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Abstract 
 
Adding an engineering component into an already overcrowded computer science course to 
create a course suitable for the graduation of a potential professional Software Engineer (SE) 
reminds people of the problem of getting a quart into a pint pot — there is far too much material 
and far too little time.  Since Curriculum ’68 was published, designers of computer science 
curricula have been on the horns of a dilemma — what to leave out!  If one is to cover the 
requisite knowledge areas and yet reduce the amount of information which has to be transmitted 
then the obvious solution is to reduce the depth in which that information is studied.  The 
question often asked is whether such a reduction is acceptable in software engineering education.  
In the authors view the real question is whether or not a software engineering student actually 
needs the knowledge of the inner workings of a VLSI chip, CD-ROM, a Zip Drive or Modem 
which is appropriate to a Computer Scientist or Computer Systems Engineer.  We support the 
case that it is not since an SE is a user of computers rather than a maker of them.  Abstraction 
provides an effective means of reducing the volume of information which has to be transmitted 
in the classroom while allowing the students to formulate an adequate conceptual model of the 
content of the knowledge area.  This paper introduces the classroom-proven concept of B-Nodes 
which  present each device within a PC (microprocessor, hard disc drive etc.) as a data 
source/sink capable, to various degrees, of data storage, processing and transmission.  
Independent of architectural detail, experimental work to date has demonstrated that this model 
can accommodate rapid changes in technology, avoiding time-consuming transmission of low 
level detail while maintaining conceptual integrity 
 
1. Volume of material — the perennial problem 
 
Since Curriculum ’68 (CC’68) was published, designers of Computer Science (CS) curricula 
have been on the horns of a dilemma — what to leave out!  CC’68 grouped the subject areas of 
CS into three divisions: ‘information structures and processes’, ‘information processing systems’ 
and ‘methodologies’.  These were further subdivided into a total of 17 subjects which were, in 
turn, further subdivided into 82 individual topics. Then, in discussing ‘Related Areas’ 
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commented that the list was ‘somewhat restricted’ because it was not feasible to list all the areas 
which might be related to a CS curriculum1.  Under the headings ‘Mathematical Sciences’ and 
‘Physical and Engineering Sciences’, the report then listed a further 21 areas of related 
knowledge running from elementary analysis to quantum mechanics.  By 2000, some of the 
subject areas covered by CC’68 had been dropped (e.g. text processing — including justification, 
the design of concordances and applied linguistic analysis) and yet the Draft Version of 
Computing Curricula 2001 (CC’01), in what it described as a ‘Tentative list of topics in the 
computer science body of knowledge’, listed 14 knowledge areas subdivided into 120 topics of 
which 62 were listed as core2.  

 
In Australia, the Institute of Engineers, 
Australia, (IEAust) in its discussion paper on 
Software Engineering (SE) as a Professional 
Engineering Discipline published in March 
of 1999, listed 15 specific areas of expertise 
related to an accreditable SE degree3. These 
were expanded in Appendix B into a sample 
course outline which completely fills a 
three-year undergraduate course.  Given that 
six of the 11 accredited courses are 
baccalaureates of engineering (in SE) which 
tend to be 50% traditional engineering and 
to involve only an extra six months of 
academic study, it can be seen that the 

volume problem persists in that, while the knowledge base expands rapidly, only a fraction of it 
can be taught in a student’s time at university4.  

If one is to cover the requisite knowledge areas and yet reduce the amount of information which 
has to be transmitted (I!i) then the obvious solution is to reduce the depth in which that 
information is studied (D!d).  The question often asked is whether such a reduction is 
acceptable in SE education.  In the authors’ view the real question is whether or not a SE student 
actually needs the knowledge of the inner workings of a VLSI chip, CD-ROM, a Zip Drive or 
Modem which is appropriate to a Computer Scientist or Computer Systems Engineer.  We 
support the case that it is not since an SE is a user of computers rather than a maker of them and 
that students need to be familiar with the tools of the trade at the user (not designer) level5.  
Therefore, we believe that a conceptual understanding of such devices would adequately serve 
— at least in the initial stages.  This attitude is based on a constructivist approach to the 
cognitive process. 
 
Constructivism is a theory of learning.  It holds that students construct knowledge rather than 
merely receive it.  It has been extremely influential in science and mathematics and is often 
referred to as the dominant theory of learning today6.    Constructivists view the learner as a 
‘active entity’ and hold that knowledge is constructed in the learner’s mind rather than 
transmitted from teacher to learner7.  Central to constructivist theory is the concept of the ‘mental 

 

Figure 1 : Depth Reduction 
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model’ and that these  mental models 
are expanded by the assimilation of 
new information received through our 
experiences8.   
 
All of us have mental models of the 
things around us.  New experiences 
challenge those models and, in 
response to those challenges, we 
modify and expand our models.  This 
continuous construction and 
re-construction of mental models is 
the constructivist process of learning.  
Whether or not our current model is 
theoretically perfect is largely 
irrelevant.  What matters is that, in 
our current environment and therefore subject to our current experiences, the model is adequate.  
It is all a matter of perception. 
Those of us who learned computing in a UNIX (or DOS) environment often regard the youth of 
today, with totally GUI experience, as being disadvantaged.  “Those poor kids,” we say, “don’t 
know how it works.”  What we must bear in mind is that, while the student’s mental model of a 
computer might be somewhat primitive from our point of view (“an electronic brain” or merely 
“a black box”), the model is effective — it works.  As Ben-Ari points out that even after a full 
semester of Pascal, students’ knowledge of the conceptual machine underlying Pascal can be 
very fuzzy but arguing about ‘alternative frameworks’ of language syntax or semantics might 
only be a cause of psychological grief for the students6.  After all, this is the basis of the 
Object-Oriented Paradigm.  Encapsulation and Information Hiding lie at the heart of OO.  Once 
an object has been created and has methods, what does it matter how the methods perform their 
functions? What does matter is that they perform their functions.  It is the concept of what the 
object is supposed to do — the ‘mental model’ of the object —  which makes that object useable.  
This is abstraction, and this is why the authors hold that an SE can operate on a reduced depth of 
understanding of the intricacies of CS.  As long as the SE can understand that a VLSI chip can 
handle data at a specified rate and perform a specified range of functions, the knowledge of 
electrons following golden paths across a silicon chip is of little or no consequence.  Hence we 
can reduce the depth of the volume of knowledge simply by abstracting away the detail.  At 
Edith Cowan University (ECU), a new (1998) syllabus does just that. 
 
2. A New Computer Technology Modelling Abstraction 
 
The ACM/IEEE Computing Curriculum 1991 defines international benchmark standards in 
computer architecture education as a pre-requisite chain of seven units.  However, computer 
design and manufacture has changed rapidly in the last decade. Assembly Level Manufacturing, 
Application Specific Integrated Circuits and Surface Mounted Technology have all led to an 
ever-decreasing unit price and a resultant low cost PC with a standard architecture and modular 

 

Figure 2 : Abstraction of Data 
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construction. The relevance of the standard computer architecture is therefore in question and yet 
according to the 1991 ACM/IEEE-CS report, curriculum planning should be driven by the 
outcomes expected for students9.    In 1996 an ECU market audit led to a set of guidelines 
developed for the type of skills expected of computer science graduates entering the field of 
computer and network support10.  Using the criteria developed a random selection of ten, final 
year Edith Cowan University (ECU) computer science undergraduates were interviewed from a 
graduating population of approximately one hundred.  The computer science degree at ECU is 
level one accredited, the highest, by the Australian Computer Society yet none of the students 
interviewed had the skills expected by prospective employers.  Interviews with graduates 
employed in the field indicated that they were largely self-taught.  The lack of relevance of much 
of the technical detail in the standard computer technology curriculum appeared to be the single 
most important factor for this lack of technical knowledge and the authors hold that an effective 
solution to this ‘detail overload’ is abstraction.  According to Clements within the field of 
computer technology education academics must continually examine and update the curriculum, 
raising the level of abstraction4  which is in keeping with the ACM/IEEE Computing Curriculum 
1991 in which abstraction is a recurring concept fundamental to computer science9.   
 
Models are used as a means of providing abstraction and hence aids to communication and 
controlling detail.  Diagrammatic models should have the qualities of being complete, clear and 
consistent.  Consistency is ensured by the use of formal rules and clarity by the use of only a few 
abstract symbols. Levelling, in which complex systems can be progressively decomposed, 
provides completeness. According to Cooling11, there are two main types of diagram: high level 
and low level. High level diagrams are task oriented and show the overall system structure with 
its major sub-units. Such diagrams describe the overall function of the design and interactions 
between both the sub-systems and the environment. The main emphasis is ‘what does the system 
do’ and the resultant design is therefore task oriented. According to Cooling, ‘Good high-level 
diagrams are simple and clear, bringing out the essential major features of a system’. By contrast, 
low-level diagrams are solution oriented and must be able to handle considerable detail. The 
main emphasis is ‘how does the system work’.  However, models should have the following 
characteristics: diagrammatic, self-documenting, easy to use, control detail and allow 
hierarchical top down decomposition. Computer technology can be modelled using symbolic 
Boolean algebra (NOR, NAND gates) without the complexity of their implementation in 
different switching technologies eg TTL, CMOS, BICOMS etc. The underlying switching 
technology is not relevant at this higher level of abstraction. These gates may be implemented 
using solid-state electronic switches or even gas state electronics i.e. thermionic valves. At this 
lower level, the basic implementations of solid state switching may be described by models 
directly relevant to engineers at this level of operation. Similarly details of semiconductor 
switching may be modelled using abstractions independent of the underlying details of quantum 
mechanics. Logic gates may be connected to create combinatorial and sequential circuits and 
hence functional units such as Read Only Memory (ROM) etc. Such functional units may also be 
modelled but using a higher level of abstraction. At an even higher level of abstraction computer 
technology can be modelled as a collection of programmable registers. Computer technology can 
therefore be described using a progressive range of models based on different levels of detail e.g. 
semiconductors, transistors, digital circuits.  
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Hardware Description Languages offer precise modelling notation, however such notation may 
not be suitable for a first year course in computer technology. Based on this modelling technique 
a new pedagogical framework for teaching computer and network technology was designed, 
implemented and evaluated. Using this modelling technique each device within a PC 
(microprocessor, hard disc drive etc) is treated as a node that is a data source/sink capable of, to 
various degrees, data storage, processing and transmission.  Results have shown that even though 
technical detail is lost, this model is conceptually simple, controls detail by abstraction and may 
allow students to easily make viable constructs of knowledge based on their own experience. 
Work to date indicates that modelling the PC as such a collection of nodes provides a good 
constructivist framework allowing technical detail to be introduced in a controlled, top-down 
manner that is readily understandable to students from all disciplines. The nodal model provides 
abstraction and hence is independent of architectural detail and can therefore accommodate  
rapid changes in technology.  Significantly the lower levels of technical detail such as digital 
techniques are not taught. 
 
3. Benchmarks and bandwidth 
 
Consumer magazines use benchmark suites to evaluate PCs and publish their results to provide a 

basis for comparison.  Results, however, can 
merely be confusing.  Consider Table 1.  In 
some tests one machine performs better than 
the other and in other cases the situation is 
reversed.  Consider the range of values 
displayed.  These inconsistent and ambiguous 
results raise a lot of questions.  Some examples 
are:  (1) What difference in performance can a 
user expect if the benchmark value result is 
higher by one or two units — or a factor of 
ten? (2) What difference in performance can a 
user expect between a Pentium 100 and a 

Pentium 200?  (3) As a user, how is the difference in performance manifested and perceived?  
(4)How do you compare the performance of a hard disc drive to that of a microprocessor? 
 
This is the sort of confusion which faced a team from ECU teaching a course in hardware 
maintenance.  They concluded that benchmark suites did not provide a useful basis for a 
conceptual model of a PC for the students at a lower undergraduate level who form the majority 
in their classes.  To be of practical value for undergraduates — or PC users in general — a 
measurement standard must be relevant to human dimensions or perceptions (and, preferably, 
use  reasonably sized decimal units).  Bandwidth was the unit selected. 
 
4. Making Bandwidth User-Friendly 
 
Many of the students in the class come from outside mainstream CS, some from Multimedia, 

Table 1 : PC Benchmark Suite 

PC Benchmark Suite 
 
Benchmark 

Gateway 
G6 300 

IBM 
Aptiva 
EQ3 

Business Winstone 98 20.63 18.33 
CD-ROM WinMark 98: Overall 1,556.67 1,350 
CPUMark 32 772 550.33 
Business Disk WinMark 98 1,380 939 
High-End Disk WinMark 98 3,783.33 2,736.67 
Business Graphics WinMark 98 93.13 105.67 

High-End Graphics WinMark 98 146 130 
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some from Education courses, some from the 
Business school, some from other Universities 
(this remains the only unit of its type available in 
Australia).  For most of these people, bits, Bytes 
and Megabytes are just as abstract and vague as 
Whetstones or Dhrystones so the team looked for a 
common unit in which to express bandwidth.  
They realised that PC users work in a GUI 
environment, and that a major concern was the 
response time of the machine — how fast the 
screen would change — so the team decided to measure the performance of a machine, or part of 
a machine, by the time it took to transfer the amount of data required to support a full-screen 
image.  Frames per second was then the chosen unit, being a model readily acceptable to people 
from outside of the computing mainstream but one that is, later in a CS course, readily 
transmutable back into Megabytes.   
 
5. A New Benchmark 
 
Each hardware node (microprocessor, hard disc drive etc) could now be treated as a quantifiable 
data source/sink — effectively a ‘black box’ — measured in Frames or MB, with an associated 
data transfer characteristic (Frames/s or MB/s). (The nodes are now referred to as B-nodes 
(Bandwidth-nodes).) This approach allows the performance of every node and data path to be 
assessed by a simple, common measurement — bandwidth — where  

Bandwidth = Clock Speed x Data Path Width 
 with the common units of Frames/s (MB/s).  (ref: Table 2) 
 
6. Testing the New Unit 
 
A ‘C’ program was used to transfer data between two nodes, a Hard Disc Drive (HDD) and 
Synchronous Dynamic RAM (SDRAM), flagging the start and stop of this operation on the 
parallel port. An oscilloscope (100 micro second resolution), connected to this port measured the 
data transfer rate in MB/s.  The team were able to detect the influence of HDD caching and also 
track and cylinder latency thus verifying the experimental method. 
 
To a first approximation, smooth caricature animation requires approximately 5 frames/s 
(5.85MB/s). (Obviously sub multiples of this unit are possible such as quarter screen images and 
reduced colour palette such as 1 byte per pixel.) A single, uncompressed 640x480, 4bytes/pixel-
video image was generated and transferred from the HDD to both SDRAM and a third node, the 
video adapter card. The data transfer rate from HDD to SDRAM was 1.48MB/s, which can be 
expressed as 1.21 frames/s. From the HDD to video adapter card the data rate was 1.37MB/s i.e. 
1.1 frames/s.  The data transfer rate for the video card is specified as 18.6MB/s i.e. 15.1 frames/s.  
Obviously, the limiting factor here is the HDD which is unable to provide  bandwidth for smooth 
motion in an animation sequence. 
 

Table 2 : Bandwidth 

Bandwidth 
Device Clock 

Speed 
(MHz) 

Data 
Width 
(Bytes) 

Bandwidth 
(MB/s) 
B=CxD 

Processor 400 8 3200 
DRAM 16 8 128 
Hard Disc 60rp 90KB 5.2 
CROM   4.6 
ISA Bus 8 2 16 
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Nodes typically operate sub-optimally due to their operational limitations and also the interaction 
between other slower nodes.  For example, a microprocessor may need two or more clock cycles 
to execute an instruction.  Similarly a data bus may need multiple clock cycles to transfer a 
single data word.  The simple bandwidth equation can be modified to take this into account: 

Bandwidth = Clock x Data Path Width x Efficiency. 
The Intel 8088/86 required a memory cycle time of 4 clocks cycles (Efficiency = ¼) however, 
for the Intel 80x86 series, including the Pentium, the memory cycle time consists of only 2 
clocks (Efficiency = ½) for external DRAM  A 100Mhz Pentium has, therefore, a bandwidth of 
400MB/s.   

B = C x D x E 
B = 100(MHz) x 8 (bytes) x 0.5 = 400 

Other devices can be modelled in a similar manner.  
 
B-nodes also allow recursive decomposition. Hence a PC can be described as a B-node or a 
collection of devices all modelled as B-nodes. Each device can also be modelled as a collection 
of B-nodes.  By example a hard disc drive, itself a B-node, can be decomposed into B-nodes that 
represent the electromechanical devices (motors, CHS architecture) and the hard disc controller 
(ENDEC, ECC, etc).   
 
7. In-Class Application 
 
In 1998 the B-node model was used in the classroom for the first time. Using this conceptual 
framework (“mental model”) the PC is considered as a series of nodes that can store, process 
and transfer data.  Student understanding was evaluated by means of two assignments in which 
they were required to obtain the technical specifications for a PC and construct a nodal model.  
(Prior to the introduction of the B-node model most students were unable to predict the likely 
performance of a PC and identify nodes (devices) that would significantly handicap performance 
— student assignments resulted almost exclusively in a list of hardware details copied directly 
from technical literature with little or no critical analysis.) 
One student wrote: “The lack of meaningful and comparable technical specifications makes the 
task of calculating the performance of a PC and it’s individual components a difficult one. The 
computer industry appears to be a law unto itself, with incomplete or non-existent technical 
specifications. The use of standards, terms and abbreviations are not comparable across different 
systems or manufacturers. This all leads to frustration and confusion from consumers and users 
of these computer systems and components.”  Further, when given technical specifications for a 
PC: “Sounds very impressive, yet by undertaking the exercise of converting to the components 
common units the relative performance of the PC and it’s individual components can be 
measured and conclusions drawn. You will finally be able to see exactly what you are 
purchasing, its strengths, weaknesses and overall value.” 
 
8. Conclusions 
 
Abstraction provides an effective means of reducing the volume of information which has to be 
transmitted in the classroom while allowing the students to formulate an adequate conceptual 
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model of the content of the knowledge 
area.  B-Nodes present each device within 
a PC (microprocessor, hard disc drive etc.) 
as a data source/sink capable, to various 
degrees, of data storage, processing and 
transmission.  Independent of architectural 
detail, the model can, therefore, 
accommodate rapid changes in 
technology.  Lower level of technical 
detail such as digital techniques need not 
be taught in the initial stages of a degree 
yet this detail is controlled by the 
abstraction and may be introduced — 
expanding the student’s ‘mental model’ — 
later in the course. 
 
Benchmarking by bandwidth has been shown to be an effective means of cutting through the 
confusion of benchmark suites as displayed in Table 1.  It is simple, readily measured and, above 
all, readily understood.  Abstraction of megabytes into frames per second has proven an effective 
means of delivering the concept of relative hardware performance even to people from outside of 
the computing mainstream while preserving the integrity of the underlying technical detail.  An 
independent review of the Computer Installation and Maintenance (CIM) unit (utilising these 
abstractions as part of the pedagogical technique) conducted by Dr Tony Fetherston of the Multi-
Media and Learning Technologies department at ECU found that: “80% [of students] would 
recommend this unit; 75% found the practical sessions useful; 70% found the unit relevant to 
their needs and 55% think this should be a compulsory unit.”12    Another metric of the success 
of the hardware units is that of student demand for those units.  “The response from students was 
overwhelming.  The initial quota of 100 students for CIM was exceeded with 118 students 
enrolling…  The student attrition rate was 8.5% with a subsequent unit failure rate of less than 
10%.”10   
 
Abstraction, therefore, has, in the view of the authors, proven to be an effective tool for reducing 
the quantity of detail which needs to be transmitted in the classroom.  We believe that its 
application in other subjects holds the key to the creation of SE curricula which cover the 
necessary CS areas of knowledge while preserving time and space for engineering and the 
physical sciences.   
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