## AC 2009－65：THE USE OF SPREADSHEETS IN TEACHING THE POWER－FLOW PROBLEM

## Mark Lau，Universidad del Turabo

Mark A．Lau（IEEE M＇02－SM＇06）was born in Peru in 1967．He obtained his B．S．degree in engineering sciences from Universidad de Piura，Piura，Peru，in 1988．He received his M．S．and Ph．D．degrees in electrical engineering from the University of Colorado，Boulder，Colorado，in 1997 and 2000，respectively．He is currently an Associate Professor of the Department of Electrical and Computer Engineering at the Universidad del Turabo，Gurabo，Puerto Rico，which he joined in 2002．From 2001 to 2002 he was a Visiting Assistant Professor of the Department of Electrical and Computer Engineering at the University of West Florida in Pensacola，Florida．His research interests include optimal control，control of flexible structures，and power systems．Dr． Lau was the recipient of the Student Best Paper Award at the 2001 American Control Conference held in Arlington，Virginia．He was also co－recipient of the 2000 Colorado Advanced Software Institute Exemplary Project Award．

## Sastry Kuruganty，Universidad del Turabo

Sastry P．Kuruganty（IEEE M＇76－SM＇81）was born in India．He obtained his B．E and M．E in electrical engineering from Birla Institute of Technology and Andhra University，India，in 1964 and 1966，respectively．He obtained his M．S．degree in electrical engineering from the University of New Brunswick，Canada，in 1974．He received his Ph．D．in electrical engineering from the University of Saskatchewan，Canada，in 1979．He has been a Professor with the Electrical and Computer Engineering Department at the Universidad del Turabo since 1996．He served as Professor and Chairman of the Electrical Engineering Department at the University of North Dakota，Grand Forks，from 1989 to 1996．From 1980 to 1989 he worked as a reliability and interconnection planning specialist at Manitoba Hydro，Canada．He pioneered research in the area of probabilistic assessment of power system transient stability and consulted to several utilities and government agencies and published over 40 articles and 20 technical reports．His research interests are in power systems reliability and renewable energy．Prof．Kuruganty is a member of the IEEE Power Engineering Society．He held the U．S．Department of Energy Samuel P．Massie Chair of Excellence at Universidad del Turabo during 1996－2000．

# The Use of Spreadsheets in Teaching the Power-Flow Problem 

## 1. Introduction

The solution to the power-flow problem is of fundamental importance in power system analysis and design. In transient stability studies and fault analysis, solutions to a power-flow problem constitute a necessary initial step in such analyses.

The objective of the power-flow problem is to calculate the voltage magnitudes and phase angles at each bus or node in a given power system. Calculations are performed under the assumption of balanced three-phase steady-state conditions. In addition to voltages and angles, real and reactive power flows in equipment such as transformers and transmission lines can be also obtained from these calculations.

The topics in this paper follow the treatment found in standard reference material on power system analysis and design. ${ }^{2-4}$ In particular, two numerical methods, namely, the Gauss-Seidel and the Newton-Raphson methods are used to determine the power flows in a small-scale power system. The examples are simple enough so that readers can replicate hand calculations and reproduce the spreadsheet implementations. The application of spreadsheets for solving power flows and other related problems has been reported in the literature. ${ }^{1,5-7}$ The emphasis of this paper is on the educational value of spreadsheets in the analysis of power systems.

The paper is organized as follows: Section 2 provides a spreadsheet implementation for solving the power-flow problem using the Gauss-Seidel method; Section 3 presents an implementation of the Newton-Raphson method for solving the power-flow problem; Section 4 discusses the authors' experience in the classroom and their pedagogical insights; and finally Section 5 presents some concluding remarks. Since the mathematical underpinnings of the power flow problem are well known, the reader is referred to standard books ${ }^{2-4}$ for details.

## 2. Power-flow solution by the Gauss-Seidel method

In this section we use the Gauss-Seidel method to determine the power flows in the three-bus network of Figure 1. Bus and transmission line data are summarized in Tables 1 and 2, respectively.


Figure 1: Three-bus power system.

Table 1: Bus input data.

| Type | Bus | Bus voltage |  |  |  | Complex power (p.u.) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $i$ | $\left\|V_{i}\right\|$ (p.u.) | $\delta_{i}$ (deg.) | $P_{g i}$ | $Q_{g i}$ | $P_{d i}$ | $Q_{d i}$ |  |  |
| Slack | 1 | 1.0 | $0^{\circ}$ | - | - | 0.0 | 0.0 |  |  |
| Load | 2 | - | - | 0.0 | 0.0 | 1.8 | 0.6 |  |  |
| Constant voltage | 3 | 1.0 | - | 1.0 | - | 0.0 | 0.0 |  |  |

Table 2: Transmission line parameters.

| Line <br> bus $i$ to bus $k$ | Impedance <br> $Z_{i k}$ (p.u.) | Shunt admittance <br> $B_{i k} / 2$ (p.u.) |
| :---: | :---: | :---: |
| $1-2$ | $0.01+j 0.1$ | $j 0.02$ |
| $2 — 3$ | $0.02+j 0.2$ | $j 0.04$ |
| $1-3$ | $0.01+j 0.2$ | $j 0.03$ |

We first construct the bus admittance matrix $\mathbf{Y}_{\text {bus }}$ for the power system in Figure 1. The bus admittance matrix offers a convenient representation of the topology of a power network. In the example at hand, we calculate the primitive admittance of each branch in per unit:

$$
\begin{aligned}
& y_{12}=\frac{1}{0.01+j 0.1}=0.9901-j 9.9010 \\
& y_{23}=\frac{1}{0.02+j 0.2}=0.4950-j 4.9505 \\
& y_{13}=\frac{1}{0.01+j 0.2}=0.2494-j 4.9875
\end{aligned}
$$

With the primitive admittances just calculated, we determine the elements of $\mathbf{Y}_{\text {bus }}$ :

$$
\begin{aligned}
& Y_{11}=y_{12}+y_{13}+\frac{B_{12}}{2}+\frac{B_{13}}{2}=1.2395-j 14.8385 \\
& Y_{22}=y_{12}+y_{23}+\frac{B_{12}}{2}+\frac{B_{23}}{2}=1.4851-j 14.7915 \\
& Y_{33}=y_{23}+y_{13}+\frac{B_{23}}{2}+\frac{B_{13}}{2}=0.7444-j 9.8680 \\
& Y_{12}=Y_{21}=-y_{12}=-0.9901+j 9.9010 \\
& Y_{23}=Y_{32}=-y_{23}=-0.4950+j 4.9505 \\
& Y_{13}=Y_{31}=-y_{13}=-0.2494+j 4.9875
\end{aligned}
$$

Therefore, the bus admittance matrix for the network of Figure 1 is given by

$$
\mathbf{Y}_{\text {bus }}=\left[\begin{array}{ccc}
1.2395-j 14.8385 & -0.9901+j 9.9010 & -0.2494+j 4.9875  \tag{1}\\
-0.9901+j 9.9010 & 1.4851-j 14.7915 & -0.4950+j 4.9505 \\
-0.2494+j 4.9875 & -0.4950+j 4.9505 & 0.7444-j 9.8680
\end{array}\right]
$$

For an $N$-bus system, the Gauss-Seidel method calculates the voltage at any bus $i$ at iteration $m$, $V_{i}^{(m)}$, according to

$$
\begin{equation*}
V_{i}^{(m)}=\frac{1}{Y_{i i}}\left[\frac{P_{i, \text { sch }}-j Q_{i, \text { sch }}}{V_{i}^{(m-1)^{*}}}-\sum_{k=1}^{i-1} Y_{i k} V_{k}^{(m)}-\sum_{k=i+1}^{N} Y_{i k} V_{k}^{(m-1)}\right], \quad i=2,3, \ldots, N \tag{2}
\end{equation*}
$$

where $Y_{i k}$ is the $(i, k)$ entry in the $\mathbf{Y}_{\text {bus }}$ matrix, $P_{i, \text { sch }}$ is the net scheduled real power, and $Q_{i, \text { sch }}$ is the net scheduled reactive power being injected into the network at bus $i$. The net scheduled real power is defined as the difference between the scheduled power $P_{g i}$ being generated at bus $i$ and the scheduled power demand $P_{d i}$ of the load at that bus; the net scheduled reactive power is defined in a similar manner. That is,

$$
\begin{align*}
& P_{i, \mathrm{sch}}=P_{g i}-P_{d i}  \tag{3}\\
& Q_{i, \mathrm{sch}}=Q_{g i}-Q_{d i} . \tag{4}
\end{align*}
$$

In Equation (2) the notation (•) ${ }^{*}$ denotes complex conjugation and bus 1 is designated as the slack bus. After each iteration of Equation (2) the power flows are calculated:

$$
\begin{equation*}
P_{i}-j Q_{i}=V_{i}^{*} \sum_{k=1}^{N} Y_{i k} V_{k}=\sum_{k=1}^{N}\left|Y_{i k} V_{i} V_{k}\right| e^{j\left(\theta_{i k}+\delta_{k}-\delta_{i}\right)} . \tag{5}
\end{equation*}
$$

where $\theta_{i k}$ is the argument (angle) of the $(i, k)$ entry in the $\mathbf{Y}_{\text {bus }}$ matrix, $\delta_{i}$ is the angle of bus voltage $V_{i}$, and the notation I'I denotes modulus (magnitude). The iterations stop when the power mismatches $\Delta P_{i}=P_{i, \text { sch }}-P_{i}$ and $\Delta Q_{i}=Q_{i, \text { sch }}-Q_{i}$ at each bus are zero, or within a prescribed precision index.

In the following we present the calculations for the first iteration of the Gauss-Seidel method applied to the system in Figure 1. With the slack bus designated as number 1, we start computations at bus 2. If $V_{2}^{(0)}$ and $V_{3}^{(0)}$ are initial estimates for the voltages at buses 2 and 3, respectively, we have

$$
V_{2}^{(1)}=\frac{1}{Y_{22}}\left[\frac{P_{2, \text { sch }}-j Q_{2, \text { sch }}}{V_{2}^{(0)^{*}}}-\left(Y_{21} V_{1}+Y_{23} V_{3}^{(0)}\right)\right] .
$$

The corrected voltage $V_{2}^{(1)}$ is then used to calculate the value of $V_{3}^{(1)}$

$$
V_{3}^{(1)}=\frac{1}{Y_{33}}\left[\frac{P_{3, \text { sch }}-j Q_{3, \text { sch }}}{V_{3}^{(0)^{*}}}-\left(Y_{31} V_{1}+Y_{32} V_{2}^{(1)}\right)\right] .
$$

The procedure is repeated until the amount of correction in voltage at every bus is less than some predetermined precision index.

The bus admittance matrix $\mathbf{Y}_{\text {bus }}$ for this system is given by Equation (1). The input data and unknowns at each bus can be inferred from Table 1 and are summarized in Table 3.

Table 3: Input data and unknowns for the power system of Figure 1.

| Type | Bus | Input data | Unknowns |
| :---: | :---: | :---: | :---: |
| Slack | 1 | $\left\|V_{1}\right\|=1.0$ p.u., $\delta_{1}=0^{\circ}$ | $\begin{aligned} & P_{\text {sch }, 1}=P_{g 1}-P_{d 1}=P_{g 1}, \\ & Q_{\text {sch }, 1}=Q_{g 1}-Q_{d 1}=Q_{g 1} \end{aligned}$ |
| Load | 2 | $\begin{aligned} & P_{\text {sch, } 2}=P_{g 2}-P_{d 2}=-1.8 \text { p.u., } \\ & Q_{\text {sch }, 2}=Q_{g 2}-Q_{d 2}=-0.6 \text { p.u. } \end{aligned}$ | $\left\|V_{2}\right\|, \delta_{2}$ |
| Constant voltage | 3 | $\begin{aligned} & \left\|V_{3}\right\|=1.0 \text { p.u., } \\ & P_{\text {sch }, 3}=P_{g 3}-P_{d 3}=1.0 \text { p.u. } \end{aligned}$ | $\begin{aligned} & \delta_{3}, \\ & Q_{\mathrm{sch}, 3}=Q_{g 3}-Q_{d 3}=Q_{g 3} \end{aligned}$ |

We assume initial guesses for the voltages $V_{2}^{(0)}=1.0 e^{j 0^{\circ}}=1.0$ and $V_{3}^{(0)}=1.0 e^{j 0^{\circ}}=1.0$ at buses 2 and 3, respectively. Using Equation (2) we determine an improved value for $V_{2}$ :

$$
\begin{aligned}
V_{2}^{(1)} & =\frac{1}{1.4851-j 14.7915}\left[\frac{-1.8+j 0.6}{1.0}-(-0.9901+j 9.9010)(1.0)-(-0.4950+j 4.9505)(1.0)\right] \\
& =0.9589 e^{-j 6.999^{\circ}} .
\end{aligned}
$$

With $V_{2}^{(1)}$ at hand, we then proceed to find $Q_{3}^{(1)}$ and $V_{3}^{(1)}$. Since bus 3 is a voltage-controlled bus, we can use Equation (5) to compute the reactive power at that bus. Observe that the real power is the real part of the right-hand side of Equation (5), while the reactive power is given by the negative of the imaginary part of the right-hand side of that equation. Here we show how to use Equation (5) to compute the reactive power at bus 3:

$$
\begin{aligned}
Q_{3}^{(1)}= & -\operatorname{Im}\left\{1 . 0 e ^ { - j 0 ^ { \circ } } \left[(-0.2494+j 4.9875)(1.0)+(-0.4950+j 4.9505)\left(0.9589 e^{-j 6.999^{\circ}}\right)\right.\right. \\
& +(0.7444-j 9.8680)(1.0)]\} \\
= & 0.1110 \text { p.u. }
\end{aligned}
$$

With the preceding value of reactive power, we use Equation (2) once again to calculate an improved value of $V_{3}$ :

$$
\begin{aligned}
V_{3}^{(1)}= & \frac{1}{0.7444-j 9.8680}\left[\frac{1.0-j 0.1110}{1.0}-(-0.2494+j 4.9875)(1.0)\right. \\
& \left.-(-0.4950+j 4.9505)\left(0.9589 e^{-j 6.9999^{\circ}}\right)\right] \\
= & 1.0038 e^{j 2.288^{\circ}} .
\end{aligned}
$$

As indicated in Table 3, $\left|V_{3}\right|=1$ at bus 3 and, therefore, we set $V_{3}^{(1)}=1.0 e^{j 2.288^{\circ}}$ for the next iteration. This concludes the first iteration of the Gauss-Seidel method. The calculations are repeated in a similar manner with updated values until convergence can be discerned. We next show how to implement the above calculations using a spreadsheet.

We begin by inputting the entries that form the bus admittance matrix given in Equation (1) . Also, we input the known data shown in Table 3. This step is shown in the screen capture of Figure 2. The actual Microsoft Excel commands used to generate the input data is presented in Figure 3 .

|  | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Bus admittance matrix Ybus |  |  |  |  |  |
| 2 | Bus | 1 | 2 | 3 |  |  |
| 3 | 1 | 1.2395-14.8385j | $-0.9901+9.901 \mathrm{j}$ | $-0.2494+4.9875 j$ |  |  |
| 4 | 2 | $-0.9901+9.901 \mathrm{j}$ | 1.4851-14.7915j | $-0.495+4.9505 j$ |  |  |
| 5 | 3 | $-0.2494+4.9875 j$ | $-0.495+4.9505 j$ | 0.7444-9.868j |  |  |
| 6 |  |  |  |  |  |  |
| 7 | Input data |  |  |  |  |  |
| 8 | Type | Bus | V_i (p.u.) | d_i (deg) | P_i (p.u.) | Q_i (p.u.) |
| 9 | Swing | 1 | 1 | 0 |  |  |
| 10 | Load | 2 |  |  | -1.8 | -0.6 |
| 11 | Const V | 3 | 1 |  | 1 |  |

Figure 2: Bus admittance matrix and input data for the power system of Figure 1.

|  | A | B | c | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Bus adi |  |  |  |  |  |
| 2 | Bus | 1 | 2 | 3 |  |  |
| 3 | 1 | =COMPLEX(1.2395,-14.8385,"j") | =COMPLEX(-0.9901,9.901, "j") | =COMPLEX (-0.2494,4.9875, "j") |  |  |
| 4 | 2 | =COMPLEX (-0.9901,9.901, "j") | $=\operatorname{COMPLEX}\left(1.4851,-14.7915,{ }^{\text {,j" }}\right.$ ) | $=$ COMPLEX (-0.495,4.9505,j") |  |  |
| 5 | 3 | =COMPLEX(-0.2494,4.9875, "j") | $=C O M P L E X\left(-0.495,4.9505, \mathrm{j}^{\prime \prime} \mathrm{l}^{\prime}\right)$ | $=C O M P L E X\left(0.7444,-9.868, \mathrm{j} \mathrm{j}^{\prime \prime}\right)$ |  |  |
| 6 |  |  |  |  |  |  |
| 7 | Input d |  |  |  |  |  |
| 8 | Type | Bus | Vii (p.u.) | di i (deg) | P_i (p.u.) | Q_i (p.u.) |
| 9 | Swing | 1 | $=\operatorname{COMPLEX}\left(1,0 . j \mathrm{j}^{\prime \prime}\right)$ | =180*IMARGUMENT(C9)/PIO |  |  |
| 10 | Load | 2 |  |  | -1.8 | -0.6 |
| 11 | Const V |  | 1 |  | 1 |  |

Figure 3: Microsoft Excel commands used to generate the input data in Figure 2.

The calculations of the Gauss-Seidel method are shown in Figure 4 as the cell range H1:T11 in the spreadsheet. The entries in row 3 extending from cell H 3 to T 3 correspond to initial estimates for the numerical algorithm. The basic formulas are found in row 4 and extend from H 4 to T 4 . The formulas in row 4 are copied to the rows below as many times as needed until convergence is reached. Some columns were omitted in Figure 4 for clarity; these columns simply contain intermediate calculations. The calculations reveal that convergence is reached after 5 iterations for a precision index of $10^{-4}$ for the bus voltages and $10^{-3}$ for the angles. A final calculations section is also shown in Figure 4; the section covers the cell range V 1 : AC 3 , but columns V and W were left out as these columns contain intermediate calculations. The solution to the power-flow problem at hand is summarized in Table 4.

To conclude this section, we provide in Table 5 all the formulas used in the implementation of the Gauss-Seidel method. Formulas corresponding to hidden columns are also included for completeness.

|  | H | L | M | P | 5 | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Power-flow solutions by Gauss-Seidel method |  |  |  |  |  |
| 2 | Iteration m | \| V_2| | d_2 | Q_3 | \|V_3| | d_3 |
| 3 | 0 | 1.0000 | 0.000 |  | 1.0000 | 0.000 |
| 4 | 1 | 0.9589 | -6.999 | 0.1110 | 1.0000 | 2.288 |
| 5 | 2 | 0.9403 | -6.162 | 0.2017 | 1.0000 | 2.761 |
| 6 | 3 | 0.9406 | -6.191 | 0.2022 | 1.0000 | 2.760 |
| 7 | 4 | 0.9405 | -6.188 | 0.2024 | 1.0000 | 2.762 |
| 8 | 5 | 0.9405 | -6.188 | 0.2024 | 1.0000 | 2.762 |


|  | X | Y | Z | AA | AB | AC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |  |
| 2 | P_2 | Q_2 | P_3 | Q_3 | P_1 | Q_1 |
| $\mathbf{3}$ | -1.8000 | -0.6000 | 1.0000 | 0.2024 | 0.8000 | 0.3976 |

Figure 4: Gauss-Seidel iterations showing relevant quantities in the power system of Figure 1.

Table 4: Steady-state power flows and bus voltages for the system in Figure 1. Except for the angles, all other quantities are expressed in per unit (p.u.).

| Bus $i$ | Input data (given) | Unknowns (calculated) |
| :---: | :--- | :--- |
| 1 | $\left\|V_{1}\right\|=1.0, \delta_{1}=0^{\circ}$ | $P_{\text {sch }, 1}=0.8, Q_{\text {sch }, 1}=0.3976$ |
| 2 | $P_{\text {sch }, 2}=-1.8, Q_{\text {sch }, 2}=-0.6$ | $\left\|V_{2}\right\|=0.9405, \delta_{2}=-6.188^{\circ}$ |
| 3 | $\left\|V_{3}\right\|=1.0, P_{\text {sch }, 3}=1.0$ | $\delta_{3}=2.762^{\circ}, Q_{\text {sch }, 3}=0.2024$ |

Table 5: Microsoft Excel formulas for implementing the Gauss-Seidel method.

| Cell | Formula | Comments |
| :---: | :---: | :---: |
| H3:H11 | List of numbers from 0 to 8. | Iteration number. |
| H2:T2 | Labels for various quantities. | Gauss-Seidel section. |
| I3, J3 | Blank cells. | No calculations. |
| K3 | $=\operatorname{COMPLEX}\left(1,0, \mathrm{j} \mathrm{j}^{\prime}\right)$ | Initial guess for $V_{2}$. |
| L3 | = IMABS(K3) | Magnitude of initial $V_{2}$. |
| M3 | $=180 *$ IMARGUMENT(K3)/PI() | Angle of initial $V_{2}$ in deg. |
| N3:P3 | Blank cells. | No calculations. |
| Q3 | $=C O M P L E X(1,0$, "j") | Initial value for calculated $V_{3}$. |
| R3 | =COMPLEX(1,0,"j") | Initial value for corrected $V_{3}$; magnitude must be constant. |
| S3 | = IMABS(R3) | Magnitude of initial corrected $V_{3}$. |
| T3 | $=180 *$ IMARGUMENT(Q3)/PI() | Angle of initial calculated $V_{3}$ in deg. |

Table 5 (continued): Microsoft Excel formulas for implementing the Gauss-Seidel method.

| Cell | Formula | Comments |
| :---: | :---: | :---: |
| I4 | =IMDIV(COMPLEX(\$E\$10,\$F\$10,"j"),IMCONJUGATE(K3)) | The term $\frac{P_{2, \text { sch }}-j Q_{2, \text { sch }}}{V_{2}^{(m-1)^{*}}}$ of Equation (2). |
| J4 | =IMSUM(IMPRODUCT(\$B\$4,\$C\$9 <br> ),IMPRODUCT(\$D\$4,R3)) | The term $Y_{21} V_{1}+Y_{23} V_{3}^{(m-1)}$ of Equation (2). |
| K4 | =IMDIV(IMSUB(14,J4),\$C\$4) | Completes the calculation of $V_{2}^{(m)}$ in Equation (2) using intermediate results in cells I4 and J4. |
| L4 | =IMABS(K4) | Magnitude of updated $V_{2}$. |
| M4 | $=180 *$ IMARGUMENT(K4)/PI() | Angle of updated $V_{2}$ in deg. |
| N4 | =IMSUM(IMPRODUCT(\$B\$5,\$C\$9 ), IMSUM(IMPRODUCT(\$C\$5,K4), IMPRODUCT(\$D\$5,R3))) | The term $\sum_{k=1}^{N} Y_{3 k} V_{k}$ of Equation (5). |
| O4 | =IMDIV(COMPLEX(\$E\$11,-P4,"j"), IMCONJUGATE(R3)) | The term $\frac{P_{3, \text { sch }}-j Q_{3, \text { sch }}}{V_{3}^{(m-1)^{*}}}$ of Equation (2). |
| P4 | =-IMAGINARY(IMPRODUCT( IMCONJUGATE(R3),N4)) | $Q_{3}$ computed as the negative of the imaginary part of $V_{3}^{*} \sum_{k=1}^{N} Y_{3 k} V_{k}$ as indicated in Equation (5). |
| Q4 | =IMDIV(IMSUM(IMSUB(O4,N4), IMPRODUCT(\$D\$5,R3)),\$D\$5) | Updated value $V_{3}^{(m)}$ calculated from Equation (2). Observe that in the cell formula $Y_{33} V_{3}$ was added back since this term is not present explicitly in Equation (2). The reason is that cell N 4 uses $Y_{33} V_{3}$ when computing $Q_{3}$ according to Equation (5), but this term has to be excluded when computing $V_{3}$. |
| R4 | =COMPLEX(S4*COS(IMARGU- <br> MENT(Q4)),S4*SIN(IMARGUMEN <br> T(Q4)),"j") | Corrects $V_{3}^{(m)}$ to match the voltage magnitude at bus 3 . The angle (argument) is the same as in cell Q4. |

Table 5 (continued): Microsoft Excel formulas for implementing the Gauss-Seidel method.

| Cell | Formula | Comments |
| :---: | :---: | :---: |
| S4 | =S3 | Copies the constant voltage magnitude at bus 3 . |
| T4 | =180*IMARGUMENT(Q4)/PI() | Angle of updated $V_{3}$ in deg. |
| I5:T11 | Copies of cell range I4:T4. | Replicates cell formulas in rows below until convergence is achieved. |
| V2:AC2 | Labels for various quantities. | Final calculations section. |
| V3 | =IMSUM(IMPRODUCT(\$B\$4,\$C\$9 ),IMSUM(IMPRODUCT(\$C\$4,K11), IMPRODUCT(\$D\$4,R11))) | The term $\sum_{k=1}^{N} Y_{2 k} V_{k}$ of Equation (5). |
| W3 | ```=IMSUM(IMPRODUCT($B$5,$C$9 ), IMSUM(IMPRODUCT ($C$5,K11), IMPRODUCT($D$5,R11))``` | The term $\sum_{k=1}^{N} Y_{3 k} V_{k}$ of Equation (5). |
| X3 | =IMREAL(IMPRODUCT( <br> IMCONJUGATE(K11),V3)) | $P_{2}$ computed as the real part of $V_{2}^{*} \sum_{k=1}^{N} Y_{2 k} V_{k}$ according to Equation (5). |
| Y3 | =-IMAGINARY(IMPRODUCT( IMCONJUGATE(K11),V3)) | $Q_{2}$ computed as the negative of the imaginary part of $V_{2}^{*} \sum_{k=1}^{N} Y_{2 k} V_{k}$ according to Equation (5). |
| Z3 | =IMREAL(IMPRODUCT( <br> IMCONJUGATE(R11),W3)) | $P_{3}$ computed as the real part of $V_{3}^{*} \sum_{k=1}^{N} Y_{3 k} V_{k}$ according to Equation (5). |
| AA3 | =-IMAGINARY(IMPRODUCT( <br> IMCONJUGATE(R11),W3)) | $Q_{3}$ computed as the negative of the imaginary part of $V_{3}^{*} \sum_{k=1}^{N} Y_{3 k} V_{k}$ according to Equation (5). |
| AB3 | $=-X 3-Z 3$ | Real power $P_{1}$ at slack bus (balance of real power). |
| AC3 | =-Y3-AA3 | Reactive power $Q_{1}$ at slack bus (balance of reactive power). |

## 3. Power-flow solution by the Newton-Raphson method

To set up the Newton-Raphson numerical method, we employ the power-flow expression given by Equations (5). For the three-bus system in Figure 1, the Newton-Raphson method leads to

$$
\left[\begin{array}{c}
\Delta P_{2}  \tag{6}\\
\Delta P_{3} \\
\Delta Q_{2} \\
\Delta Q_{3}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{\partial P_{2}}{\partial\left|V_{2}\right|} & \frac{\partial P_{2}}{\partial\left|V_{3}\right|} & \frac{\partial P_{2}}{\partial \delta_{2}} & \frac{\partial P_{2}}{\partial \delta_{3}} \\
\frac{\partial P_{3}}{\partial\left|V_{2}\right|} & \frac{\partial P_{3}}{\partial\left|V_{3}\right|} & \frac{\partial P_{3}}{\partial \delta_{2}} & \frac{\partial P_{3}}{\partial \delta_{3}} \\
\frac{\partial Q_{2}}{\partial\left|V_{2}\right|} & \frac{\partial Q_{2}}{\partial\left|V_{3}\right|} & \frac{\partial Q_{2}}{\partial \delta_{2}} & \frac{\partial Q_{2}}{\partial \delta_{3}} \\
\frac{\partial Q_{3}}{\partial\left|V_{2}\right|} & \frac{\partial Q_{3}}{\partial\left|V_{3}\right|} & \frac{\partial Q_{3}}{\partial \delta_{2}} & \frac{\partial Q_{3}}{\partial \delta_{3}}
\end{array}\right]\left[\begin{array}{c}
\Delta\left|V_{2}\right| \\
\Delta\left|V_{3}\right| \\
\Delta \delta_{2} \\
\Delta \delta_{3}
\end{array}\right] .
$$

The $4 \times 4$ matrix in Equation (6) is the Jacobian and it will be denoted by J. Since bus 3 is a constant voltage bus and not a load bus, we need to modify the preceding formulation slightly. For this power system, the variables of interest are $\left|V_{2}\right|, \delta_{2}$, and $\delta_{3}$. Taking into account that $\left|V_{1}\right|=1.0$ p.u., $\delta_{1}=0^{\circ},\left|V_{3}\right|=1.0$ p.u., and the $\mathbf{Y}_{\text {bus }}$ matrix of Equation (1), we write out the equations that need to be solved in accordance with Equation (2):

$$
\begin{aligned}
-1.8= & (9.9504)\left(\left|V_{2}\right|\right)(1.0) \cos \left(95.711^{\circ}+0^{\circ}-\delta_{2}\right)+(14.8659)\left(\left|V_{2}\right|\right)\left(\left|V_{2}\right|\right) \cos \left(-84.266^{\circ}+\delta_{2}-\delta_{2}\right) \\
& +(4.9752)\left(\left|V_{2}\right|\right)(1.0) \cos \left(95.711^{\circ}+\delta_{3}-\delta_{2}\right), \\
-0.6= & -(9.9504)\left(\left|V_{2}\right|\right)(1.0) \sin \left(95.711^{\circ}+0^{\circ}-\delta_{2}\right)-(14.8659)\left(\left|V_{2}\right|\right)\left(\left|V_{2}\right|\right) \sin \left(-84.266^{\circ}+\delta_{2}-\delta_{2}\right) \\
& -(4.9752)\left(\left|V_{2}\right|\right)(1.0) \sin \left(95.711^{\circ}+\delta_{3}-\delta_{2}\right), \\
1= & (4.9938)(1.0)(1.0) \cos \left(92.862^{\circ}+0^{\circ}-\delta_{3}\right)+(4.9752)(1.0)\left(\left|V_{2}\right|\right) \cos \left(95.711^{\circ}+\delta_{2}-\delta_{3}\right) \\
& +(9.8961)(1.0)(1.0) \cos \left(-85.686^{\circ}+\delta_{3}-\delta_{3}\right) .
\end{aligned}
$$

Simplifying the right-hand sides of the preceding expressions yields

$$
\begin{gathered}
P_{2}=9.9504\left|V_{2}\right| \cos \left(95.711^{\circ}-\delta_{2}\right)+1.4851\left|V_{2}\right|^{2}+4.9752\left|V_{2}\right| \cos \left(95.711^{\circ}+\delta_{3}-\delta_{2}\right), \\
Q_{2}=-9.9504\left|V_{2}\right| \sin \left(95.711^{\circ}-\delta_{2}\right)+14.7915\left|V_{2}\right|^{2}-4.9752\left|V_{2}\right| \sin \left(95.711^{\circ}+\delta_{3}-\delta_{2}\right), \\
P_{3}=4.9938 \cos \left(92.862^{\circ}-\delta_{3}\right)+4.9752\left|V_{2}\right| \cos \left(95.711^{\circ}+\delta_{2}-\delta_{3}\right)+0.7444 .
\end{gathered}
$$

Thus, the elements of the Jacobian matrix are given by

$$
\begin{gathered}
\frac{\partial P_{2}}{\partial\left|V_{2}\right|}=9.9504 \cos \left(95.711^{\circ}-\delta_{2}\right)+2.9703\left|V_{2}\right|+4.9752 \cos \left(95.711^{\circ}+\delta_{3}-\delta_{2}\right) \\
\frac{\partial P_{2}}{\partial \delta_{2}}=9.9504\left|V_{2}\right| \sin \left(95.711^{\circ}-\delta_{2}\right)+4.9752\left|V_{2}\right| \sin \left(95.711^{\circ}+\delta_{3}-\delta_{2}\right), \\
\frac{\partial P_{2}}{\partial \delta_{3}}=-4.9752\left|V_{2}\right| \sin \left(95.711^{\circ}+\delta_{3}-\delta_{2}\right), \\
\frac{\partial Q_{2}}{\partial\left|V_{2}\right|}=-9.9504 \sin \left(95.711^{\circ}-\delta_{2}\right)+29.5830\left|V_{2}\right|-4.9752 \sin \left(95.711^{\circ}+\delta_{3}-\delta_{2}\right), \\
\frac{\partial Q_{2}}{\partial \delta_{2}}=9.9504\left|V_{2}\right| \cos \left(95.711^{\circ}-\delta_{2}\right)+4.9752\left|V_{2}\right| \cos \left(95.711^{\circ}+\delta_{3}-\delta_{2}\right), \\
\frac{\partial Q_{2}}{\partial \delta_{3}}=-4.9752\left|V_{2}\right| \cos \left(95.711^{\circ}+\delta_{3}-\delta_{2}\right), \\
\frac{\partial P_{3}}{\partial\left|V_{2}\right|}=4.9752 \cos \left(95.711^{\circ}+\delta_{2}-\delta_{3}\right), \\
\frac{\partial P_{3}}{\partial \delta_{2}}=-4.9752\left|V_{2}\right| \sin \left(95.711^{\circ}+\delta_{2}-\delta_{3}\right), \\
\frac{\partial P_{3}}{\partial \delta_{3}}=4.9938 \sin \left(92.862^{\circ}-\delta_{3}\right)+4.9752\left|V_{2}\right| \sin \left(95.711^{\circ}+\delta_{2}-\delta_{3}\right) .
\end{gathered}
$$

The above partial derivatives form the Jacobian matrix

$$
\mathbf{J}=\left[\begin{array}{ccc}
\frac{\partial P_{2}}{\partial\left|V_{2}\right|} & \frac{\partial P_{2}}{\partial \delta_{2}} & \frac{\partial P_{2}}{\partial \delta_{3}} \\
\frac{\partial P_{3}}{\partial\left|V_{2}\right|} & \frac{\partial P_{3}}{\partial \delta_{2}} & \frac{\partial P_{3}}{\partial \delta_{3}} \\
\frac{\partial Q_{2}}{\partial\left|V_{2}\right|} & \frac{\partial Q_{2}}{\partial \delta_{2}} & \frac{\partial Q_{2}}{\partial \delta_{3}}
\end{array}\right] .
$$

For the initial estimates $\left|V_{2}\right|=1.0$ p.u., $\delta_{2}=0^{\circ}$, and $\delta_{3}=0^{\circ}$, the initial Jacobian matrix becomes

$$
\mathbf{J}^{(0)}=\left[\begin{array}{rrr}
1.4851 & 14.8515 & -4.9505 \\
-0.4950 & -4.9505 & 9.9380 \\
14.7315 & -1.4851 & 0.4950
\end{array}\right]
$$

The initial power mismatches are

$$
\begin{gathered}
\Delta P_{2}=P_{2}+1.8=0+1.8=1.8, \\
\Delta Q_{2}=Q_{2}+0.6=-0.06+0.6=0.54, \\
\Delta P_{3}=P_{3}-1.0=0-1.0=-1.0 .
\end{gathered}
$$

Consequently, the corrected values after the first iteration are

$$
\left[\begin{array}{c}
\left|V_{2}\right|^{(1)} \\
\delta_{2}^{(1)} \\
\delta_{3}^{(1)}
\end{array}\right]=\left[\begin{array}{c}
1.0 \\
0 \\
0
\end{array}\right]-\left[\begin{array}{rrr}
1.4851 & 14.8515 & -4.9505 \\
-0.4950 & -4.9505 & 9.9380 \\
14.7315 & -1.4851 & 0.4950
\end{array}\right]^{-1}\left[\begin{array}{r}
1.8 \\
-1.0 \\
0.54
\end{array}\right]=\left[\begin{array}{r}
0.9516 \\
-0.1003 \\
0.0483
\end{array}\right] .
$$

Although we assumed that $\delta_{2}=0^{\circ}$, and $\delta_{3}=0^{\circ}$ for simplicity, these angles must be converted to radians before performing the necessary matrix operations. The procedure is repeated until the variables of interest satisfy a prescribed precision index. Once this is achieved, we use the values of $\left|V_{2}\right|, \delta_{2}$, and $\delta_{3}$ given by the algorithm to compute $Q_{3}$ from Equation (5). This completes the solution process.

In the following we present a spreadsheet implementation of the Newton-Raphson method. Again, we take the power system of Figure 1. The input data section is identical to that of the Gauss-Seidel method discussed in Section 2 (see Figures 2 and 3).

The power-flow solution is shown in Figure 5. The calculations reveal that acceptable solutions are attained after 3 iterations for a precision index of $10^{-4}$. As expected, the solutions agree with those obtained by the Gauss-Seidel method (see Table 4). In general, the Newton-Raphson method converges to the solution faster than the Gauss-Seidel method. In some instances, illconditioned problems lead to divergence by either method.

As can be seen in Figure 5, the Newton-Raphson method covers the cell range H1:T15. A complete list of Microsoft Excel formulas is given in Table 6.

|  | H | 1 | J | K | L | M | $N$ | 0 | P | Q | R | 5 | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Power-flow solutions by Newton Raphson method |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | Iter. | Var. | Value | Value | Jacobian |  |  | Inverse of Jacobian |  |  | Power mismatch |  | Corr. |
| 3 |  | \|V_2| | 1.0000 | 1.0000 | 1.4851 | 14.8515 | -4.9505 | 0.0067 | 0.0000 | 0.0672 | dP_2 | 1.8000 | 0.0484 |
| 4 | 0 | d_2 | 0.000 | 0.000 | -0.4950 | -4.9505 | 9.9380 | 0.0801 | 0.0402 | -0.0067 | dP_3 | -1.0000 | 0.1003 |
| 5 |  | d_3 | 0.000 | 0.000 | 14.7315 | -1.4851 | 0.4950 | 0.0402 | 0.1207 | 0.0000 | dQ_2 | 0.5400 | -0.0483 |
| 6 |  | \|V_2| | 0.9516 | 0.9516 | -0.3720 | 13.8697 | -4.5894 | 0.0158 | -0.0014 | 0.0741 | dP_2 | 0.1012 | 0.0109 |
| 7 | 1 | d_2 | -0.1003 | -5.745 | 0.2431 | -4.7288 | 9.7225 | 0.0863 | 0.0405 | 0.0016 | dP_3 | -0.0328 | 0.0076 |
| 8 |  | d_3 | 0.0483 | 2.765 | 13.5767 | -3.0437 | 1.1630 | 0.0416 | 0.1226 | -0.0011 | dQ_2 | 0.1251 | 0.0001 |
| 9 |  | \|V_2| | 0.9407 | 0.9407 | -0.5149 | 13.6874 | -4.5279 | 0.0168 | -0.0014 | 0.0760 | dP_2 | 0.0015 | 0.0002 |
| 10 | 2 | d_2 | -0.1079 | -6.181 | 0.2806 | -4.6727 | 9.6664 | 0.0875 | 0.0407 | 0.0025 | dP_3 | -0.0004 | 0.0001 |
| 11 |  | d_3 | 0.0482 | 2.762 | 13.2786 | -3.1127 | 1.1839 | 0.0418 | 0.1232 | -0.0010 | dQ_2 | 0.0019 | 0.0000 |
| 12 |  | \|V_2| | 0.9405 | 0.9405 | -0.5170 | 13.6846 | -4.5270 | 0.0168 | -0.0014 | 0.0760 | dP_2 | 0.0000 | 0.0000 |
| 13 | 3 | d_2 | -0.1080 | -6.188 | 0.2811 | -4.6719 | 9.6656 | 0.0875 | 0.0407 | 0.0025 | dP_3 | 0.0000 | 0.0000 |
| 14 |  | d 3 | 0.0482 | 2.762 | 13.2740 | -3.1137 | 1.1842 | 0.0418 | 0.1232 | -0.0010 | dQ_2 | 0.0000 | 0.0000 |
| 15 |  | NOTE: | d_i (rad) |  |  |  |  |  |  |  |  |  |  |

Figure 5: Spreadsheet implementation of the Newton-Raphson method for determining the power flows in the network of Figure 1.

Table 6: Microsoft Excel formulas for the Newton-Raphson method.

| Cell | Formula | Comments |
| :---: | :--- | :--- |
| H3:H14 | List of numbers from 0 to 3. | Iteration number. Some cells <br> are blank. |
| H2:T2 | Labels for various quantities. | Newton-Raphson section. |
| I15:K15 | Labels to highlight angles in <br> radians and degrees. | No calculations. |
| I3:I14 | Labels for variables of inter- <br> est. | $I V_{2} \mid, \delta_{2}, \delta_{3}$. |
| J3:J14 | Numerical values corre- <br> sponding to variables of in- <br> terest. | $\delta_{2}$ and $\delta_{3}$ in radians. |
| K3:K14 | Numerical values corre- <br> sponding to variables of in- <br> terest. | $\delta_{2}$ and $\delta_{3}$ in degrees. |
| L3:N14 | Jacobian matrices. | All matrices are 3 $\times 3$. |
| O3:Q14 | Inverse of Jacobian matrices. | All matrices are $3 \times 3$. |
| R3:R14 | Labels for power mis- <br> matches. | $\Delta P_{2}, \Delta P_{3}, \Delta Q_{2}$. |
| S3:S14 | Numerical values corre- <br> sponding to power mis- <br> matches. | $\Delta P_{2}, \Delta P_{3}, \Delta Q_{2}$. |
| T3:T14 | Correction terms. | $\Delta\left\|V_{2}\right\|, \Delta \delta_{2}, \Delta \delta_{3}$. |
| J3:J5 | Initial estimates for variables <br> of interest. | $\left\|V_{2}\right\|^{(0)}, \delta_{2}{ }^{(0)}, \delta_{3}{ }^{(0)}$. |

Table 6 (continued): Microsoft Excel formulas for the Newton-Raphson method.

| Cell | Formula | Comments |
| :---: | :---: | :---: |
| K3 | = J3 | Copies the value of $\left\|V_{2}\right\|^{(0)}$. |
| K4 | $=\mathrm{J} 4^{*} 180 / \mathrm{PI}()$ | Converts $\delta_{2}{ }^{(0)}$ to degrees. |
| K5 | $=\mathrm{J} 5^{*} 180 / \mathrm{Pl}()$ | Converts $\delta_{3}{ }^{(0)}$ to degrees. |
| L3 | $=$ IMABS(\$B\$4)*IMABS(\$C\$9)*COS (IMARGUMENT(\$B\$4) <br> +IMARGUMENT(\$C\$9)-J4)+ <br> $2^{*} \operatorname{IMABS}(\$ C \$ 4)^{*} J 3$ *COS( <br> IMARGUMENT(\$C\$4))+ <br> IMABS $(\$ D \$ 4)^{*} \$ C \$ 11^{*} C O S(I M A R G$ <br> UMENT(\$D\$4)+J5-J4) | Jacobian element $\frac{\partial P_{2}}{\partial\left\|V_{2}\right\|}$. |
| M3 |  | Jacobian element $\frac{\partial P_{2}}{\partial \delta_{2}}$. |
| N3 | $=-\operatorname{IMABS}(\$ D \$ 4)^{*} J 3^{*} \$ C \$ 11 * \operatorname{SIN}($ <br> IMARGUMENT(\$D\$4)+J5-J4) | Jacobian element $\frac{\partial P_{2}}{\partial \delta_{3}}$. |
| L4 | $=$ IMABS $(\$ C \$ 5) * \$ C \$ 11^{*} C O S($ IMAR GUMENT $(\$ C \$ 5)+J 4-J 5)$ | Jacobian element $\frac{\partial P_{3}}{\partial\left\|V_{2}\right\|}$ |
| M4 | $=-\operatorname{IMABS}(\$ C \$ 5) * \$ C \$ 11 * J 3 * \operatorname{SIN}($ IMARGUMENT(\$C\$5)+J4-J5) | Jacobian element $\frac{\partial P_{3}}{\partial \delta_{2}}$. |
| N4 | $=$ IMABS(\$B\$5)*\$C\$11*IMABS( \$C\$9)*SIN(IMARGUMENT(\$B\$5)+ IMARGUMENT(\$C\$9)- <br> J5)+IMABS (\$C\$5)* $\$\left(\$ 11^{*} J 3^{*}\right.$ <br> SIN(IMARGUMENT(\$C\$5)+J4-J5) | Jacobian element $\frac{\partial P_{3}}{\partial \delta_{3}}$ |
| L5 | $=-\operatorname{IMABS}(\$ B \$ 4)^{*} \operatorname{IMABS}(\$ C \$ 9)^{*}$ <br> SIN(IMARGUMENT(\$B\$4)+ <br> IMARGUMENT(\$C\$9)-J4)- <br> $2^{*}$ IMABS $(\$ C \$ 4)^{*} J 3^{*}$ SIN(IMARGUM <br> ENT (\$C\$4))-IMABS(\$D\$4)* $\$$ C\$11* <br> SIN(IMARGUMENT(\$D\$4)+J5-J4) | Jacobian element $\frac{\partial Q_{2}}{\partial\left\|V_{2}\right\|}$. |
| M5 | $=\operatorname{IMABS}(\$ B \$ 4)^{*} J 3^{*} \operatorname{IMABS}(\$ C \$ 9)^{*}$ COS(IMARGUMENT(\$B\$4)+IMAR GUMENT(\$C\$9)- <br> J4)+IMABS(\$D\$4)*J3*\$C\$11*COS (IMARGUMENT(\$D\$4)+J5-J4) | Jacobian element $\frac{\partial Q_{2}}{\partial \delta_{2}}$. |
| N5 | $=-$ IMABS $(\$ D \$ 4)^{*} 3^{*} \$ C \$ 11^{*}$ COS(IMARGUMENT(\$D\$4)+J5-J4) | Jacobian element $\frac{\partial Q_{2}}{\partial \delta_{3}}$. |
| O3:Q5 | =MINVERSE(L3:N5) | Inverse of Jacobian matrix in cell range L3:N5. |
| S3 | $=I M A B S(\$ B \$ 4)^{*} J 3^{*} \operatorname{IMABS}(\$ C \$ 9)^{*}$ <br> COS(IMARGUMENT(\$B\$4)+ <br> IMARGUMENT(\$C\$9)-J4)+ <br> IMABS (\$C\$4)* J3* ${ }^{*} 3^{*} \mathrm{COS}($ <br> IMARGUMENT(\$C\$4))+ <br> IMABS(\$D\$4)*J3*\$C\$11*COS(IMA <br> RGUMENT(\$D\$4)+J5-J4)-\$E\$10 | Power mismatch $\Delta P_{2}$. |

Table 6 (continued): Microsoft Excel formulas for the Newton-Raphson method.

| S4 | $=$ IMABS(\$B\$5)*\$C\$11*IMABS(\$C\$ <br> 9)*COS(IMARGUMENT(\$B\$5)+IM ARGUMENT(\$C\$9)- <br> J5) $+\mathrm{IMABS}(\$ C \$ 5){ }^{*} \$ C \$ 11^{*} \mathrm{~J} 3^{*} \mathrm{COS}$ (IMARGUMENT(\$C\$5)+J4-J5)+ IMABS(\$D\$5)*SC\$11*\$C\$11*COS( IMARGUMENT(\$D\$5))-\$E\$11 | Power mismatch $\Delta P_{3}$. |
| :---: | :---: | :---: |
| S5 | $=-\operatorname{IMABS}(\$ B \$ 4)^{*} J 3^{*} \operatorname{IMABS}(\$ C \$ 9)^{*}$ <br> SIN(IMARGUMENT(\$B\$4)+ <br> IMARGUMENT(\$C\$9)-J4)- <br> IMABS (\$C\$4)*J3*J3*SIN(IMARGU MENT(\$C\$4))- <br> IMABS(\$D\$4)*J3*\$C\$11* <br> SIN(IMARGUMENT(\$D\$4)+J5-J4)\$F\$10 | Power mismatch $\Delta Q_{2}$. |
| T3:T5 | =MMULT(O3:Q5,S3:S5) | Computes correction terms $\Delta\left\|V_{2}\right\|^{(0)}, \Delta \delta_{2}{ }^{(0)}, \Delta \delta_{3}{ }^{(0)}$. <br> Multiplies the inverse of the Jacobian in O3:Q5 by the vector of power mismatch in S3:S5. |
| J6 | $=\mathrm{J} 3$ - T 3 | New estimate $\left\|V_{2}\right\|^{(1)}$. |
| J7 | $=\mathrm{J} 4$ - T 4 | New estimate $\delta_{2}^{(1)}$. |
| J8 | = J5-T5 | New estimate $\delta_{3}^{(1)}$. |
| K6:T8 | Copies of the formulas in cell range K3:T5. | Completes calculations for iteration 1. |
| J9:T14 | Copies of the formulas in cell range J6:T8. | Replicate formulas as needed until solutions are within some precision index. |

## 4. Classroom experience and pedagogical insights

The Gauss-Seidel and the Newton-Raphson methods are among the most popular numerical techniques encountered in power system courses. The authors introduce these techniques to their undergraduate students when discussing the power-flow problem. To reinforce conceptual understanding of these methods, the students are asked to analyze the power flows in a small threebus system, such as the one given in Figure 1. To facilitate computer implementation, the authors make the spreadsheets described in this paper available to their students. This approach has pedagogical advantages since students are relieved from the burden of learning new software. By simply modifying the necessary spreadsheet cells, the students can easily determine solutions to their assigned problem.

From the authors' experience throughout the years, students express positive attitudes toward the spreadsheet implementation of their power-flow project. Ease of implementation; widespread availability of spreadsheets; convenient tracking and displaying of numerical results; transpar-
ency of results that are often obscured by specialized power system analysis programs, are among the most cited comments. These responses were obtained from informal conversations with students who enrolled in the power courses.

The authors recommend the use of the spreadsheet approach to solve only small power systems, perhaps up to three buses. Larger systems such as four- or five-bus systems may still be accommodated by adding the necessary rows and columns. However, the size of the spreadsheet may become unwieldy, thereby rendering the spreadsheet approach ineffective.

Large systems are more suitably analyzed using specialized software such as PSS/E, PowerWorld, or EMTP. These programs are highly sophisticated and requires several hours of training. These programs provide the user with a graphical interface so that virtually any power system may be simulated. Problems that may be solved using these programs include power flows, fault analysis, economic dispatch, among others. The sophistication of such programs may at times obscure the inner workings of the numerical methods that produce the simulation results. In this regard, the spreadsheet approach offers a more transparent platform for learning fundamentals at a formative stage, albeit for small systems.

The spreadsheet approach is effective in other respects such as gaining insight into the numerical techniques, making sense of the convergence or divergence of computer-generated solutions, developing intuition about well- or ill-conditioned systems, and handling "what if" questions with relative ease. If the emphasis of a power system course is on fundamentals, spreadsheets offer an attractive approach to learning a difficult topic such as the power flow problem.

## 5. Conclusions

In this paper we have presented spreadsheet implementations of two widely used methods for solving power-flow problems. The Gauss-Seidel and the Newton-Raphson numerical methods are introduced to students in power system analysis courses. Although the mathematical underpinnings are found in courses such as numerical analysis, power systems provide a suitable realworld application upon which constructivist activities can be designed by instructors. Spreadsheets provide students with an easily accessible tool with which mathematical models of real systems can be built and analyzed. Furthermore, spreadsheets lend themselves to answering "what if" questions when quantities such as real power, reactive power, or bus voltage change to new quiescent operating conditions.

Interested readers who wish to obtain an electronic copy of the spreadsheets presented in this paper are welcome to contact the first author at mlau@suagm. edu or see Ref. 5 for another example.

## References

${ }^{1}$ Acarnley, P. A power system load flow analysis using an Excel workbook. Online available: http://www.engsc.ac.uk/downloads/awards/load.pdf. Accessed: August 13, 2008.
${ }^{2}$ Bergen, A. R. and Vittal, V. Power systems analysis, $2^{\text {nd }}$ edition, Prentice Hall, 1999.
${ }^{3}$ Glover, J. D. and Sarma, M. S. Power system analysis and design, $3^{\text {rd }}$ edition. Thomson-Engineering, 2001.
${ }^{4}$ Grainger, J. and Stevenson, W. D. Power systems analysis, McGraw-Hill Publishing Co, 1994.
${ }^{5}$ Lau, M. A. and Kuruganty, S. P. Spreadsheet implementations for solving power-flow problems, eJournal of Spreadsheets in Education, 3(1): 27-45, August 2008. Online: http://epublications.bond.edu.au/ejsie/vol3/iss1/3/.
${ }^{6}$ Rao, N. D. and Haddad, N. Y Typical applications of new generation spreadsheets to power system problems, Proceedings of the $33^{r d}$ Midwest Symposium on Circuits and Systems, Vol. 1, 159-162, August 12-14, 1990.
${ }^{7}$ Zeljković, C. and Gaćanović, M. An example of using Microsoft Excel Solver for power network calculations. Online available: http://phd.etfbl.net/files/Works_PDF/ Zeljkovic\%20Cedomir.pdf. Accessed: August 13, 2008.

