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WIP: Developing a virtual laboratory for instruction and fine grained
assessment of introductory thermodynamics

Importance

As an undergraduate course, introductory undergraduate thermodynamics is a foundational and
ubiquitous course in engineering and science [1], including mechanical, chemical, and materials
engineering, physics, and chemistry. In many departments, it functions as a “weed out” course,
measuring a student’s interest and proficiency in the field at an early stage in their program [2].
Jacobs & Freud [3] affectionately refer to introductory thermodynamics as an engineering
student’s “rite of passage.”

Unfortunately, thermodynamics is a complex topic that is difficult for many students to
understand and visualize [4], all too often leading to frustration and failure. These difficulties are
evident to thermodynamics instructors: the topic is rich in concepts full of domain-specific
vocabulary, and it usually requires the application of more than one fundamental principle or
equation to analyze any given problem, confusing learners on how these equations interact [5].
Often, applying these principles requires navigating through large reference tables and diagrams
because more familiar mathematical tools of calculus and vector analysis fail to deal with these
phenomena [1]. Furthermore, Thermodynamics suffers from the same problem that plagues
many engineering disciplines: students must not only understand the core concepts and processes
within the discipline, but also master the mathematical tools required to solve numerical
problems. For a large lecture course, this presents a significant issue for assessment. How is an
educator able to formatively identify student misconceptions precisely, accurately and quickly
when the topic is so complex?

The result is that a troublesome percentage of students fail the course or drop their engineering
major because of the class. For example, a study across 55 offerings of introductory
thermodynamics over eight years and nine instructors at the University of Texas, San Antonio,
reports that only 52.7% of course enrolments led to completion, with subsequent attempts having
lower rates than initial attempts [6].

In this Work in Progress paper, we describe a project to develop a fine-grained assessment of
core thermodynamic concepts embedded within an interactive simulation environment known as
a virtual laboratory.

Virtual Laboratories for Thermodynamics Education

Virtual laboratories play an increasingly important role in undergraduate engineering education,
especially following the COVID-19 shutdowns of many in-person laboratory experiences.
Virtual laboratories are digital learning environments that allow learners to conduct
investigations using simulated material and apparatus. They have been studied extensively in
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science and engineering education [7]. They are increasingly utilized in educational settings,
online learning, and training in industry as appropriate alternatives to physical laboratories [8].
Virtual laboratories offer advantages to traditional laboratories in terms of logistics, including
lower costs and less setup time [9], as well as the advantages all online software have for
learning, such as scalability, increased access, and near-zero distribution costs.

Regarding instructional efficacy, many well-controlled comparison studies report no differences
between physical and virtual laboratories [7]. For example, Wiesner and Lan [10] compared
virtual and physical equipment for measuring heat exchange, mass transfer, and humidification.
They found no differences in the resulting performance of chemical engineering students in
terms of underlying engineering principles. Ma and Nickerson [11] reviewed 39 studies
comparing hands-on, simulated, and remote laboratories in engineering education, finding no
differences in their educational effectiveness.

Additional studies describe the unique affordances of virtual laboratories for engineering
education. For example, several studies illustrate the advantages of virtual, interactive
explorations of unobservable phenomena compared with physical experiments of observable
phenomena. For example, university students who investigated simulated electric circuits
showing moving electrons acquired more conceptual knowledge than those using hands-on
materials [12]. Similarly, students using virtual optics materials displaying light rays
outperformed those using physical materials [13]. Studies show virtual experiments can enable
students to use complex inquiry practices to separate variables that might be difficult to use in
physical experiments [14], [15]. There is also the idea that virtual experiments are well suited to
developing conceptual knowledge because, unlike physical instruments, they produce “clean”
data. For example, first-year chemistry students using virtual experiments performed better than
those using a typical laboratory on conceptual understanding measures, partly attributable to the
messy data produced by the physical lab [16]. Finally, Zacharia et al. [9] found that virtual
laboratories offered students more time to experience an experiment and concentrate on its
conceptual aspects than the corresponding physical laboratories because the virtual laboratories
allowed faster manipulation of the materials involved in the experiments of the study’s
curriculum.

Current Practices for Assessing Thermodynamics Understanding

As all educators know, assessing student understanding is critical to offering appropriate
educational interventions. Unfortunately, the topic of thermodynamics, like many engineering
disciplines, contains a complex interdependence between qualitative, conceptual understandings
of the various phenomena and the quantitative, mathematical processes required to solve
problems. In an attempt to disentangle, previous educators have developed several assessment
instruments focused on the conceptual understandings and problem-solving approaches required
by thermodynamics. One of the original assessment instruments is known as the
Thermodynamics Concept Inventory (TCI; See Figure 1) [17] which created a pre/post measure
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for introductory thermodynamics to compare students before and after taking courses,
instructors’ performance, and different institutions. The two-part Thermodynamic Concept
Survey (TCS) [18] is a similar work. The first section focuses on temperature and heat transfer,
while the second concentrates on the first law of thermodynamics and process. Other known
instruments include the Thermodynamic Diagnostic Test (TDT) [19] and the Heat and Energy
Concept Inventory (HECI)[20].

Figure 1. Example Item from the Thermodynamics Concept Inventory.

Each of these assessments follow the multiple-choice structure. While this approach is certainly
compatible with relatively low effort grading, it is not an optimal design. The first problem is
that most evidence for student conceptual thinking is outside of the assessment input, the option
selected, often seen as jottings on paper. It is therefore the full responsibility of the grader to
develop ways to interpret, score, and provide feedback on student work beyond their
multiple-choice selection, if that information is even available. Second, grading and reporting
back to the students takes time, and additional work is required to aggregate individual student
scores into any insights about common misconceptions. It may be days or weeks before the
results of the assessments are communicated to the students, and instructors may never be
supported to see the larger patterns so they can adjust their instructional strategies.

Approaches for Improving Assessment

Embedded assessment has gained prominence as educators and researchers recognize the
limitations of conventional assessment methods in accurately measuring student learning and
providing timely feedback. The approach is rooted in the principles of formative assessment and
authentic assessment, emphasizing the importance of assessing students in the context of their
learning activities [21], [22].

Conceptually, embedded assessment is an educational approach that integrates learner evaluation
within the learning process, aiming to measure and support student learning in real-time. This
method stands in contrast to traditional forms of assessment which are typically administered
separately from instruction. Embedded assessment involves the integration of assessment tasks
into instructional activities, making the assessment process less intrusive and more reflective of
students' actual learning processes [23]. Assessment tasks are designed to be directly relevant to
the learning objectives and often require students to apply their knowledge and skills in authentic
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contexts. This approach enables educators to assess not only the final product of learning but also
the learning process itself, including students’ problem-solving strategies, critical thinking, and
ability to apply knowledge in real-world situations [24].

Embedded assessment comes with many challenges. Teachers must be skilled in designing
assessment tasks and in interpreting the evidence of learning these tasks provide [25]. Due to
embedded assessment’s inherently qualitative approach, it does not naturally scale to many
students easily. Finally, unlike standardized tests, which are designed to ensure consistency and
comparability, embedded assessments are highly contextualized and may vary from one learning
environment to another. Establishing robust criteria and rubrics can help address these concerns,
but it requires ongoing effort and collaboration among educators [26].

Evidence-Centered Design (ECD) provides a systematic approach to principled assessment
design that is compatible with an embedded context [27] but also is compatible with virtual
learning environments and automated analysis [28]. ECD is grounded in the idea that
assessments should be designed around a model of student cognition and learning in specific
content areas, and it emphasizes the collection of evidence to support claims about students'
knowledge, skills, and competencies. ECD also supports the creation of assessments that are fair
and accessible to all students by considering the diversity of learners and the contexts in which
they demonstrate their knowledge and skills.

The ECD framework consists of three interrelated models that provide assessment validity by
design [29]. The student model defines the specific knowledge, skills, and abilities that the
assessment aims to measure. It outlines the content area and the types of tasks or situations in
which these abilities will be demonstrated. The evidence model specifies what evidence is
needed to support claims about a student's knowledge, skills, or abilities. It involves identifying
observable variables or response patterns that indicate the presence of the underlying
competencies being assessed. Bayesian network models are commonly employed for this
analysis. The task model describes the tasks or situations that will elicit the evidence defined in
the evidence model. It includes specifications for designing tasks that are aligned with the
domain model and that will generate the necessary evidence to support claims about student
abilities. Together, these models define an explicit relationship between what a student does
within a specific context, and the claims that can be made about their thinking.

ECD is compatible with digital learning environments, offering the speed of computationally
grading simple multiple choice exams with the richness provided by embedded assessment.
Instead of developing questions for students to answer, assessment designers ask the question:
“What situations can I create that would elicit learner thinking to be demonstrated in an
observable way?’ For example, in the context of a digital simulation, ECD provides designers
with a way to capture meaningful attributes about how a learner interacts with a simulation
problem, defining how each move (e.g. changing a parameter of the simulations input) provides
evidence for (or against) student understanding of some component of the system. This is
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interesting for our problem of assessing thermodynamics because it provides a method to operate
at fine grain sizes (assessing individual concepts separate from the mathematics), while still
scaling to large class sizes easily because student interaction data is easily processed by a
computer (processing the relevance of each student action using a explicit evidence model).

Virtual Laboratories for Thermodynamics Assessment

While there are examples of using games, simulations and virtual laboratories for teaching
thermodynamics concepts [30], [31], [32], little work is well known that utilize these approaches
for assessment. Expanding to other disciplines, et al. [33] developed a virtual laboratory for
teaching and assessing the construction of electronic circuits. The laboratory afforded students a
breadboard and various connectable components that had the potential to simulate a large
number of projects. Following an ECD-inspired approach, the assessment utilized the actions
performed by the students, what they call virtual behavior observation, as evidence for assessing
their abilities, knowledge, and understanding. They used Bayesian networks to model these
constructs and included other components, such as prior knowledge and interface familiarity, to
explore alternate explanations for evidence other than student proficiency.

Project Goals

ThermoVR is a thermodynamics virtual lab for undergraduate instructional purposes. The
laboratory simulates an experiment with water contained in a piston cylinder device. The user
can affect the thermodynamic state of the water by acting on the piston-cylinder device in
various ways (e.g. heat, cool or insulate the system, increase or decrease pressure, fix the piston
in place, etc.) and the simulation responds in terms of a real time visualization of the
piston-cylinder device, numerical outputs as well as a 3d plot of the current thermodynamic state.
This project builds on prior work to develop ThermoVR [32] and now focuses on developing
features that support fine-grained, scalable assessment.

Goal 1: Develop a mechanism to prompt students to interact with the ThermoVR simulation
in particular ways that provide opportunities to assess students' conceptual understanding of
the critical relationships, attributes, and processes for change of five fundamental properties
of thermodynamics (pressure, temperature, volume, entropy, internal energy) across the key
regions (liquid, vapor dome, superheated vapor) for water. Note this goal focuses on
qualitative concepts, not the mathematical machinery required to solve numerical problems.

Goal 2: Develop mechanisms for student-facing reports that support their own
self-assessment and allow them to focus their study on specific areas.

Goal 3: Develop mechanisms for instructors to understand their students both individually
and on aggregate, so they can intervene as they see fit.
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The Conceptual Assessment Framework for ThermoVR

To develop the next version of ThermoVR, which will guide student activity and create
opportunities for students to demonstrate their understanding of thermodynamics principles, we
leverage Evidence Centered Design and develop what Mislevy [27] refers to as a Conceptual
Assessment Framework (CAF).

The Task Model - Defining Observable Student Behaviors in Constructed Contexts. For
ThermoVR, each task is a collection of prompts that integrate instructional prompts with
assessment items, seen within the system as a “lab.” The player is able to select a lab to guide
their interactions using a tablet computer within the virtual environment (Figure 2). The tablet
then loads the lab and prompts students with various steps they will follow to perform the
laboratory experience, such as configuring the apparatus to prepare for the experiment, calling
attention to elements of the simulation they should notice, providing questions for reflection,
providing “sandbox” opportunities to freely experiment, and defining open-ended challenges to
use the tools of the system to achieve particular outcomes. This tablet device is fully integrated
with the simulation and is the readout for virtual instruments. It can monitor and advance when a
pre-programmed target state is reached (e.g., reaching 300 degrees Kelvin) within the
simulation, what we call a “check.” These prompts and checks coalesce into the steps that make
up the lab activity. In terms of the overall ThermoVR project, these labs are being authored and
reviewed by a community of thermodynamics instructors across several midwestern engineering
colleges, and are aligned to the topics in their collective syllabi and thermodynamics textbooks.

Some prompts within a given lab activity are purely instructional, do not produce evidence for
student thinking, and simply instruct the student to perform an action and take notice of the
result. The prompts are grouped together into short sequences of training and are designed to
teach students about the interface and thermodynamics concepts. These prompts follow the
format:

● Use the [specific tool] to …
● Record the current [pressure/temperature/volume, entropy, enthalpy] value
● Observe [some dynamic element of the simulation]

A second category of prompts, however, operates as an embedded assessment and creates
evidence for student thinking. These tasks require students to judge based on their understanding
of the underlying system and use the tools provided to achieve a goal. Assessment items come in
the following formats:

● Increase/Decrease [pressure/temperature/volume] using any tool
● Move to a [pressure/temperature/volume] of [value] using any tool
● Create a constant [pressure/temperature/volume, entropy] condition
● Move to the [liquid/vapor dome/vapor/superheated vapor] region
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When an assessment item is the current step in the lab, the learner receives notification that the
game will evaluate their next move as a formative assessment. Therefore, while failure is
possible (with very low consequences), they should focus on achieving their assigned “task.”
The assessment notification will help to improve validity.

The student's final work product is a path describing all the points reached within the
thermodynamic space during the activity (i.e., particular values of pressure, temperature, volume,
entropy, and internal energy) and the actions performed by the student to achieve that path.
Some parts of this path are obtained by following the prompts. Other path components require
students to use the supplied tools at their discretion to reach certain conditions. The user receives
a visual representation of their path: a line drawn on the 3d thermodynamic graph (see Figure 2)
and a completed checklist on the tablet. This product becomes a collection of time-series
telemetry data events stored in a database for analysis.

Figure 2: Image of a prototype for ThermoVR version 2, with the tablet device on the far left, a
piston-cylinder apparatus in the top middle, controls in the bottom center, and the 3d

thermodynamic graph on the lower right

The Student Model - Defining Variables to Describe Components of Student Thinking. This
assessment will focus on building a model of student understanding of three primary constructs.
These constructs are particularly useful for describing student conceptual knowledge and
informing instruction. They were identified by a review of engineering education literature and
the experiences of the ThermoVR co-PI and co-design community.



Given the nature of the thermodynamics simulator, student actions are effectively limited to nine
controls. Each control represents one physical tool that is plausible in the piston-cylinder
apparatus, such as insulation, a heating element and a weight to place on the piston. Each of the
tools available within the simulation will have some effect on the current state. This effect is
mediated by which (if any) of the thermodynamic properties are being held constant (eg.
constant pressure) and the current region of the state (eg. superheated vapor). Therefore, different
tools have distinct effects based on the current region of the state and any constant conditions
that are at play. For example, if the system is in a state of constant pressure and in the liquid
region, using the heater tool will increase the temperature, until the system reaches the
2-phase/vapor dome region at a barrier called the saturated liquid line. Upon crossing the
saturated liquid line, the state is now in the vapor dome region and temperature will remain
constant even as heat is added, unless the system is first put into a constant volume scenario
using the clamp tool.

Together, understanding the role of each tool in terms of thermodynamic principles, methods for
creating constant conditions and the properties of each of the regions and boundaries are critical
to achievement in the practices of thermodynamics engineering as they allow the student to break
down complex problems into a series of individual steps. Our complete student model (See
Figure 3) attempts to describe these components of understanding by defining a total of 26
individual student model variables, which inform three primary constructs of thermodynamics
properties and the first law of thermodynamics.

Construct 1: Student understanding of the influence of the tools and physical components on
the thermodynamic state. 5 student variables describe student understanding of how each of
the physical tools is related to the thermodynamic state of the system.

Construct 2: Student understanding of physical conditions that create constant
thermodynamic pathways. 4 student variables describe student ability to create steady
pressure, volume, temperature and entropy conditions.

Construct 3: Student understanding of the unique properties of each region. 17 student
variables will describe student understanding of how the thermodynamic properties of water
are influenced by each of the 4 regions, under each of the 4 constant conditions. An
additional variable will describe student understanding of the saturation line that contains the
vapor dome.

For consistency, we construct each variable name from concatenation of the construct (e.g.
“TOOL”), followed by the secondary (i.e “-pressure”) and tertiary attributes (i.e
“-vapor_dome”) if present. This results in variables such as “TOOL-clamps”,
“CONSTANT-pressure-liquid” and “PROPERTY-superheated_vapor-constant_volume”



Figure 3: Visualization of Components of Thermodynamic State to be Assessed

Evidence model - How student actions are interpreted to make claims. The evidence model
describes how different student actions are interpreted when performing a task. In the ThermoVR
assessment, the evidence model is a simple algorithm that is followed whenever an assessment
task is provided to the student, informed by the context of the task type (create a constant
condition / change a thermodynamic property), the current region, and any constant conditions,
resulting in updates to one or more student model variables.

Continuing from the example above, if the water is currently in a liquid state under constant
pressure and the task asks the player to “Increase the temperature of the water to 100 degrees C,”
if the players next move is to use the heater tool, we have evidence that they understand the



effect of the heater concerning temperature, as well as how the temperature changes in the liquid
under constant pressure. As such, we add to the TOOL-heater_and_chiller and
PROPERTY-liquid-pressure. If the task prompt did not inform the player that a constant pressure
condition was active, and therefore the player needed to determine that fact themselves, we also
add to CONSTANT-pressure-liquid. In this way, we use a collection of scoring tables to represent
how the evidence model should interpret each player action following a task prompt, and if any
player model variables should be updated. For the above tasks, the scoring is somewhat complex
as each of the tasks requires multiple skills, therefore more than one student model variable is
updated. On the other hand, simple tasks such as asking the student to “add heat energy to the
system” only require one student skill and therefore only one student model variable is updated.

Unfortunately, a direct line of inference is not available between most observable actions and
claims regarding their unobservable skills. For the example above, where the learner made a
productive move, one interpretation is that they successfully utilized both prerequisite skills, but
an alternate interpretation is that they randomly picked the correct tool, a not-so-unlikely one in
nine chance. Similarly, if they were to make an unproductive move, such as adding a weight on
top of the piston, we cannot be sure which part of the requisite skills they did not possess, or if it
was simply an accidental move. Therefore, each of the student model variables is a latent
variable which must be probabilistically estimated.

To develop these statistical claims, we use a machine learning approach known as Bayesian
Knowledge Tracing (BKT) [34]. BKT has been used and theorized extensively by the
educational assessment community [35] and in particular by artificial intelligence researchers as
student models for intelligent tutoring systems [36]. BKT models individual student skills as a
probability that they will demonstrate mastery on the next opportunity, based on their previous
performances and the following four parameters:

● Probability of Prior Knowledge (p(L0)): This parameter represents the probability that
the student knew the skill before any interaction with the system.

● Probability of Transit (p(T)): This parameter measures the probability the student learns
the skill after attempting a problem related to that skill.

● Probability of Guess (p(G)): This parameter accounts for the likelihood that the student
guesses the answer correctly without actually knowing the skill. It helps distinguish
between true knowledge and lucky guesses.

● Probability of Slip (p(S)): The slip parameter is the probability that the student, despite
knowing the skill, incorrectly answers a problem. This could be due to mistakes,
misunderstandings, or other factors unrelated to their actual knowledge level.

Each of these parameters must be initially estimated for each student model variable. For
ThermoVR, we will use an initial dataset of historical learner performances to provide starting
values for each prior knowledge p(L0) and transit p(T), then update these values at a later date as
more learner data is available. Guess p(G) and slip p(S) values are more easily estimated based
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on the design of the ThermoVR interface itself and the problem being attempted. For example,
given that the interface only provides nine parameters to either raise or lower from the current
value, the player always has a 1 in 18 chance of guessing the correct move, even if they did not
understand the concept.

In the first step following each assessment task, the BKT approach will calculate a conditional
probability of learning p(Lt), for the current task:

If the response is correct, the conditional probability of learning is:
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To understand how these estimations are changing over time, we record the individual updates to
each p(L) student model variable. This data can be visualized as a moment-by-moment learning
curve [38], a plot of the changes to student model variables in each BKT model on the vertical
axis over the count of performances considered on the horizontal axis. This analysis not only
provides us with a simple slope calculation to show performance trends over time, but
indications of exactly when during the educational experience the player demonstrated evidence
of learning.

Capturing, Processing and Reporting Analysis from ThermoVR

While a full description of a data telemetry system are well outside the scope of this paper, the
high-level infrastructure and approaches are easily described. For this work we adopt and extend
the Open Game Data research infrastructure [39] which provides opensource technologies and
conventions for logging “telemetry” data from the ThermoVR system, storing those signals as
time-series data, then processing those data into usable descriptions of a specific student’s
performance. The logging is initiated within the ThermoVR code, which sends one event to a
logging server for each action taken by the user (e.g. selecting the upper clamp tool and pulling
to a maximum volume of 5L), feedback given by the system (e.g. notifying the player that the
state crossed a region boundary), or progression event that takes place within the activity (e.g.
completing a lab activity). Each of these events contains metadata such as an anonymous user
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identification code, timecode, versioning of the application, and various state variables about the
player and simulation. On VR versions of ThermoVR, high frequency position and rotation
values for the head and each hand are also logged. Together these events constitute a time-series
description of the learner interaction, and can be used for analysis or fed back into ThermoVR to
create a full replay of the original interaction for qualitative methods.

Taking this stream of events as input, a collection of features are calculated. Features are
calculated values that aggregate many events into one value that describes a single use of the
ThermoVR tool, what we call a session, or an aggregate of all of a given user's sessions into a
single user metric, or across many users into a population metric. A metric can be as simple as
active_duration or level1_attempts, or more complicated such as an array of values that describe
each change to each student model variable.

These calculated features are made available to a web-based reporting system via requests made
to a RESTful API. The reporting system provides a simple interface to select specific sessions,
users or populations and visualize their features.

Ongoing Research Plan

In Fall of 2023, the initial version of the ThermoVR system [32], which demonstrated the core
simulation and interface features was piloted with small numbers of students in six North
American universities’ engineering courses. Surveys and interviews were conducted with the
students and their instructors and the results were used to identify and correct technical issues
and develop insights into the interest and needs of these audiences.

In Spring of 2024 a second usability pilot and small-scale evaluation was conducted with 9
students at the UW-Madison campus, using the new ThermoVR version containing the structured
laboratory activities and embedded assessment data telemetry. An instructor-created,
multiple-choice instrument was developed using items adapted from the Thermodynamics
Concept inventory and previous quiz and examination questions. Students were given this as an
online pretest, followed by a 30 minute intervention. A post test of the same items was
administered followed by a semi-structured interview developed to elicit data about the usability
of the virtual laboratory. The pilot demonstrated the validity of the approach and technical
readiness for deployment in a full study.

Following one additional round of development based on the pilot, an evaluative study will be
conducted in Fall of 2024 with approximately 180 participants measuring student learning gains
and perceived usage of the assessment reporting. Following a similar protocol as above, the
students will also be given the report from this assessment. The instructor will be given an
aggregate report for all students who used the system. Both students and instructor will report on
their perceptions of ThermoVR as a formative assessment tool and how the reports aided their
teaching and learning goals.
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Conclusion

In this paper we describe a work in progress to develop a new assessment for use in introductory
thermodynamics courses, a critical opportunity for supporting the next generation of engineers.
While much prior assessment work has been done into disentangling the concepts of
thermodynamics topics from the mathematical tools required to solve numerical thermodynamics
problems, the format of the resultant assessments, multiple choice tests, is still problematic.
Drawing from recent advances in assessment design and utilizing machine learning approaches
such as BKT, we have described an assessment tool that is embedded within a virtual laboratory
activity. This assessment promises to describe student skills in a fine grained, 26 dimensional
report using data collected by student interactions with a digital simulation of a piston-cylinder
system. The assessment report can be provided in realtime to the learner to help them direct
study efforts as well as aggregated over an entire class to inform an educator about how to
allocate instruction time. While the project is technically mature, studies are still underway with
evaluative pilot studies taking place in February, 2024 and a full evaluation planned for Fall of
2024.

Thinking forward, we hope this paper outlines a novel approach for teaching and assessing
student thinking in the context of a simulated virtual laboratory environment that could be
applied to engineering disciplines outside of thermodynamics. Beyond our own implementations
and forthcoming evaluation efforts, we hope to see ongoing research to explore the efficacy of
various design elements of virtual laboratories in context of various students’ needs and
strengths. While certainly not every student should study engineering, it is our responsibility to
give those that make an attempt to have the best possible learning experience.
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