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Abstract  

According to the National Academy of Engineering, the development of personalized learning is 

one of the grand engineering challenges of the 21st century1. Even though affect-sensitive 

systems have been used for personalized learning, current systems provide feedback based on 

predefined relationships between affective state and performance. However, studies have shown 

that the affective state that correlates to good performance could vary between tasks and 

students. Hence, these systems can only provide accurate performance feedback once the student 

has completed the task at hand. In light of the limitations of current methods, this work presents 

a machine learning method for predicting students’ performance by using the dynamics of their 

facial keypoint data captured while reading the instructions of a task, thus, avoiding the need to 

infer their affective state. A case study involving 40 students performing tasks in an engineering 

lab environment is used to validate the proposed method. The results reveal that the proposed 

model yielded an accuracy of 80%. The results indicate the importance of using students’ facial 

keypoint data, captured while reading the instructions of a task, to predict their performance. 

This method could be implemented in engineering lab environments to provide real-time 

feedback to students and advance personalized learning. 
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1.Introduction  

Proper feedback has the potential to improve students’ performance in a wide variety of tasks2,3. 

Research indicates a strong correlation between students’ affective state and their learning 

performance4–6. Understanding students’ affective state allows instructors to provide 

personalized assistance that can enhance students’ learning experience7. Traditionally, instructors 

provide personalized assistance and real-time feedback to students based on the facial or body 

cues they project, as well as their performance on the task. However, students’ performance on a 

task is usually evaluated after it is completed. This approach limits the ability to provide timely 

and systematic feedback to students before completing a task. Furthermore, in-person and 

personalized assistance might be difficult to achieve in online learning environments, where in-

person interactions are challenging, or in engineering laboratories where the student to instructor 

ratio is high. 

 

According to the National Academy of Engineering, the development of personalized learning 

systems is one of the grand engineering challenges of the 21st century1. Researchers have shown 

an increasing interest in the development of systems capable of providing feedback based on 

students’ perceived affective state with the objective to improve  students’ performance7–11. Fig. 

1 illustrates how most of the current affect-sensitive systems provide personalized intervention to 
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a student while using engineering equipment (e.g., band saw). First, the system captures the 

students’ facial expression with the use of an RGB sensor (i.e., video cameras), and with the use 

of computer vision algorithms extract his/her facial keypoint data. This facial keypoint data is 

then used as input in a machine learning pipeline that infers his/her affective state (e.g., sad). 

Based on the student’s inferred affective state, the system provides an intervention (e.g., 

feedback) with the objective of improving his/her performance on the task.  
 

 
Figure 1. Representation of an affect-sensitive system in an engineering lab environment. 

Current affect-sensitive systems do not consider students’ unique facial characteristics. These 

systems are often trained with data sets collected from a limited set of individuals12. Thus, they 

implement general models (i.e., models trained with data of a general population) to infer a 

student’s affective state. Hence, their capability to provide personalized feedback based on 

inferred affective states is limited9. In the example shown in Fig. 1, the student was not sad; 

instead, he was confused. Consequently, the intervention or feedback provided by the system 

was not optimal. Furthermore, these methods provide feedback based on predefined relations 

between students’ affective state and performance. However, studies have indicated that based 

on tasks and student characteristics, the affective state that correlates to good performance could 

vary13,14. Hence, an intervention given to a student i on a task t, might not be ideal for 1) the 

same student i on a different task k, or 2) another student j on that same task t. Finally, these 

systems focus on predicting individuals’ affective state while performing a task 14. This limits 

their ability to provide timely and systematic feedback to students before they start a task. 

 

Due to the limitations of current affect-sensitive systems and the heterogeneity of students, 

Lopez and Tucker15  presented a method that implemented facial keypoint data to predict 

students’ performance on a task. Nonetheless, this method only considered the average value of 

students’ facial keypoint. Hence, information regarding the variation of these facial keypoints 

over time (e.g., dynamic components) was not explored. The affective computing community has 

revealed the value of considering the variation of facial keypoints over time since it help captures 

the temporal component of individuals’ facial expression 11,14,16,17. Similarly, studies have 

indicated that considering the variation of facial keypoints provides additional informaiton that 

could help provide personalized feeback 18. Another limitation of the previous method is that it 

was never tested in a real engineering lab environment. Hence, more effort should be given to 

design and test systems capable of predicting student’s performance on engineering lab 

environment. Systems designed to recognize student’s facial expressions while reading the 

instruction of a task and predict their subsequent performance on that task, could provide 

feedback to students prior to the start of the task. Such systems have the potential to provide real-



  

2018 ASEE Mid-Atlantic Spring Conference, April 6-7, 2018 – University of the District of Columbia 

time and personalized feedback in a wide range of environments, and potentially improve 

students’ performance and self-confidence. In light of this gap, this work proposes a machine 

learning method for predicting a student’s performance by using the dynamics of his/her facial 

keypoint data captured while reading the instructions for a task. A case study involving 40 

students performing tasks in an engineering lab environment is used to validate the proposed 

method.  
 

2.Method 

A machine learning method for predicting 

students’ performance on a task is presented 

in this work. The method uses the dynamic 

component of students’ facial keypoint data 

captured while they read the instructions for a 

task. The (i) Data Acquisition & Feature 

Extraction, (ii) Model Building & Tuning, and 

(iii) Model Evaluation steps of the proposed 

method are illustrated in Fig. 2. For this work, 

students’ performance is assumed to be a 

function of their task completion time 

measured in seconds. Students are classified 

based on this performance as (i) “below” 

average or (ii) “above” average. That is, if a 

student i takes longer than the average of all student that performed that same task t, student i is 

classified as A)“above”; otherwise is classified as  B)“below”; for i ϵ set of students {I} and t ϵ 

set of tasks {T}. 
 

2.1.Data Acquisition & Feature Extraction. The objective of this step is to capture the facial 

keypoint data of a student i while reading the instructions on how to perform a task t on 

engineering equipment, as well as the time it took them to complete the task. That is, the first 

objective of the data acquisition step is to capture the facial keypoint data F of student i for a 

given task t (Fit). To capture students’ facial keypoint data, it is assumed that at least a standard 

resolution video (640x480 pixels) of the students’ facial expression while reading the 

instructions of a task (Vit), can be acquired. For each student, the video captures him/her reading 

the instructions of a certain task t that requires the use of engineering equipment. In this work, 

engineering equipment refers to equipment frequently found in engineering lab environments 

(e.g., band saw, drills). From the video recordings Vit, the facial keypoint data is extracted. The 

facial keypoint data are given as x and y coordinates in the space of the video recording frames. 

Consequently, the location, size, and orientation of the facial keypoints in each frame could be 

characteristics of students’ facial pose and location relative to the camera, and not necessarily 

their unique facial expressions. Therefore, the proposed method implements ordinary procrustes 

analysis19 on the facial keypoint data obtained from each frame of the video recordings. This is 

done with the objective of standardizing students’ facial location and orientation while retaining 

their unique facial expression information. Once the facial keypoint data are normalized, the 

mean and standard deviation are calculated.  The second objective of data acquisition step is to 

capture the completion time of a student i on a task t (Yit). Depending on the task and engineering 

equipment used, a student’s completion time can be manually captured by researchers, or it can 

be automatically captured with the use of sensors.  

 

Figure 2. Outline of proposed method 
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2.2.Model Building & Tuning. The method proposes the use of Support Vector Machine (SVM) 

algorithms to build a model to predict a student’s performance on a task. In the literature of 

affect-sensitive systems, SVM algorithms have been extensively used and shown to outperform 

other algorithms 11,20,14,21. Moreover, they are well-suited for real-time classification due to their 

accuracy and speed 22,23.The objective of an SVM algorithm is to identify the hyperplanes that 

classify all training vectors into their respective class. Hence, in a two-class classification 

problem (e.g., below and above), the objective of the SVM algorithm is to discover the function 

in which the margins between the two classes in the training vectors are maximized.  Thus, these 

algorithms can be understood as optimization algorithms. Furthermore, the hyperparameter 

optimization step of the SVM algorithm identifies the best parameters for the model by training 

multiple models. The parameters to be optimized are Cost (C) and Epsilon (ε). The Cost (C) 

parameter governs the tradeoff between the model dimensions and the degree to which 

deviations larger than ε are tolerated. On the other hand, the parameter Epsilon (ε) controls the 

width of the ε -insensitive zone used for fitting the training vectors see Burges 24 and Kotsiantis 
22 for more details). 
 

3.3.Model Evaluation. The accuracy of 

the SVM classification model is assessed 

with a leave-one-out cross-validation 

approach. This validation approach has 

been implemented in previous 

studies14,15,25 because it is appropriate for 

small data sets and has been shown to 

produce unbiased accuracy estimations 26. 

The leave-one-out cross-validation 

approach used in this work is illustrated in 

Fig. 3. The figure presents an example dataset composed of the (i) mean and standard deviation 

of the facial keypoint of the video recording, (ii) mean and standard deviation of the procrustes 

analysis rotation parameters, (ii) the identifiers for student i and (iv) task t, as well as (v) the 

performance class label of student i on task t (Yit). In the first iteration of this cross-validation 

approach, tuple 1 is assigned to the testing set, while the remaining tuples (i.e., 2-it) are assigned 

to the training set. Once a model is built with the use of the training set, its classification 

accuracy is evaluated with the testing set. In the subsequent iterations, the process is repeated for 

all tuples in the dataset. The accuracy obtained in each of the iterations is measured, and the 

average accuracy presented. 

 

3. Case Study 

The method proposed in this work is implemented in a case study involving students performing 

tasks in an engineering lab environment. For this case study, two pieces of engineering 

equipment, (i) band saw and (ii) drill press, were used. Participants were required to perform 

tasks with each equipment. With the band saw, participants were required to cut a predefined 

straight line drawn in the middle of a 21cm by 19cm cardboard piece. With the drill press, 

participants were required to drill a predefined hole drawn in the center of a similar cardboard 

piece. The case study involved a total of 40 participants. All were freshman engineering students 

(18 to 19 years of age, 27.5% females) enrolled in EDGSN 100 Introduction to Engineering 

Design at the Pennsylvania State University. After introducing the participants to the 

 
Figure 3. Leave-one-out cross-validation approach 
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experimental setup and informed consent documents, they were guided toward each piece of the 

engineering equipment. 

 

Due to inconsistencies during the experiment, five video recordings were excluded from the 

dataset. Hence, a total of 75 videos of participants were implemented. The number of frames in 

each video recording varied as the time taken for each participant to read the instructions of a 

given task differed. Sixty-eight facial keypoints were extracted from the participants’ facial 

expression recordings using the OpenFace facial behavior analysis toolkit 27. Fig. 1 shows a 

representation of the facial keypoint data of a student captured while in an engineering lab 

environment using the OpenFace toolkit. Each of the facial keypoints consisted of x and y 

coordinates, in which ordinary procrustes analysis was performed to normalize all the faces to a 

canonical orientation, scale centered at the origin, and scaled to unit variance. The participants’ 

completion time in each of the tasks was manually recorded by the research team. The 

classification of a student’s completion time on a given task as “below” or “above” was done by 

calculating average completion time of all 40 students that performed that same task. Hence, one 

participant could have been “below” average for the one task, while “above” for another task.  

 

The model for predicting students’ performance was generated using an SVM algorithm 

implemented with the R package “e1071” version 1.6-8 28. The SVM algorithm was used to 

predict the completion time class of a student i on a task t, based on his/her facial keypoint data 

captured while reading the instructions for that task. The facial keypoint data were given as x and 

y coordinates; hence, the mean and standard deviations for all 136 features, along with the 

procrustes parameters, were used as input on the classification model. The cost and epsilon 

parameters of the SVM algorithm were tuned using grid search approach. The model’s accuracy 

was evaluated using a leave-one-out cross-validation approach. For this case study, a total of 75 

tuples were collected. From these tuples, 44 instances were from student classified as “below”, 

while 31 as “above”. Each tuple was composed of a participants’ class label (Yit), participants’ 

facial keypoint data predictors (Fit) (i.e., mean and standard deviation of x and y coordinates and 

Procrustes parameters), participants’ identification (i), and task identification (t), as shown in 

Fig. 3. 
 

4.Results and Discussion 

Table 1 shows the confusion matrix for the student-task model proposed in this work. The results 

show that the model was able to correctly predict participants’ completion times with an 

accuracy of 80% (95%CI: 69.17%-88.35%). Moreover, this accuracy was statistically 

significantly greater than the accuracy that could have been obtained by random chance (p-value: 

7.11e-8). These results reveal that the machine learning method proposed in this work was able 

to accurately predict participants’ performance by using their unique facial keypoint data 

captured while reading the instructions of a task. In contrast, the general model, which did not 

take into consideration students’ facial keypoint data, provided a classification accuracy of only 

58.67% (95%CI: 46.70%-69.92%). This accuracy was not statistically significantly greater than 

random chance (p-value: 0.549). Table 2 shows the confusion matrix for the general model. The 

difference in models’ performance can be attributed to the additional information captured by the 

students’ facial expression. These results support the authors’ argument that machine learning 

models that take into consideration students’ facial keypoint data can be implemented to predict 

students’ performance and potentially advance personalized feedback. Furthermore, Table 1 
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shows that the student-task model tends to correctly classify the cases where the participants had 

below average completion times (i.e., Below), rather than the cases where they had above 

average (i.e., Above). In others words, if the class Below is considered to be the positive 

condition, the Sensitivity (or the true positive rate) of the model (97.73%) is greater than the 

Specificity (or true negative rate) of the model (54.84%). These results indicate that the model 

had difficulties correctly classifying students that had completion times above average. 
 

Table 1. Confusion matrix for the student-task model 

 Ground truth /Predicted Below Above 

Below 43 14 

Above 1 17 

Total 44 31 
 

Table 2.Confusion matrix for the general model 

 Ground truth /Predicted Below Above 

Below 44 31 

Above 0 0 

Total 44 31 
 

 

5.Conclusions  and Future Work 
 

In recent years, researchers have started exploring how systems that capture facial expressions 

can infer students’ affective states and be implemented in engineering environments. 

Nonetheless, current methods still label students’ affective states into discrete emotion categories 

and provide feedback based on predefined relationships between performance and affective 

states. However, a students’ affective state that correlates to good performance could vary 

between tasks. Additionally, this relationship of affective state and a good performance could 

vary between students. While a recent study presented a machine learning method to predict 

students’ performance by using their unique facial keypoint data, bypassing the need to infer 

their affective states, limitations still exist. First, the method did not consider the dynamics of 

students’ facial expression and only implemented a limited set of facial keypoints (i.e., 10). 

Moreover, the feasibility of implementing this method in a real engineering lab environment was 

never explored. 
 

In light of these limitations, this work presented a machine learning method for predicting a 

student’s performance. The dynamics of a student’s facial keypoints while reading the 

instructions of a task were used as input for the proposed model. In this work, the feasibility of 

the proposed method was tested with students performing tasks in a real engineering lab 

environment. The results of this work show that with the use of widely available sensors (i.e., 

video cameras) and open source toolkits, the dynamics of students’ facial keypoint data can be 

captured and used to successfully model and predict their performance on a task. The machine 

learning model proposed in this work yielded a classification accuracy of 80%, which was 

statistically significantly greater than random chance. In contrast, the model that did not take into 

consideration students’ facial expression provided a classification accuracy of only 58.67%, 

which was not statistically significantly greater than random chance. The results from this work 

highlight the potential of capturing the dynamics of students’ facial expression while reading the 

instructions of a task to predict their subsequent performance on that task. Nevertheless, there are 

several areas for future work that could improve the method proposed. For example, future work 

should explore testing other machine learning algorithms such as neural networks and compare 

their accuracy and efficiency. Similarly, other tasks and performance metrics should be explored. 

Nonetheless, this work provides initial groundwork for systems that implement students’ facial 

keypoint data to predict their performance. This work has the potential to advance systems 

intended to provide real-time feedback to students and bypass the need to predict their affective 

states.  
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