAB Live, and (3) support of MATLAB Live files across different versions of 

MATLAB. The biggest and most prominent challenge that a student faced was processing time 

of their code within the MATLAB Live files, writing: 

  

While the live scripts had a few nice features, they were much much slower than just a 

standard [MATLAB] file. - Student Z 

It took way to long to run. I had to copy and paste graphs because my code never finished 

running…-Student H 

 

Students reported long computing times for their MATLAB Live scripts, and thus even in some 

instances circumnavigated the software in order to avoid these long computation times. This 

could have been related to the hardware students were running, or potentially trying to run the 

software through remote software on campus. Students reported that MATLAB Live did not 

easily integrate with all version of MATLAB code, writing: 



 

My computer did not support [MATLAB Live] so I had to come to campus to code. – 

Student AO 

Sometimes it was hard to save and send files between older version of MATLAB, software 

remote, and [building] computers. – Student Q.  

 

These version differences are well-known limitations of MATLAB Live, however, the students 

may not have been as knowledgeable as they could have been of these limitations. Students 

reported overall struggling to pick up all of the new features of MATLAB Live writing: 

 

[A challenge was] getting new users familiar with the capabilities of MATLAB Live. – 

Student R 

The steps were a bit confusing, as to what would go where and why. -Student V 

 

Overall this may point to additional training students need prior to the intervention in order to 

both understand the limitations of MATLAB Live but also get acquainted with the features that 

MATLAB Live has to offer.  

 

Discussion 

These results have multiple implications for continued research as well as for teaching and 

learning of programming and computational modeling. Additionally, feedback from students 

leads to recommendations for future implementations of using technology-enabled learning 

environments such as MATLAB Live in the future.  

 

 

Self-efficacy in engineering and computing 

Our implementation within this capstone class along with the use of MATLAB Live increased 

self-efficacy gains significantly within the class. This aligns with the literature in that mastery 

experiences, which is in our case completing a programmed computational model, often are 

effective factors in increasing self-efficacy [18], [21]. Additionally, the students worked in teams 

and had the opportunity to see the computational models of other students, thus seeing other 

students succeed in building their own computational models. By doing so this provided 

vicarious experiences for the students, thus also reinforcing each student's self-efficacy [18].  

 

Our results did not indicate any significant differences between males and females either in pre-

survey or post-survey. Numerous studies have indicated a significant difference between females 

and males in terms of self-efficacy and confidence regarding programming and computational 

modeling [24], [25]. Our lack of difference between genders could be due to the fact that the 

students within this study were upper-division undergraduates, where both females and males 

had previously completed mastery experiences that narrowed any previous gap. Additionally, the 

small sample size may have made it difficult to detect any small differences that may have 

remained.  

 

MATLAB Live as a technology-enhanced learning framework 

It appears that students overall found that MATLAB Live was a beneficial framework for 

integrating computational modeling into a capstone engineering course. This speaks to the fact 



that we saw significant self-efficacy gains with computational modeling and programming. 

Therefore, the students did, in fact, feel more comfortable programming computational models at 

the end of the semester. There are multiple reasons that MATLAB Live may be useful in 

supporting student learning and self-efficacy in computational modeling and programming, 

including the potential lessening of cognitive processing and the increased organization.  

 

MATLAB Live may allow students to lower some of the cognitive processing that is needed in 

order to solve the complex modeling problems encountered by engineering students in a 

capstone engineering course. Namely, proximity and the elimination of representational holding 

between screens are ways to lower cognitive processing [23]. In doing so, students are more able 

to focus their cognitive processing on the essential processing that is needed to complete the task. 

However, there was a slight decrease in benefits to the students most comfortable with 

programming. This suggests that we may be observing the expertise reversal effect, or that the 

MATLAB Live environment added cognitive load to those comfortable with programming [26].  

 

Additionally, the organization allows users to more easily find sections of their code, but also 

potentially eliminates extra time in the debugging process as well. Any time spent searching for 

areas of code or searching for errors in the code is time that is potentially pulled away from 

solving the actual problem. In conjunction, every time a student had trouble finding a section of 

their code, they disengaged with the actual solution process, which they must have reentered in 

order to continue solving the problem.  

 

Given some of the challenges that students listed regarding MATLAB Live, it is apparent that 

not enough pre-training was given to students in order to lessen the cognitive processing required 

to complete the assignment. Pre-training is often able to lessen the amount of information that a 

student needs to process at any given time during a learning task [23]. Pre-training may help 

eliminate some of the frustrations with moving files between versions of MATLAB, as well as 

the initial issues students experienced with learning the new features of the software.  

 

Implications for teaching and learning 

 

Overall, this study has many implications for instructors who are looking to integrate 

programming into their engineering courses. First, the instructional design using modeling-based 

learning along with the technology-enabled learning environment of MATLAB Live seemed to 

promote student learning of the material and students felt more confident in their programming 

abilities as this set up provided mastery experiences for the students, embedded in real-world 

contexts. If instructors are looking to integrate modeling and simulation exercises into upper-

division engineering classrooms, this set-up provides both the necessary scaffolding for the 

programming activities while providing openness with the disciplinary material so that students 

can fully explore the solution space.  

 

However, when using MATLAB Live instructors must be aware of the learning curve for 

operating the software, in order to avoid causing too much cognitive load on the student while 

they are doing the assignment. Students spoke to the need for adequate pre-training of the 

software to lessen the amount of time and challenge it took to learn the new features of the 

program. Whereas pre-training is needed, the payoff seems well worth it in that students overall 



found the program very beneficial in the organization and condensing of report writing that is 

provided.  

 

Conclusion 

Moving forward, instructors must find ways to incorporate programming into the engineering 

classroom and computational modeling provides an efficient way to teach programming along 

with disciplinary content. One limitation of this study is the relatively small sample size. 

However, the study provides useful insights into the ways that technology-enabled learning 

evironments such as MATLAB Live are useful tools in helping promote learning of 

programming in educational settings. However, instructors should be cautious when using this or 

similar technology-enabled learning environments to make sure students have enough pre-

training, or else they may just add more cognitive load to the students learning process. Yet, if 

implemented properly, modeling interventions along with these technology-enabled learning 

environments can significantly impact student self-efficacy moving forward on computational 

modeling and programming tasks.  
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