
Paper ID #26048

Top Down and From Scratch – A hybrid Approach of Teaching Real Time
Embedded Operating System

Dr. Zhaohong Wang, California State University, Chico

Dr. Zhaohong Wang received his Ph.D. in Electrical Engineering from University of Kentucky in 2016.
Prior to joining the faculty of EECE at CSU, Chico, he had worked as an embedded system engineer
and software engineer throughout his graduate study. His teaching interests include embedded systems,
computer networks, and digital signal processing. His current research is about algorithm design for
digital signal processing in the encrypted domain and Internet of Things. He has been an active member
of IEEE with the Signal Processing Society and Computational Intelligence Society since 2012 and 2016
respectively.

Dr. Jing Guo, California State University, Chico

Dr. Jing Guo got her PhD in Epidemiology and Biostatistics from University of Kentucky in May, 2015.
She has worked as a statistician at Center of Healthcare Services Research at University of Kentucky
before she joined California State University, Chico as a lecturer. Her research interests include machine
learning, precision medicine, and cancer epidemiology. She has taught courses in statistics, research
methodology in nutritional science, and research methods for healthcare education.

c©American Society for Engineering Education, 2019

Top Down and From Scratch - A hybrid Approach of Teaching Real Time

Embedded Operating System

Zhaohong Wang, Jing Guo

California State University, Chico

1. INTRODUCTION

Embedded system design and implementation is a key component in the undergraduate computer

engineering curriculum. In an era of mobile and ubiquitous computing, a competent embedded

device should have a real-time operating system (RTOS) to make full use of its potentials and to

accommodate task needs. Deploying an RTOS also makes the programming job of embedded

system engineers easier. Instead of embedded system engineers writing their own code to deal

with the complicated scheduling among tasks, an RTOS provides the mechanism of scheduling

as part of the RTOS’s built-in features. A suitable RTOS helps the designer to focus on the

application or computing tasks of the embedded system without worrying about the processor

level configuration. Hence, it is not a surprise that real-time embedded system has a strong

demand from industry. A good understanding of RTOS opens doors for many high-tech jobs for

our students. Students would benefit a lot if they have the skill set of real-time embedded

systems.

The course of Embedded Real Time Operating Systems (RTOS) is an important major course for

the students in computer engineering. Students from other majors, like electrical engineering and

mechatronics engineering, also take the RTOS course.

However, teaching an RTOS course is really challenging. There are mainly two reasons. The

first reason lies in the theoretical design of RTOS. An RTOS course is a highly comprehensive

course that is built upon the knowledge of computer architecture, peripheral interfacing, and data

structures. In addition to a rich set of pre-requisite knowledge, the design of RTOS involves key

engineering ideas such as resource management, efficiency, and complexity. The second reason

is the fast development of RTOS. Practically, there are quite a few commercial RTOS ready for

use. Each of them has its strengths and weaknesses, depending on the specific application

scenario. It becomes a difficult choice that which one is the best fit to our students. Learning a

specific RTOS has the benefit of being able to utilize it immediately for projects. Nonetheless,

the fast development and updates on the area of RTOS may cause the knowledge learned from

one specific RTOS outdated in some time and not applicable to another RTOS.

Traditionally, teaching and learning RTOS are implemented in the following ways. First, we

teach the students the design principles of RTOS and show them a ready-to use commercial

RTOS. We call this a “top-down” approach. The benefit is that students will be able to

immediately deploy that specific RTOS [1]. However, without a thorough understanding of why

and how tasks are created and managed by the RTOS, students lack the skill set to pick up a new

RTOS as it comes out [2]. Second, we can teach RTOS by designing and implementing it from

scratch. We call it a “from-scratch” approach. This second approach nicely exposes the design

and implementation details of an RTOS [3]. The limitation of the “from-scratch” approach is that

it may become too theoretical but not giving students enough practical skills in deploying state-

of-art architectures [4]. The inadequate facts observed in the two previous approaches motivate

us to design a new approach. Namely, we can use a “hybrid” approach by showing students both

a commercial RTOS and a from scratch design.

Our specific research question is, among the three possible ways, is the “hybrid” the best in

terms of student learning attainment of the RTOS knowledge? Our hypothesis is, teaching one

method misses some understanding of the RTOS.

In this paper, we describe our innovative and effective way of teaching RTOS using a “hybrid”

approach. To start with, we adopt the ARM Cortex-M and Cortex-A architectures, the most

popular architectures in embedded systems. We then deploy a combinate “top-down” and “from

scratch” hybrid approach to teach RTOS. The “top-down” approach utilizes an existing RTOS

from ARM itself, the Keil RTX. Teaching RTX introduces quickly how a real time application

may be designed and implemented. It also introduces high level behaviors and design ideas of an

RTOS. After learning RTX, students will be able to immediately apply it to their senior design

projects. They have had a working knowledge of RTOS and become curious to learn why things

work. Next, the “from scratch” approach addresses the question of why things work in RTOS.

The “from scratch” approach teaches how a complete RTOS is built from scratch, i.e., from the

very first line of code in ARM’s assembly language. The “from scratch” part also addresses

teaching the theoretical part of RTOS. Moreover, students will appreciate the many common

design principles in RTOS that are not obvious in ready-to-use commercial RTOSes like RTX.

Specifically, we described what components in RTOS are essential and implement them from

scratch. Learning the “from scratch” part prepares students with a solid theoretical foundation to

learn a new RTOS in the future.

Our main contribution is to show that our “hybrid” approach of teaching RTOS has proved to be

effective in students’ learning attainment of the RTOS knowledge. The conclusion is drawn from

quantitative data analysis about students’ evaluation on their learning experience and outcomes.

Our data analysis specifically reveals that the “from scratch” part does significantly help students

understand the processor level configuration than the “top-down” approach.

The remaining of the paper is organized in as follows. Section 2 reviews related work in teaching

and learning RTOS. Section 3 describes our proposed “hybrid” approach. Section 4 explains our

data analysis and our main discoveries. We conclude our paper and point to future work in

Section 5.

2. RELATED WORK

The importance of RTOS has caught the attention by educators in the beginning of the 21st

century. Since then, research on how to effectively teach RTOS in many scenarios continues

until now. A simulator was developed to show the competing scheduling of 16 tasks on

microprocessors [5]. The approach in [5] is basically an effort of showing the operating system

“from bottom up”. The simulator saved the instructor and students a lot of time setting up

physical hardware. Therefore, it facilitated the teaching and learning of RTOS. Due to quick

evolution in technology, the idea of the proposed simulator could be implemented by the popular

virtual machine technology today. A Capability-Innovation-Motive (CIM) teaching model was

applied to teaching RTOS in the flipped classroom setting [7]. A kernel tracing tool has been

used in explaining the concepts in the GNU/Linux Operating System. The target is not really an

RTOS, however, the method reveals that understanding the internal mechanism is the key to

understand any operating system [8]. A focus on the networking aspect of the RTOS kernel was

explained by teaching the CAN bus. The emphasis was to make clear the networking part of the

RTOS [9]. Laboratories were developed for teaching RTOS. For example, a virtual machine

environment was introduced to reduce the setup time [10]. A commercial grade open source

RTOS, FreeRTOS, was taught to show the deployment of RTOS. The emphasis was on using the

FreeRTOS but not designing an RTOS [11]. The approach in [11] is a “top-down” approach of

teaching RTOS.

As more and more commercial RTOS come to the market, learning a new specific RTOS may

become more frequent. For example, as mobile phones transit to “smart phones”, operating

systems suitable for smart phones have been introduced. The QNX operating system used to be

the one on BlackBerry Phones [12]. VxWORKS is among the industry’s leading RTOSes for

Internet of Things [13].

In order to comprehend new RTOS quickly, the interest on teaching and learning RTOS shifts to

showing how an RTOS should be designed. This line of work is of the “from-scratch” approach.

In fact, an experienced industry engineer started the work of showing the internal kernel design

of an RTOS. The designer of the popular tiny µC/OS described the design principles and

revealed its code [3]. A modern updated version based on [3] for a new microcontroller is

presented in [13]. In academia, experts also try to educate students through design principles of

an RTOS [2]. A noticeable “from-scratch” design is described in detail for the ARM Cortex-M4

processor [14]. A detailed RTOS design that is supposed to run on ARM 9 is presented [15].

Teaching an RTOS in a “top-down” approach is a typical traditional way. While there are quite a

few work on showing the deployment of RTOS from a “top-down” approach, the design details

are not obvious from using the RTOS. It became our motivation to show the design details for a

much deeper understanding of the RTOS. A “hybrid” approach of showing both the use cases of

an RTOS and its design details is missing in the literature.

3. THE PROPOSED APPROACH

In the past, observing the shortcomings of the “top-down” approach missing technical design

details, we taught the RTOS in a “from scratch” way by showing the internal design and

implementation of RTOS. The “from scratch” design is denoted as EOS. We wished to equip

students with the ability of learning any new RTOS in their future career after understanding

EOS. However, we still felt that the “from scratch” may be further improved by also showing a

commercial RTOS. Our hypothesis was that the “from scratch” approach may miss the

deployable convenience of a commercial RTOS, and the “top-down” approach misses technical

details that the “from scratch” may complement.

Therefore, in the most recent offering of the RTOS course, we designed a “hybrid” teaching

approach by showing both the EOS and RTX, a commercial RTOS from ARM. The target

microprocessor running RTOSes is ARM Cortex-M4, a very popular microprocessor for

embedded computing.

We designed our RTOS course to cover the following topics, as listed in Table I.

Table I: Topics Covered in the “Hybrid” Approach of Teaching RTOS

Topics
Learning Outcome

the ARM architecture, programmer's model,

ARM instructions

Set up the development environment; get

familiar with the experiment process

Assembly with C programming; device

drivers

Be able to write useful device driver programs

for the board

Exceptions and interrupts, interrupts

processing (IRQ)

Understand key characteristics that enable

real-time responses

interrupt-driven device drivers
Be able to write typical interrupt-driven

device drivers

vectored interrupts; nested interrupts
Implement nested interrupts

Multitasking; Context switch; dynamic

processes;

Write process management programs

Process synchronization: sleep/wakeup
Design even-driven multitasking system using

sleep/wakeup

Semaphores; process communication
Design even-driven multitasking system using

semaphores

Uniprocessor (UP) Embedded System Kernel
Implement preemptive kernels

Memory Management Unit (MMU) in ARM;
Write programs of memory paging by section

 Memory managing schemes including one-

level sections and two-level static and

dynamic paging

Write programs of memory paging by pages;

translating high virtual addresses.

User mode processes with a private user mode

virtual address space

Implement an EOS with kernel and user

modes

Processes in domains
Write domain-specific applications.

The topics listed in Table I could be sequentially classified into five parts. According to the five

parts, we taught EOS and RTX in the following stages. First, we started from introducing the

architecture of our target microprocessor. Second, we showed how a microprocessor began to

run its first line of code in the assembly language. Third, we explain how and why a

microprocessor such as ARM Cortex-M4 can respond to tasks in a real-time sense. The first

three parts/stages were explained in EOS. The reason is that RTX did not allow us to change its

code for showing the internal mechanism.

Fourth, we introduced the concepts of multitasking. We used RTX to demonstrate concepts like

threads, thread synchronization, operating system services such as timing management, and

inter-thread communication.

Fifth, we explained the design and implementation of concepts from what we have seen and tried

in RTX. The design and implementation were illustrated using EOS.

The rationale behind the above-mentioned stages is to show students a complete computing

software system. We have the RTX in part four before EOS, because concrete working examples

gave students direct experience of the concepts in RTOS. After stage four, students were much

more ready to accept the explanation why those concepts work through a detailed

implementation in EOS.

At the end of the course, students went back to compare the RTX and EOS side by side. The last

stage gave them a connection between “how” RTOS should be designed and “where” RTOS can

be used. Students also participated in a voluntary survey about their learning attainment and

experience in the “hybrid” approach. The data analysis and its interpretation are described in the

next section.

4. INTERPRETATION AND DISCUSSION OF THE RESULTS

In this section, we present our main discoveries of the data analysis. The data analysis validates

our hypothesis. EOS does help students learn IRQ that is less obvious in RTX.

4.1 Research Questions:

The first research question was whether students’ confidence in understanding RTOS after

learning both EOS and RTX was higher than learning only EOS.

The second research question was whether students’ rate on the value of learning both EOS and

RTX was higher than learning only EOS for the course of RTOS.

The third research question was how EOS and RTX complement each other in understanding

different areas of RTOS.

4.2 Survey Questions:

In the survey, one item asked students to report their confidence in understanding RTOS after

learning only EOS, while another item asked students to report their confidence in understanding

RTOS after learning both EOS and RTX. Students’ responses to each item have five options

ranging from 1 (lowest) to 5 (highest). Students’ value on learning only EOS was assessed using

the following question: “How would you rate the value of learning only EOS?” Similarly,

students’ value on learning both EOS and RTX was assessed using the following question: “How

would you rate the value of learning both EOS and RTX?” The response options of the above

two questions range from 1 to 5 (1. Poor 2. Below average 3. Average 4. Above average 5.

Excellent).

To address the third research question, two items asked students the following question “After

learning EOS, which of the following areas do you feel you have a better understanding?” and

“After learning RTX, which of the following areas do you feel you have a better understanding?”

There are seven response options to the above two questions (A. System boot up B. IRQ set up

C. Process/thread communication and synchronization D. Event driven design pattern E. Task

scheduling F. Memory management G. CPU architecture).

4.3 Data Analysis and Discussion on the Results

In our RTOS class, there were 21 students. All of them were given the survey. A total of 20

students responded to the survey and there was no missing data. All their data were used for

analysis. The data was analyzed using descriptive statistics, such as median and range, because

the data was not normal distributed. We used Wilcoxon signed ranks test to address the first two

research questions and McNemar's test to answer the third research question.

We first discuss what we found for the first research question: the confidence of students’

understanding of RTOS after learning EOS and RTX has increased compared to learning only

EOS. The range of the students’ reported confidence in understanding RTOS after learning only

EOS was from 2 to 4 with median 3, while the range of the students’ reported confidence in

understanding RTOS after learning both EOS and RTX was from 2 to 5 with median 4. Results

from Wilcoxon signed ranks test [16] indicated that the students’ reported confidence in

understanding RTOS after learning both EOS and RTX was significantly higher than learning

only EOS (P=0.0313).

For our second research question, we found that students’ rate on the value of learning both EOS

and RTX was higher than learning only EOS. The range of the students’ reported value of

learning EOS was from 2 to 5 with median 3, while the range of the students’ reported value of

learning both EOS and RTX was from 2 to 5 with median 4. Results from Wilcoxon signed ranks

test [11] indicated that the students’ reported value of learning both EOS and RTX was

significantly higher than learning only EOS (P=0.0352).

For our third research question, we found that EOS and RTX complement each other in

understanding different areas of RTOS. Figure 1 shows the percentage of students who

responded having better understanding in seven different areas after learning EOS or after

learning RTX. From Figure 1, 55% of students responded having better understanding of IRQ set

up after learning EOS, while only 25% students responded having better understanding of IRQ

set up after learning RTX. Result from McNemar test [17] showed that this difference was

statistically significant (P = 0.0313).

Figure 1. Percentage of students responding having better understanding in different areas after

learning RTX or EOS

Therefore, the results validate our hypothesis that the deployable side of RTX does contribute to

students learning after they had exposure to EOS. The result is a positive evidence of the

effectiveness of the “hybrid” approach.

Finally, we would like to discuss the limitations of our study. The sample size in this study is

small. Therefore, it could not give us more power if given a small effect size. We also

acknowledged that it is better to use a validated survey specifically designed for our research

questions. However, there was not an available survey for our research. Therefore, we

specifically designed the survey questions related to our three research questions. We have

considered why these designed questions could answer our research questions. We purposely

worded our survey to ask for answers to our research questions. For example, we explicitly asked

about the level of confidence in understanding RTOS after learning EOS and confidence in

understanding RTOS after learning both EOS and RTX. For the above purpose, we used the

questions “What is your level of confidence in understanding RTOS after learning EOS?” and

“What is your level of confidence in understanding RTOS after learning both EOS and RTX?”

Another limitation of this study is that the reliability and validity of the measurements were not

reported. Our research questions focused on the comparison rather than the measurements

themselves. By asking the similar questions, we expect a better reliability and validity on the

results of the comparisons. In the future, it would be desirable to design a set of questions to test

the reliability and validity of the survey on the measurements.

5. CONCLUSION AND FUTURE WORK

Some aspects of existing approaches to teaching RTOS open paths to improvement. Traditional

ways of teaching an RTOS could be viewed as “top-down”. It shows how embedded system

engineers may deploy an RTOS by using its application programming interfaces (API). A second

traditional way of teaching RTOS is to show the internal design from scratch. Both methods have

merit but may miss some valuable information toward students learning outcomes. Our “hybrid”

approach to RTOSes combined both the “top-down” and “from scratch” methods. Our

hypothesis is that a combination of the two traditional approach may further improve the learning

outcome. Student survey in terms of confidence in understanding RTOS validated out hypothesis

quantitatively. In addition, from students’ point of view, the value of the “hybrid” approach is

statistical significantly higher than the past “from-scratch” approach. Moreover, the two

traditional methods complement each other. The implication of our study is that a thorough

knowledge of both the kernel design and the API deployment strengthens the understanding of

both. A future direction of the work could be to further determine other factors that EOS may

contribute to in addition to the IRQ topic. In the future, it would also be desirable to design a set

of questions to test the reliability and validity of the survey on the measurements.

6. REFERENCE

[1] Andrus, Jeremy, and Jason Nieh. "Teaching operating systems using android." In

Proceedings of the 43rd ACM technical symposium on Computer Science Education, pp. 613-

618. ACM, 2012.

[2] Stallings, William, and Moumita Mitra Manna. Operating systems: internals and design

principles. Pearson, 2015.

[3] Labrosse, Jean J. MicroC/OS-II: The Real Time Kernel. CRC Press, 2002.

[4] Catarinucci, Luca, Danilo De Donno, Luca Mainetti, Luca Palano, Luigi Patrono, Maria

Laura Stefanizzi, and Luciano Tarricone. "An IoT-aware architecture for smart healthcare

systems." IEEE Internet of Things Journal 2, no. 6 (2015): 515-526.

[5] Pack, D., and Barrett, S., "Real Time Operating Systems: A Visual Simulator", in 2004

American Society of Engineering Education Annual Conference, Salt Lake City, Utah. June,

2004

[6] Huang, Y., and Cheng, C., "Work in Progress: Tackling the Problems of Knowledge

Integration and Barriers to Active Learning in a CDIO Course of Embedded Operating Systems

– the Flipped Classroom Approach", in 2018American Society of Engineering Education Annual

Conference, Salt Lake City, Utah. June, 2018

[7] Desnoyers, M., and Dagenais, M., "Teaching Real Operating Systems With The Lttng Kernel

Tracer", in 2008 American Society of Engineering Education Annual Conference, Pittsburgh,

Pennsylvania. June, 2008

[8] Rawashdeh, Z., and Mahmud, S. M., "Teaching Real Time Embedded Systems Networking

And Assessment Of Student Learning", in 2009 American Society of Engineering Education

Annual Conference, Austin, Texas. June, 2009

[9] Shirvaikar, M., and Satyala, N., "A Virtual Machine Environment For Real Time Systems

Laboratories", in 2007 Annual Conference & Exposition, Honolulu, Hawaii. June, 2007

[10] He, N., and Huang, H., "Use of FreeRTOS in Teaching Real-time Embedded Systems

Design Course", in 2014 American Society of Engineering Education Annual Conference &

Exposition, Indianapolis, Indiana. June, 2014

[11] BlackBerry, "The QNX Neutrino Real Time Operating System (RTOS)." Available: QNX,

http://blackberry.qnx.com/en/products/neutrino-rtos/neutrino-rtos [Accessed: February 4, 2019].

[12] VxWORKS, "The Safe and Secure RTOS for the Internet of Things" Available: WindRiver,

https://www.windriver.com/products/product-overviews/2691-VxWorks-Product-Overview/

[Accessed: February 4, 2019].

[13] J Labrosse Jean, µC/OS-III: The Real-Time Kernel for the Infineon XMC4500. Micrium,

2012.

[14] Jonathan Valvano, Embedded Systems: Real-Time Operating Systems for ARM Cortex-M

Microcontrollers. Volume 3, Fourth Edition. CreateSpace, 2017

[15] CHU, Hongyu, Leimin LI, Yuqing HUANG, and Jing ZHANG. "Implementation of Porting

RTOS uC/OS-II to ARM9 [J]." Computer Engineering 20 (2005).

[16] Woolson RF. Wilcoxon signed‐rank test. Wiley encyclopedia of clinical trials. 2007 Mar

9:1-3.

[17] Trajman, A., and R. R. Luiz. "McNemar χ2 test revisited: comparing sensitivity and

specificity of diagnostic examinations." Scandinavian journal of clinical and laboratory

investigation 68, no. 1 (2008): 77-80.

