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1. INTRODUCTION 

Embedded system design and implementation is a key component in the undergraduate computer 

engineering curriculum. In an era of mobile and ubiquitous computing, a competent embedded 

device should have a real-time operating system (RTOS) to make full use of its potentials and to 

accommodate task needs. Deploying an RTOS also makes the programming job of embedded 

system engineers easier. Instead of embedded system engineers writing their own code to deal 

with the complicated scheduling among tasks, an RTOS provides the mechanism of scheduling 

as part of the RTOS’s built-in features. A suitable RTOS helps the designer to focus on the 

application or computing tasks of the embedded system without worrying about the processor 

level configuration. Hence, it is not a surprise that real-time embedded system has a strong 

demand from industry. A good understanding of RTOS opens doors for many high-tech jobs for 

our students. Students would benefit a lot if they have the skill set of real-time embedded 

systems. 

The course of Embedded Real Time Operating Systems (RTOS) is an important major course for 

the students in computer engineering. Students from other majors, like electrical engineering and 

mechatronics engineering, also take the RTOS course. 

However, teaching an RTOS course is really challenging. There are mainly two reasons. The 

first reason lies in the theoretical design of RTOS. An RTOS course is a highly comprehensive 

course that is built upon the knowledge of computer architecture, peripheral interfacing, and data 

structures. In addition to a rich set of pre-requisite knowledge, the design of RTOS involves key 

engineering ideas such as resource management, efficiency, and complexity. The second reason 

is the fast development of RTOS. Practically, there are quite a few commercial RTOS ready for 

use. Each of them has its strengths and weaknesses, depending on the specific application 

scenario. It becomes a difficult choice that which one is the best fit to our students. Learning a 

specific RTOS has the benefit of being able to utilize it immediately for projects. Nonetheless, 

the fast development and updates on the area of RTOS may cause the knowledge learned from 

one specific RTOS outdated in some time and not applicable to another RTOS. 

Traditionally, teaching and learning RTOS are implemented in the following ways. First, we 

teach the students the design principles of RTOS and show them a ready-to use commercial 

RTOS. We call this a “top-down” approach. The benefit is that students will be able to 

immediately deploy that specific RTOS [1]. However, without a thorough understanding of why 

and how tasks are created and managed by the RTOS, students lack the skill set to pick up a new 

RTOS as it comes out [2]. Second, we can teach RTOS by designing and implementing it from 



scratch. We call it a “from-scratch” approach. This second approach nicely exposes the design 

and implementation details of an RTOS [3]. The limitation of the “from-scratch” approach is that 

it may become too theoretical but not giving students enough practical skills in deploying state-

of-art architectures [4]. The inadequate facts observed in the two previous approaches motivate 

us to design a new approach. Namely, we can use a “hybrid” approach by showing students both 

a commercial RTOS and a from scratch design. 

Our specific research question is, among the three possible ways, is the “hybrid” the best in 

terms of student learning attainment of the RTOS knowledge? Our hypothesis is, teaching one 

method misses some understanding of the RTOS. 

In this paper, we describe our innovative and effective way of teaching RTOS using a “hybrid” 

approach. To start with, we adopt the ARM Cortex-M and Cortex-A architectures, the most 

popular architectures in embedded systems. We then deploy a combinate “top-down” and “from 

scratch” hybrid approach to teach RTOS. The “top-down” approach utilizes an existing RTOS 

from ARM itself, the Keil RTX. Teaching RTX introduces quickly how a real time application 

may be designed and implemented. It also introduces high level behaviors and design ideas of an 

RTOS. After learning RTX, students will be able to immediately apply it to their senior design 

projects. They have had a working knowledge of RTOS and become curious to learn why things 

work. Next, the “from scratch” approach addresses the question of why things work in RTOS. 

The “from scratch” approach teaches how a complete RTOS is built from scratch, i.e., from the 

very first line of code in ARM’s assembly language. The “from scratch” part also addresses 

teaching the theoretical part of RTOS. Moreover, students will appreciate the many common 

design principles in RTOS that are not obvious in ready-to-use commercial RTOSes like RTX. 

Specifically, we described what components in RTOS are essential and implement them from 

scratch. Learning the “from scratch” part prepares students with a solid theoretical foundation to 

learn a new RTOS in the future.  

Our main contribution is to show that our “hybrid” approach of teaching RTOS has proved to be 

effective in students’ learning attainment of the RTOS knowledge. The conclusion is drawn from 

quantitative data analysis about students’ evaluation on their learning experience and outcomes. 

Our data analysis specifically reveals that the “from scratch” part does significantly help students 

understand the processor level configuration than the “top-down” approach. 

The remaining of the paper is organized in as follows. Section 2 reviews related work in teaching 

and learning RTOS. Section 3 describes our proposed “hybrid” approach. Section 4 explains our 

data analysis and our main discoveries. We conclude our paper and point to future work in 

Section 5. 

2. RELATED WORK 

The importance of RTOS has caught the attention by educators in the beginning of the 21st 

century. Since then, research on how to effectively teach RTOS in many scenarios continues 

until now. A simulator was developed to show the competing scheduling of 16 tasks on 

microprocessors [5]. The approach in [5] is basically an effort of showing the operating system 

“from bottom up”. The simulator saved the instructor and students a lot of time setting up 



physical hardware. Therefore, it facilitated the teaching and learning of RTOS. Due to quick 

evolution in technology, the idea of the proposed simulator could be implemented by the popular 

virtual machine technology today. A Capability-Innovation-Motive (CIM) teaching model was 

applied to teaching RTOS in the flipped classroom setting [7]. A kernel tracing tool has been 

used in explaining the concepts in the GNU/Linux Operating System. The target is not really an 

RTOS, however, the method reveals that understanding the internal mechanism is the key to 

understand any operating system [8]. A focus on the networking aspect of the RTOS kernel was 

explained by teaching the CAN bus. The emphasis was to make clear the networking part of the 

RTOS [9]. Laboratories were developed for teaching RTOS. For example, a virtual machine 

environment was introduced to reduce the setup time [10]. A commercial grade open source 

RTOS, FreeRTOS, was taught to show the deployment of RTOS. The emphasis was on using the 

FreeRTOS but not designing an RTOS [11]. The approach in [11] is a “top-down” approach of 

teaching RTOS.  

As more and more commercial RTOS come to the market, learning a new specific RTOS may 

become more frequent. For example, as mobile phones transit to “smart phones”, operating 

systems suitable for smart phones have been introduced. The QNX operating system used to be 

the one on BlackBerry Phones [12]. VxWORKS is among the industry’s leading RTOSes for 

Internet of Things [13]. 

In order to comprehend new RTOS quickly, the interest on teaching and learning RTOS shifts to 

showing how an RTOS should be designed. This line of work is of the “from-scratch” approach. 

In fact, an experienced industry engineer started the work of showing the internal kernel design 

of an RTOS. The designer of the popular tiny µC/OS described the design principles and 

revealed its code [3]. A modern updated version based on [3] for a new microcontroller is 

presented in [13]. In academia, experts also try to educate students through design principles of 

an RTOS [2]. A noticeable “from-scratch” design is described in detail for the ARM Cortex-M4 

processor [14]. A detailed RTOS design that is supposed to run on ARM 9 is presented [15]. 

Teaching an RTOS in a “top-down” approach is a typical traditional way. While there are quite a 

few work on showing the deployment of RTOS from a “top-down” approach, the design details 

are not obvious from using the RTOS. It became our motivation to show the design details for a 

much deeper understanding of the RTOS. A “hybrid” approach of showing both the use cases of 

an RTOS and its design details is missing in the literature.  

 

3. THE PROPOSED APPROACH 

In the past, observing the shortcomings of the “top-down” approach missing technical design 

details, we taught the RTOS in a “from scratch” way by showing the internal design and 

implementation of RTOS. The “from scratch” design is denoted as EOS. We wished to equip 

students with the ability of learning any new RTOS in their future career after understanding 

EOS. However, we still felt that the “from scratch” may be further improved by also showing a 

commercial RTOS. Our hypothesis was that the “from scratch” approach may miss the 



deployable convenience of a commercial RTOS, and the “top-down” approach misses technical 

details that the “from scratch” may complement. 

Therefore, in the most recent offering of the RTOS course, we designed a “hybrid” teaching 

approach by showing both the EOS and RTX, a commercial RTOS from ARM. The target 

microprocessor running RTOSes is ARM Cortex-M4, a very popular microprocessor for 

embedded computing.  

We designed our RTOS course to cover the following topics, as listed in Table I.  

 

Table I: Topics Covered in the “Hybrid” Approach of Teaching RTOS 

Topics 
Learning Outcome 

the ARM architecture, programmer's model, 

ARM instructions 

Set up the development environment; get 

familiar with the experiment process 

Assembly with C programming; device 

drivers 

Be able to write useful device driver programs 

for the board 

Exceptions and interrupts, interrupts 

processing (IRQ) 

Understand key characteristics that enable 

real-time responses 

interrupt-driven device drivers 
Be able to write typical interrupt-driven 

device drivers 

vectored interrupts; nested interrupts 
Implement nested interrupts 

Multitasking; Context switch; dynamic 

processes; 

Write process management programs 

Process synchronization: sleep/wakeup 
Design even-driven multitasking system using 

sleep/wakeup 

Semaphores; process communication 
Design even-driven multitasking system using 

semaphores 

Uniprocessor (UP) Embedded System Kernel 
Implement preemptive kernels 

Memory Management Unit (MMU) in ARM; 
Write programs of memory paging by section 

 Memory managing schemes including one-

level sections and two-level static and 

dynamic paging 

Write programs of memory paging by pages; 

translating high virtual addresses. 

User mode processes with a private user mode 

virtual address space 

Implement an EOS with kernel and user 

modes 



Processes in domains 
Write domain-specific applications. 

 

The topics listed in Table I could be sequentially classified into five parts. According to the five 

parts, we taught EOS and RTX in the following stages. First, we started from introducing the 

architecture of our target microprocessor. Second, we showed how a microprocessor began to 

run its first line of code in the assembly language. Third, we explain how and why a 

microprocessor such as ARM Cortex-M4 can respond to tasks in a real-time sense. The first 

three parts/stages were explained in EOS. The reason is that RTX did not allow us to change its 

code for showing the internal mechanism.  

Fourth, we introduced the concepts of multitasking. We used RTX to demonstrate concepts like 

threads, thread synchronization, operating system services such as timing management, and 

inter-thread communication.  

Fifth, we explained the design and implementation of concepts from what we have seen and tried 

in RTX. The design and implementation were illustrated using EOS. 

The rationale behind the above-mentioned stages is to show students a complete computing 

software system. We have the RTX in part four before EOS, because concrete working examples 

gave students direct experience of the concepts in RTOS. After stage four, students were much 

more ready to accept the explanation why those concepts work through a detailed 

implementation in EOS. 

At the end of the course, students went back to compare the RTX and EOS side by side. The last 

stage gave them a connection between “how” RTOS should be designed and “where” RTOS can 

be used. Students also participated in a voluntary survey about their learning attainment and 

experience in the “hybrid” approach. The data analysis and its interpretation are described in the 

next section. 

 

4. INTERPRETATION AND DISCUSSION OF THE RESULTS 

In this section, we present our main discoveries of the data analysis. The data analysis validates 

our hypothesis. EOS does help students learn IRQ that is less obvious in RTX. 

4.1 Research Questions: 

The first research question was whether students’ confidence in understanding RTOS after 

learning both EOS and RTX was higher than learning only EOS.  

The second research question was whether students’ rate on the value of learning both EOS and 

RTX was higher than learning only EOS for the course of RTOS.  

The third research question was how EOS and RTX complement each other in understanding 

different areas of RTOS.  



4.2 Survey Questions: 

In the survey, one item asked students to report their confidence in understanding RTOS after 

learning only EOS, while another item asked students to report their confidence in understanding 

RTOS after learning both EOS and RTX. Students’ responses to each item have five options 

ranging from 1 (lowest) to 5 (highest). Students’ value on learning only EOS was assessed using 

the following question: “How would you rate the value of learning only EOS?” Similarly, 

students’ value on learning both EOS and RTX was assessed using the following question: “How 

would you rate the value of learning both EOS and RTX?” The response options of the above 

two questions range from 1 to 5 (1. Poor 2. Below average 3. Average 4. Above average 5. 

Excellent).  

To address the third research question, two items asked students the following question “After 

learning EOS, which of the following areas do you feel you have a better understanding?” and 

“After learning RTX, which of the following areas do you feel you have a better understanding?” 

There are seven response options to the above two questions (A. System boot up B. IRQ set up 

C. Process/thread communication and synchronization D. Event driven design pattern E. Task 

scheduling F. Memory management G. CPU architecture).  

4.3 Data Analysis and Discussion on the Results 

In our RTOS class, there were 21 students. All of them were given the survey. A total of 20 

students responded to the survey and there was no missing data. All their data were used for 

analysis.  The data was analyzed using descriptive statistics, such as median and range, because 

the data was not normal distributed. We used Wilcoxon signed ranks test to address the first two 

research questions and McNemar's test to answer the third research question.  

We first discuss what we found for the first research question: the confidence of students’ 

understanding of RTOS after learning EOS and RTX has increased compared to learning only 

EOS. The range of the students’ reported confidence in understanding RTOS after learning only 

EOS was from 2 to 4 with median 3, while the range of the students’ reported confidence in 

understanding RTOS after learning both EOS and RTX was from 2 to 5 with median 4. Results 

from Wilcoxon signed ranks test [16] indicated that the students’ reported confidence in 

understanding RTOS after learning both EOS and RTX was significantly higher than learning 

only EOS (P=0.0313).  

For our second research question, we found that students’ rate on the value of learning both EOS 

and RTX was higher than learning only EOS. The range of the students’ reported value of 

learning EOS was from 2 to 5 with median 3, while the range of the students’ reported value of 

learning both EOS and RTX was from 2 to 5 with median 4. Results from Wilcoxon signed ranks 

test [11] indicated that the students’ reported value of learning both EOS and RTX was 

significantly higher than learning only EOS (P=0.0352).  

For our third research question, we found that EOS and RTX complement each other in 

understanding different areas of RTOS. Figure 1 shows the percentage of students who 

responded having better understanding in seven different areas after learning EOS or after 



learning RTX. From Figure 1, 55% of students responded having better understanding of IRQ set 

up after learning EOS, while only 25% students responded having better understanding of IRQ 

set up after learning RTX. Result from McNemar test [17] showed that this difference was 

statistically significant (P = 0.0313).  

 

Figure 1. Percentage of students responding having better understanding in different areas after 

learning RTX or EOS 

 

Therefore, the results validate our hypothesis that the deployable side of RTX does contribute to 

students learning after they had exposure to EOS. The result is a positive evidence of the 

effectiveness of the “hybrid” approach. 

Finally, we would like to discuss the limitations of our study. The sample size in this study is 

small. Therefore, it could not give us more power if given a small effect size. We also 

acknowledged that it is better to use a validated survey specifically designed for our research 

questions. However, there was not an available survey for our research. Therefore, we 

specifically designed the survey questions related to our three research questions. We have 

considered why these designed questions could answer our research questions. We purposely 

worded our survey to ask for answers to our research questions. For example, we explicitly asked 

about the level of confidence in understanding RTOS after learning EOS and confidence in 

understanding RTOS after learning both EOS and RTX. For the above purpose, we used the 

questions “What is your level of confidence in understanding RTOS after learning EOS?” and 

“What is your level of confidence in understanding RTOS after learning both EOS and RTX?” 

Another limitation of this study is that the reliability and validity of the measurements were not 

reported. Our research questions focused on the comparison rather than the measurements 



themselves. By asking the similar questions, we expect a better reliability and validity on the 

results of the comparisons. In the future, it would be desirable to design a set of questions to test 

the reliability and validity of the survey on the measurements. 

 

5. CONCLUSION AND FUTURE WORK 

Some aspects of existing approaches to teaching RTOS open paths to improvement. Traditional 

ways of teaching an RTOS could be viewed as “top-down”. It shows how embedded system 

engineers may deploy an RTOS by using its application programming interfaces (API). A second 

traditional way of teaching RTOS is to show the internal design from scratch. Both methods have 

merit but may miss some valuable information toward students learning outcomes. Our “hybrid” 

approach to RTOSes combined both the “top-down” and “from scratch” methods. Our 

hypothesis is that a combination of the two traditional approach may further improve the learning 

outcome. Student survey in terms of confidence in understanding RTOS validated out hypothesis 

quantitatively. In addition, from students’ point of view, the value of the “hybrid” approach is 

statistical significantly higher than the past “from-scratch” approach. Moreover, the two 

traditional methods complement each other. The implication of our study is that a thorough 

knowledge of both the kernel design and the API deployment strengthens the understanding of 

both. A future direction of the work could be to further determine other factors that EOS may 

contribute to in addition to the IRQ topic. In the future, it would also be desirable to design a set 

of questions to test the reliability and validity of the survey on the measurements. 
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