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The Use of Spreadsheets in Teaching 

the Power-Flow Problem 
 
 
 
 
 

 
 

1.  Introduction 
 

The solution to the power-flow problem is of fundamental importance in power system analysis 
and design. In transient stability studies and fault analysis, solutions to a power-flow problem 
constitute a necessary initial step in such analyses. 
 
The objective of the power-flow problem is to calculate the voltage magnitudes and phase angles 
at each bus or node in a given power system. Calculations are performed under the assumption of 
balanced three-phase steady-state conditions. In addition to voltages and angles, real and reactive 
power flows in equipment such as transformers and transmission lines can be also obtained from 
these calculations. 
 
The topics in this paper follow the treatment found in standard reference material on power sys-
tem analysis and design.2−4  In particular, two numerical methods, namely, the Gauss-Seidel and 
the Newton-Raphson methods are used to determine the power flows in a small-scale power sys-
tem. The examples are simple enough so that readers can replicate hand calculations and repro-
duce the spreadsheet implementations. The application of spreadsheets for solving power flows 
and other related problems has been reported in the literature.1, 5−7  The emphasis of this paper is 
on the educational value of spreadsheets in the analysis of power systems. 
 
The paper is organized as follows: Section 2 provides a spreadsheet implementation for solving 
the power-flow problem using the Gauss-Seidel method; Section 3 presents an implementation of 
the Newton-Raphson method for solving the power-flow problem; Section 4 discusses the au-
thors’ experience in the classroom and their pedagogical insights; and finally Section 5 presents 
some concluding remarks. Since the mathematical underpinnings of the power flow problem are 
well known, the reader is referred to standard books2−4 for details. 

 
 

2.  Power-flow solution by the Gauss-Seidel method 
 

In this section we use the Gauss-Seidel method to determine the power flows in the three-bus 
network of Figure 1. Bus and transmission line data are summarized in Tables 1 and 2, respec-
tively. 
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Figure 1: Three-bus power system. 

Table 1: Bus input data. 

Type 
Bus 

i 

Bus voltage 
|Vi| (p.u.)  δi (deg.) 

 Complex power (p.u.) 
  Pgi     Qgi     Pdi     Qdi 

Slack 
Load 

Constant voltage 

1 
2 
3 

1.0    0˚ 
—     — 

     1.0             — 

  —      —     0.0     0.0 
 0.0     0.0     1.8     0.6 
 1.0      —     0.0     0.0 

 

Table 2: Transmission line parameters. 

Line 
bus i to bus k 

Impedance 
Zik (p.u.) 

Shunt admittance 
Bik/2 (p.u.) 

1—2 
2—3 
1—3 

0.01 + j0.1 
0.02 + j0.2 
0.01 + j0.2 

j0.02 
j0.04 
j0.03 

 
 
We first construct the bus admittance matrix Ybus for the power system in Figure 1. The bus ad-
mittance matrix offers a convenient representation of the topology of a power network. In the ex-
ample at hand, we calculate the primitive admittance of each branch in per unit: 

Bus 

1 

Bus 

2 

Bus 

  3 
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With the primitive admittances just calculated, we determine the elements of Ybus: 

.9875.42494.0

,9505.44950.0

,9010.99901.0

,8680.97444.0
22

,7915.144851.1
22

,8385.142395.1
22

133113

233223

122112
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132333
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j
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j
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yyY
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/?−−−?

 

Therefore, the bus admittance matrix for the network of Figure 1 is given by 

   Ybus 

















/−/−/

−//−/

−/−//

?

8680.97444.09505.44950.09875.42494.0

9505.44950.07915.144851.19010.99901.0

9875.42494.09010.99901.08385.142395.1

jjj

jjj

jjj

.           (1) 

 

For an N-bus system, the Gauss-Seidel method calculates the voltage at any bus i at iteration m, 
Vi

(m), according to 
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sch,sch,)( 1
,   Ni , ... ,3 ,2?                    (2) 

where Yik is the (i,k) entry in the Ybus matrix, Pi,sch is the net scheduled real power, and Qi,sch is 
the net scheduled reactive power being injected into the network at bus i. The net scheduled real 
power is defined as the difference between the scheduled power Pgi being generated at bus i and 
the scheduled power demand Pdi of the load at that bus; the net scheduled reactive power is de-
fined in a similar manner. That is,  

     Pi,sch = Pgi – Pdi,                 (3) 

Qi,sch = Qgi – Qdi.            (4) P
age 14.1263.4



In Equation (2) the notation (
.
)* denotes complex conjugation and bus 1 is designated as the slack 

bus. After each iteration of Equation (2) the power flows are calculated: 

Pi – jQi  = ||
11

*

ki

N

k

ikk

N

k

iki VVYVYV ∑∑
??

?
)( ikikj

e
φφσ /− .            (5) 

 where θik is the argument (angle) of the (i,k) entry in the Ybus matrix, δi is the angle of bus volt-

age Vi, and the notation | 
. 
| denotes modulus (magnitude). The iterations stop when the power 

mismatches ∆Pi = Pi,sch – Pi and ∆Qi = Qi,sch – Qi at each bus are zero, or within a prescribed pre-
cision index. 

In the following we present the calculations for the first iteration of the Gauss-Seidel method ap-
plied to the system in Figure 1. With the slack bus designated as number 1, we start computa-

tions at bus 2. If )0(

2V  and )0(

3V are initial estimates for the voltages at buses 2 and 3, respectively, 

we have 
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1 )0(
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The corrected voltage )1(

2V  is then used to calculate the value of )1(

3V  
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The procedure is repeated until the amount of correction in voltage at every bus is less than some 
predetermined precision index. 
 
The bus admittance matrix Ybus for this system is given by Equation (1). The input data and un-
knowns at each bus can be inferred from Table 1 and are summarized in Table 3. 

 

Table 3: Input data and unknowns for the power system of Figure 1. 

Type 
Bus 

i 
Input data Unknowns 

Slack 1 |V1| = 1.0 p.u., δ1 = 0˚ 
Psch,1 = Pg1 − Pd1 = Pg1, 
Qsch,1 = Qg1 − Qd1 = Qg1 

Load 2 
Psch,2 = Pg2 − Pd2  = −1.8 p.u., 
Qsch,2 = Qg2 − Qd2  = −0.6 p.u. 

|V2|, δ2 

Constant voltage 3 
|V3| = 1.0 p.u., 
Psch,3 = Pg3 − Pd3 = 1.0 p.u. 

δ3, 
Qsch,3 = Qg3 − Qd3 = Qg3 

 

We assume initial guesses for the voltages )0(

2V  = 1.0e
j0˚ = 1.0 and )0(

3V  = 1.0e
j0˚ = 1.0 at buses 2 

and 3, respectively. Using Equation (2) we determine an improved value for V2: 
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7915.144851.1
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j
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e
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With )1(

2V at hand, we then proceed to find )1(

3Q  and )1(

3V . Since bus 3 is a voltage-controlled bus, 

we can use Equation (5) to compute the reactive power at that bus. Observe that the real power is 
the real part of the right-hand side of Equation (5), while the reactive power is given by the nega-
tive of the imaginary part of the right-hand side of that equation. Here we show how to use Equa-
tion (5) to compute the reactive power at bus 3: 

Im)1(

3 /?Q {
o00.1 j

e
/ [ )9589.0)(9505.44950.0()0.1)(9875.42494.0(

o999.6j
ejj
/

−/−−/   

)0.1)(8680.97444.0( j/− ]}           

1110.0? p.u. 

With the preceding value of reactive power, we use Equation (2) once again to calculate an im-
proved value of V3: 




−//

/

/
? )0.1)(9875.42494.0(
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3 j
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j
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−//
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o999.6j

ej  

.0038.1
o288.2j

e?  
 

As indicated in Table 3, |V3| = 1 at bus 3 and, therefore, we set 
o288.2)1(

3 0.1 j
eV ? for the next itera-

tion. This concludes the first iteration of the Gauss-Seidel method. The calculations are repeated 
in a similar manner with updated values until convergence can be discerned. We next show how 
to implement the above calculations using a spreadsheet. 
 
We begin by inputting the entries that form the bus admittance matrix given in Equation (1) . 
Also, we input the known data shown in Table 3. This step is shown in the screen capture of Fig-
ure 2. The actual Microsoft Excel commands used to generate the input data is presented in Fig-
ure 3. 
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Figure 2: Bus admittance matrix and input data for the power system of Figure 1. 

 

 

Figure 3: Microsoft Excel commands used to generate the input data in Figure 2. 

The calculations of the Gauss-Seidel method are shown in Figure 4 as the cell range H1:T11 in 
the spreadsheet. The entries in row 3 extending from cell H3 to T3 correspond to initial estimates 
for the numerical algorithm.  The  basic  formulas  are  found in row 4  
and extend from H4 to T4. The formulas in row 4 are copied to the rows below as many 
times as needed until convergence is reached. Some columns were omitted in Figure 4 for clar-
ity; these columns simply contain intermediate calculations. The calculations reveal that conver-
gence is reached after 5 iterations for a precision index of 10-4 for the bus voltages and 10-3 for 
the angles. A final calculations section is also shown in Figure 4; the section covers the cell 
range V1:AC3, but columns V and W were left out as these columns contain intermediate calcu-
lations. The solution to the power-flow problem at hand is summarized in Table 4. 
 
To conclude this section, we provide in Table 5 all the formulas used in the implementation of 
the Gauss-Seidel method. Formulas corresponding to hidden columns are also included for com-
pleteness. 

P
age 14.1263.7



 

 

Figure 4: Gauss-Seidel iterations showing relevant quantities in the power system of Figure 1. 

Table 4: Steady-state power flows and bus voltages for the system in Figure 1. Except for the an-
gles, all other quantities are expressed in per unit (p.u.). 

Bus i Input data (given) Unknowns (calculated) 

1 |V1| = 1.0, δ1 = 0˚ Psch,1 = 0.8, Qsch,1 = 0.3976 

2 Psch,2 = −1.8, Qsch,2 = −0.6 |V2| = 0.9405,  δ2 = −6.188˚ 

3 |V3| = 1.0, Psch,3 = 1.0 δ3 = 2.762˚, Qsch,3 = 0.2024 

 

Table 5: Microsoft Excel formulas for implementing the Gauss-Seidel method. 

Cell Formula Comments 

H3:H11 List of numbers from 0 to 8. Iteration number. 

H2:T2 Labels for various quantities. Gauss-Seidel section. 

I3, J3 Blank cells. No calculations. 

K3 =COMPLEX(1,0,"j") Initial guess for V2. 

L3 =IMABS(K3) Magnitude of initial V2. 

M3 =180*IMARGUMENT(K3)/PI() Angle of initial V2 in deg. 

N3:P3 Blank cells. No calculations. 

Q3 =COMPLEX(1,0,"j") 
Initial value for calculated 
V3. 

R3 =COMPLEX(1,0,"j") 
Initial value for corrected V3; 
magnitude must be constant. 

S3 =IMABS(R3) 
Magnitude of initial cor-
rected V3. 

T3 =180*IMARGUMENT(Q3)/PI() 
Angle of initial calculated V3 
in deg. P
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Table 5 (continued): Microsoft Excel formulas for implementing the Gauss-Seidel method. 

Cell Formula Comments 

I4 
=IMDIV(COMPLEX($E$10,-
$F$10,"j"),IMCONJUGATE(K3)) 

The term 
)*1(

2

sch,2sch,2

/

/

m
V

jQP
 of 

Equation (2). 

J4 
=IMSUM(IMPRODUCT($B$4,$C$9
),IMPRODUCT($D$4,R3)) 

The term Y21V1 + Y23
)1(

3

/m
V   

of Equation (2). 

K4 =IMDIV(IMSUB(I4,J4),$C$4) 

Completes the calculation of 
)(

2

mV in Equation (2) using in-

termediate results in cells I4 
and J4. 

L4 =IMABS(K4) Magnitude of updated V2. 

M4 =180*IMARGUMENT(K4)/PI() Angle of updated V2 in deg. 

N4 
=IMSUM(IMPRODUCT($B$5,$C$9
), IMSUM(IMPRODUCT($C$5,K4),  
IMPRODUCT($D$5,R3))) 

The term k

N

k

kVY∑
?1

3  of Equa-

tion (5). 

O4 
=IMDIV(COMPLEX($E$11,-P4,"j"),  
IMCONJUGATE(R3)) 

The term 
)*1(

3

sch,3sch,3

/

/

m
V

jQP
 of 

Equation (2). 

P4 
=-IMAGINARY(IMPRODUCT(  
IMCONJUGATE(R3),N4)) 

Q3 computed as the negative 
of the imaginary part of 

k

N

k

kVYV ∑
?1

3

*

3  as indicated in 

Equation (5). 

Q4 
=IMDIV(IMSUM(IMSUB(O4,N4),  
IMPRODUCT($D$5,R3)),$D$5) 

Updated value )(

3

m
V  calcu-

lated from Equation (2). Ob-
serve that in the cell formula 

333VY was added back since 

this term is not present ex-
plicitly in Equation (2). The 
reason is that cell N4 uses 

333VY  when computing Q3 

according to Equation (5), 
but this term has to be ex-

cluded when computing 3V . 

R4 
=COMPLEX(S4*COS(IMARGU-
MENT(Q4)),S4*SIN(IMARGUMEN
T(Q4)),"j") 

Corrects )(

3

m
V  to match the 

voltage magnitude at bus 3. 
The angle (argument) is the 
same as in cell Q4. 
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Table 5 (continued): Microsoft Excel formulas for implementing the Gauss-Seidel method. 

Cell Formula Comments 

S4 =S3 
Copies the constant voltage 
magnitude at bus 3. 

T4 =180*IMARGUMENT(Q4)/PI() Angle of updated V3 in deg. 

I5:T11 Copies of cell range I4:T4. 
Replicates cell formulas in 
rows below until conver-
gence is achieved. 

V2:AC2 Labels for various quantities. Final calculations section. 

V3 
=IMSUM(IMPRODUCT($B$4,$C$9
),IMSUM(IMPRODUCT($C$4,K11), 
IMPRODUCT($D$4,R11))) 

The term k

N

k

kVY∑
?1

2  of Equa-

tion (5). 

W3 

=IMSUM(IMPRODUCT($B$5,$C$9
), IMSUM(IMPRODUCT 
($C$5,K11),  
IMPRODUCT($D$5,R11))) 

The term k

N

k

kVY∑
?1

3  of Equa-

tion (5). 

X3 
=IMREAL(IMPRODUCT( 
IMCONJUGATE(K11),V3)) 

P2 computed as the real part 

of k

N

k

kVYV ∑
?1

2

*

2  according to 

Equation (5). 

Y3 
=-IMAGINARY(IMPRODUCT( 
IMCONJUGATE(K11),V3)) 

Q2 computed as the negative 
of the imaginary part of 

k

N

k

kVYV ∑
?1

2

*

2  according to 

Equation (5). 

Z3 
=IMREAL(IMPRODUCT( 
IMCONJUGATE(R11),W3)) 

P3 computed as the real part 

of k

N

k

kVYV ∑
?1

3

*

3  according to 

Equation (5). 

AA3 
=-IMAGINARY(IMPRODUCT( 
IMCONJUGATE(R11),W3)) 

Q3 computed as the negative 
of the imaginary part of 

k

N

k

kVYV ∑
?1

3

*

3  according to 

Equation (5). 

AB3 =-X3-Z3 
Real power P1 at slack bus 
(balance of real power). 

AC3 =-Y3-AA3 

Reactive power Q1 at slack 
bus (balance of reactive 
power). 
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3.  Power-flow solution by the Newton-Raphson method 

 
To set up the Newton-Raphson numerical method, we employ the power-flow expression given 
by Equations (5). For the three-bus system in Figure 1, the Newton-Raphson method leads to  
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The 4 x 4 matrix in Equation (6) is the Jacobian and it will be denoted by J. Since bus 3 is a con-
stant voltage bus and not a load bus, we need to modify the preceding formulation slightly. For 
this power system, the variables of interest are |V2|, δ2, and δ3. Taking into account that |V1| = 1.0 
p.u., δ1 = 0°, |V3| = 1.0 p.u., and the Ybus matrix of Equation (1), we write out the equations that 
need to be solved in accordance with Equation (2): 

   −1.8 = (9.9504)(|V2|)(1.0)cos(95.711° + 0° − δ2) + (14.8659)(|V2|)(|V2|)cos(−84.266° + δ2  − δ2)  

    + (4.9752)(|V2|)(1.0)cos(95.711° + δ3 − δ2), 

−0.6 = − (9.9504)(|V2|)(1.0)sin(95.711° + 0° − δ2)  − (14.8659)(|V2|)(|V2|)sin(−84.266° + δ2  − δ2)  

 − (4.9752)(|V2|)(1.0)sin(95.711° + δ3 − δ2), 

      1 = (4.9938)(1.0)(1.0)cos(92.862° + 0° − δ3) + (4.9752)(1.0)(|V2|)cos(95.711° + δ2  − δ3)  

 + (9.8961)(1.0)(1.0)cos(−85.686° + δ3 − δ3). 

Simplifying the right-hand sides of the preceding expressions yields 

2P  = 9.9504|V2|cos(95.711° − δ2) + 1.4851|V2|
2  + 4.9752|V2|cos(95.711° + δ3 − δ2), 

2Q  = − 9.9504|V2|sin(95.711° − δ2)  + 14.7915|V2|
2  − 4.9752|V2|sin(95.711° + δ3 − δ2), 

3P  = 4.9938cos(92.862° − δ3) + 4.9752|V2|cos(95.711° + δ2  − δ3) + 0.7444. 

Thus, the elements of the Jacobian matrix are given by P
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The above partial derivatives form the Jacobian matrix 
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For the initial estimates || 2V  = 1.0 p.u., o

2 0?φ , and o

3 0?φ , the initial Jacobian matrix be-

comes 
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Consequently, the corrected values after the first iteration are 
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Although we assumed that o

2 0?φ , and o

3 0?φ  for simplicity, these angles must be converted 

to radians before performing the necessary matrix operations. The procedure is repeated until the 
variables of interest satisfy a prescribed precision index. Once this is achieved, we use the values 
of |V2|, δ2, and δ3 given by the algorithm to compute Q3 from Equation (5). This completes the so-
lution process. 
 
In the following we present a spreadsheet implementation of the Newton-Raphson method. 
Again, we take the power system of Figure 1. The input data section is identical to that of the 
Gauss-Seidel method discussed in Section 2 (see Figures 2 and 3).  
 
The power-flow solution is shown in Figure 5. The calculations reveal that acceptable solutions 
are attained after 3 iterations for a precision index of 10-4. As expected, the solutions agree with 
those obtained by the Gauss-Seidel method (see Table 4). In general, the Newton-Raphson 
method converges to the solution faster than the Gauss-Seidel method. In some instances, ill-
conditioned problems lead to divergence by either method. 
 
As can be seen in Figure 5, the Newton-Raphson method covers the cell range H1:T15. A com-
plete list of Microsoft Excel formulas is given in Table 6. 
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Figure 5: Spreadsheet implementation of the Newton-Raphson method for determining the 
power flows in the network of Figure 1. 

Table 6: Microsoft Excel formulas for the Newton-Raphson method. 

Cell Formula Comments 

H3:H14 List of numbers from 0 to 3. 
Iteration number. Some cells 
are blank. 

H2:T2 Labels for various quantities. Newton-Raphson section. 

I15:K15 
Labels to highlight angles in 
radians and degrees. 

No calculations. 

I3:I14 
Labels for variables of inter-
est. 

|V2|, δ2, δ3. 

J3:J14 
Numerical values corre-
sponding to variables of in-
terest. 

δ2 and δ3 in radians. 

K3:K14 
Numerical values corre-
sponding to variables of in-
terest. 

δ2 and δ3 in degrees. 

L3:N14 Jacobian matrices. All matrices are 3 x 3. 

O3:Q14 Inverse of Jacobian matrices. All matrices are 3 x 3. 

R3:R14 
Labels for power mis-
matches. 

∆P2, ∆P3, ∆Q2. 

S3:S14 
Numerical values corre-
sponding to power mis-
matches. 

∆P2, ∆P3, ∆Q2. 

T3:T14 Correction terms. || 2VΦ , 2φΦ , 3φΦ . 

J3:J5 
Initial estimates for variables 
of interest. 

)0(

2 || V , 
)0(

2φ , 
)0(

3φ . P
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Table 6 (continued): Microsoft Excel formulas for the Newton-Raphson method. 

Cell Formula Comments 

K3 =J3 Copies the value of )0(

2 || V . 

K4 =J4*180/PI() Converts 
)0(

2φ  to degrees. 

K5 =J5*180/PI() Converts 
)0(

3φ  to degrees. 

L3 

=IMABS($B$4)*IMABS($C$9)*COS
(IMARGUMENT($B$4) 
+IMARGUMENT($C$9)-J4)+ 
2*IMABS($C$4)*J3 *COS( 
IMARGUMENT($C$4))+ 
IMABS($D$4)*$C$11*COS(IMARG
UMENT($D$4)+J5-J4) 

Jacobian element 
|| 2

2

V

P

÷

÷
. 

M3 

=IMABS($B$4)*J3*IMABS($C$9)* 
SIN(IMARGUMENT($B$4)+  
IMARGUMENT($C$9)-J4)+ 
IMABS($D$4)*J3*$C$11* 
SIN(IMARGUMENT($D$4)+J5-J4) 

Jacobian element 
2

2

φ÷

÷P
. 

N3 
=-IMABS($D$4)*J3*$C$11*SIN( 
IMARGUMENT($D$4)+J5-J4) 

Jacobian element 
3

2

φ÷

÷P
. 

L4 
=IMABS($C$5)*$C$11*COS(IMAR
GUMENT($C$5)+J4-J5) 

Jacobian element 
|| 2

3

V

P

÷

÷
. 

M4 
=-IMABS($C$5)*$C$11*J3*SIN( 
IMARGUMENT($C$5)+J4-J5) 

Jacobian element 
2

3

φ÷

÷P
. 

N4 

=IMABS($B$5)*$C$11*IMABS( 
$C$9)*SIN(IMARGUMENT($B$5)+ 
IMARGUMENT($C$9)-
J5)+IMABS($C$5)*$C$11*J3* 
SIN(IMARGUMENT($C$5)+J4-J5) 

Jacobian element 
3

3

φ÷

÷P
. 

L5 

=-IMABS($B$4)*IMABS($C$9)* 
SIN(IMARGUMENT($B$4)+ 
IMARGUMENT($C$9)-J4)-
2*IMABS($C$4)*J3*SIN(IMARGUM
ENT($C$4))-IMABS($D$4)*$C$11* 
SIN(IMARGUMENT($D$4)+J5-J4) 

Jacobian element 
|| 2

2

V

Q

÷

÷
. 

M5 

=IMABS($B$4)*J3*IMABS($C$9)*
COS(IMARGUMENT($B$4)+IMAR
GUMENT($C$9)-
J4)+IMABS($D$4)*J3*$C$11*COS
(IMARGUMENT($D$4)+J5-J4) 

Jacobian element 
2

2

φ÷

÷Q
. 

N5 
=-IMABS($D$4)*J3*$C$11* 
COS(IMARGUMENT($D$4)+J5-J4) 

Jacobian element 
3

2

φ÷

÷Q
. 

O3:Q5 =MINVERSE(L3:N5) 
Inverse of Jacobian matrix in 
cell range L3:N5. 

S3 

=IMABS($B$4)*J3*IMABS($C$9)*
COS(IMARGUMENT($B$4)+ 
IMARGUMENT($C$9)-J4)+ 
IMABS($C$4)* J3*J3*COS(  
IMARGUMENT($C$4))+ 
IMABS($D$4)*J3*$C$11*COS(IMA
RGUMENT($D$4)+J5-J4)-$E$10 

Power mismatch 2PΦ . P
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Table 6 (continued): Microsoft Excel formulas for the Newton-Raphson method. 

S4 

=IMABS($B$5)*$C$11*IMABS($C$
9)*COS(IMARGUMENT($B$5)+IM
ARGUMENT($C$9)-
J5)+IMABS($C$5)*$C$11*J3*COS
(IMARGUMENT($C$5)+J4-J5)+ 
IMABS($D$5)*$C$11*$C$11*COS(
IMARGUMENT($D$5))-$E$11 

Power mismatch 3PΦ . 

S5 

=-IMABS($B$4)*J3*IMABS($C$9)* 
SIN(IMARGUMENT($B$4)+ 
IMARGUMENT($C$9)-J4)-
IMABS($C$4)*J3*J3*SIN(IMARGU
MENT($C$4))-
IMABS($D$4)*J3*$C$11* 
SIN(IMARGUMENT($D$4)+J5-J4)-
$F$10 

Power mismatch 2QΦ . 

T3:T5 =MMULT(O3:Q5,S3:S5) 

Computes correction terms 
)0(

2 || VΦ , 
)0(

2φΦ , 
)0(

3φΦ . 

Multiplies the inverse of the 
Jacobian in O3:Q5 by the 
vector of power mismatch in 
S3:S5. 

J6 =J3-T3 New estimate )1(

2 || V . 

J7 =J4-T4 New estimate )1(

2φ . 

J8 =J5-T5 New estimate )1(

3φ . 

K6:T8 
Copies of the formulas in 
cell range K3:T5. 

Completes calculations for 
iteration 1. 

J9:T14 
Copies of the formulas in 
cell range J6:T8. 

Replicate formulas as needed 
until solutions are within 
some precision index. 

 
 

4.  Classroom experience and pedagogical insights 
 

The Gauss-Seidel and the Newton-Raphson methods are among the most popular numerical 
techniques encountered in power system courses. The authors introduce these techniques to their 
undergraduate students when discussing the power-flow problem. To reinforce conceptual un-
derstanding of these methods, the students are asked to analyze the power flows in a small three-
bus system, such as the one given in Figure 1. To facilitate computer implementation, the authors 
make the spreadsheets described in this paper available to their students. This approach has 
pedagogical advantages since students are relieved from the burden of learning new software. By 
simply modifying the necessary spreadsheet cells, the students can easily determine solutions to 
their assigned problem. 
 
From the authors’ experience throughout the years, students express positive attitudes toward the 
spreadsheet implementation of their power-flow project. Ease of implementation; widespread 
availability of spreadsheets; convenient tracking and displaying of numerical results; transpar-
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ency of results that are often obscured by specialized power system analysis programs, are 
among the most cited comments. These responses were obtained from informal conversations 
with students who enrolled in the power courses.  
 
The authors recommend the use of the spreadsheet approach to solve only small power systems, 
perhaps up to three buses. Larger systems such as four- or five-bus systems may still be accom-
modated by adding the necessary rows and columns. However, the size of the spreadsheet may 
become unwieldy, thereby rendering the spreadsheet approach ineffective.  
 
Large systems are more suitably analyzed using specialized software such as PSS/E, Power-
World, or EMTP. These programs are highly sophisticated and requires several hours of training. 
These programs provide the user with a graphical interface so that virtually any power system 
may be simulated. Problems that may be solved using these programs include power flows, fault 
analysis, economic dispatch, among others. The sophistication of such programs may at times 
obscure the inner workings of the numerical methods that produce the simulation results. In this 
regard, the spreadsheet approach offers a more transparent platform for learning fundamentals at 
a formative stage, albeit for small systems. 
 
The spreadsheet approach is effective in other respects such as gaining insight into the numerical 
techniques, making sense of the convergence or divergence of computer-generated solutions, de-
veloping intuition about well- or ill-conditioned systems, and handling “what if” questions with 
relative ease. If the emphasis of a power system course is on fundamentals, spreadsheets offer an 
attractive approach to learning a difficult topic such as the power flow problem. 
 

5.  Conclusions 

In this paper we have presented spreadsheet implementations of two widely used methods for 
solving power-flow problems. The Gauss-Seidel and the Newton-Raphson numerical methods 
are introduced to students in power system analysis courses. Although the mathematical under-
pinnings are found in courses such as numerical analysis, power systems provide a suitable real-
world application upon which constructivist activities can be designed by instructors. Spread-
sheets provide students with an easily accessible tool with which mathematical models of real 
systems can be built and analyzed. Furthermore, spreadsheets lend themselves to answering 
“what if” questions when quantities such as real power, reactive power, or bus voltage change to 
new quiescent operating conditions. 
 
Interested readers who wish to obtain an electronic copy of the spreadsheets presented in this pa-

per are welcome to contact the first author at  mlau@suagm.edu or see Ref. 5 for another ex-

ample. 
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