
Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright Ó 2002, American Society for Engineering Education

Session ____

UNDERGRADUATE EXPERIMENTS WITH MOBILE ROBOTS

R. Tanner, W. Mitchell, M.Z. Atashbar, and D.A. Miller

Department of Electrical and Computer Engineering
Western Michigan University, Kalamazoo, MI 49008

 This paper details an independent undergraduate research project centered around using a
Rug Warrior™ mobile robot for several types of experiments. The Rug Warrior™ is a mobile
robot platform developed at the Massachusetts Institute of Technology by Joseph Jones, Anita
Flynn, and Bruce Seiger and marketed by AK Peters Publishers. This paper includes a
description of the robot, a discussion of programming techniques used for this robot, a
description of a set of experiments conducted using the Rug Warrior™, and the Rug Warrior™’s
advantages as a research tool.

 The basis for the experiments is a series of “thought experiments” proposed in 1984 by
Valentino Braitenberg. The experiments consisted of a few simple goals to establish basic
operations such as movement, avoidance, and attraction. Later experiments consisted of various
external stimuli such as light to judge responses to a given situation. This robot is a test bed for
conceptual ideas that could then be scaled to other projects, including multiple cooperating
robots.

Introduction
 The increased power of microcontrollers and microprocessors in the past twenty years
has augmented the ability of robots to perform independent missions with little or no human
intervention. Robots can now use microcontrollers that exceed the power of older IBM AT
systems of the early eighties. Organizations such as NASA and the Department of Defense are
becoming increasingly dependent on the use of such robots to accomplish missions that would
prove too costly and dangerous otherwise. An example is the Sojourner robot on Mars. The
microcontroller allowed the robot to perform mission tasks that required little human
intervention. This paper will discuss the basic principles of how to implement behavior
programming techniques on a relatively low cost robotic platform.

 The principle of fusion behavior programming is a different approach from the traditional
method of programming robots. The traditional system relies on having an accurate model of the
world the robot will function in to perform its task well. Many different problems arise when
applying this type of programming approach to complicated and ever changing problems in a
non-controlled environment. Fusion behavior programming offers a different method of
programming based on layers and priorities. The most basic functions have the lower layer and
could include simple activities such as motion control. The higher functions might include object
avoidance or investigation of objects with certain attributes. An example of behavior
programming is as follows:

P
age 7.1219.1

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright Ó 2002, American Society for Engineering Education

A robot has a basic level of programming for motion. This program will
execute indefinitely if left as is. In our layering schema, we put extra
programs into the system. These programs could range from simple ones
such as obstacle avoidance or low battery power, to higher ones such as
search for heated objects that make sound. In either case, the additional
program interrupts the normal run program to execute a function with
higher priority. This type of programming can mimic some forms of
behavior thus allowing for functions that are more versatile.

 The robot used for the series of experiments must fulfill several goals. The robot platform
needed to have a proven design with adequate processing power as well as flexibility at a
moderate cost. The objective of the experiments was to study different types of behavior
algorithms. Therefore we choose the Rug Warrior™ 1 robot kit.

 Braitenberg2 describes a series of thought experiments. These thought experiments used
varying internal configurations and different stimuli to evoke behavior patterns similar to
primitive organisms. Using the set of thought experiments provided in the book and fusion
programming techniques, the Rug Warrior™ robot replicated the thought experiments proposed
by Braitenberg.

Description of the Rug Warrior™
 The Rug Warrior™ is a mobile robot in kit form, commercially available from A.K.
Peters Publishers. The mobility of the robot consists of a pair of DC servo drive motors and a
third wheel caster for balance. The robot also comes with a host of sensors ranging from limit
switches to implement a “bump” sensor to infrared emitters/detectors to sound emitters/detectors.
The builder can add additional sensors depending upon the use of the robot. Control of the robot
and processing of the sensory data is accomplished through a Motorola MC68HC11 micro-
controller.

 The physical configuration of the Rug Warrior™ is a “garbage can” consisting of a
platform approximately seven inches in diameter. The motors and batteries are mounted upon
this platform. Then the circuitry associated with the micro-controller and the sensors are
mounted above the motor platform. Finally, a protective Plexiglas cover, connected to the
“bump” sensors, is placed over the entire arrangement.

Programming Techniques
 At the center of all the robot control strategy is a programming technique called fusion
behavior programming. The overall program is interrupt driven. This type of program control
provides control over several subtasks. A typical program is broken into several tasks. Examples
can include movement, escape, avoid and follow. Each task is programmed at first as if that was
the only thing it needed to do. The next step is to assign a level of priority to each subtask. All
subtasks are available for immediate execution. At any point in the process, a condition can
occur that causes a subtask to seek control of the robot. It is at this point that a subroutine in the
program allows the subtask with the highest priority to take control. Once the need of the higher
priority subtask is completed, the subroutine passes control to a lower priority routine. This type
of programming approach has several advantages. P

age 7.1219.2

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright Ó 2002, American Society for Engineering Education

 The first advantage is a modular programming approach. This is a familiar technique for
most programmers. A small task is defined and implemented by a program. The subtask is put
into the main program and used as necessary. The modular programming enables simpler
modifications as needed. Another advantage of using interrupts is using the priority subroutine to
change the interrupt priority. As a byproduct, it is possible to combine priorities on the same
level and give them the same priority. This represents a level of programming difficulty that
increases in complexity rather quickly. This method of prioritizing is not for the novice
programmer. In addition to programming complexity, programs that combine priorities consume
large amounts of processor power.

Experiments with the Rug Warrior™
 The first experiment was the task of movement. Many individuals do not understand how
that can be difficult. The idea that simply applying an equal voltage to two motors will cause the
robot to move in a straight line is false. The primary problem is no two motors are the same.
Each motor will turn at a different rate even with the same voltage applied. The experiment
called for the robot to go in a relatively straight line for some distance. The function that
regulates power to the motor using pulse width modulation exists - the primary problem is what
type of feedback is best suited for the experiment. The decision to use an open loop approach
came about because of its simplicity, and that the robot did not need to go in straight lines for
long distances. The algorithm was straightforward: apply a pulse width signal to the motors with
an open loop bias value to restrict the amount of power available to either motor depending on
which needs correction.

 The second experiment was a logical progression from experiment 1. An autonomous
mobile robot must not get stuck or haphazardly bump into objects in its path. Ideally, the robot
should avoid obstacles it encounters. If the robot hits an object in its path, it needs to choose an
alternate path to get around the object. This would also apply in situations when the robot gets
into confined areas. The algorithm used for this experiment was as follows. The robot was put in
motion in a direction. The microcontroller polled the infrared system constantly for any
obstacles. The microcontroller also polled the bumper switches to detect any collisions. Should
the infrared system or bumper switches activate an interrupt or flag notifies the prioritization
function. Prioritization of the subtask avoids confusion of actions. The highest priority goes to
the escape function. The escape function activates when the bumper switches hit an obstacle. The
function that poles the infrared system takes second highest priority. If the escape function is not
active and an obstacle is detected, the avoid function takes the control. The movement function
has the lowest priority. If the first two conditions of escape and avoid are not active, the
movement function is in control of the robot. The experiment for movement was to put the robot
in a room or hallway with lots of obstacles and paths to see if it could perform the movement
task without becoming stuck

 The third experiment added the additional task of seeking light. A function in the
program polled the two photoelectric cells for a detection of light. The stronger the light source,
the larger the signal output from the photoelectric cells. The photoelectric cells are
approximately at the ten o’clock and the two o’clock positions. The position helps to insure that
each photoelectric cell receives a different amount of light from the same source. The program
reads the value that represents the amount of light each photoelectric cell receives. The
difference between the two values is calculated. The value returned determines which way he

P
age 7.1219.3

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright Ó 2002, American Society for Engineering Education

robot will turn. The stronger the light is on one side, the more strongly it turns toward the light.
Other functions such as avoid and escape still have priority over the seek function. The primary
difference is the seeking light function now has a higher priority than movement. The experiment
consisted of a single light on an opposite side of a classroom. The classroom had several
workbenches and assorted obstacles. The goal was to see if the robot would eventually find the
light. Additionally, later parts of the experiment had several lights with varying intensity and
additional background light in the classroom.

 The fourth experiment was a variation of the seeking experiment. The robot would seek
light, but keep a predetermined distance from the light. In addition, the robot could go to another
source if it were at a point that the second source could attract it. The algorithm for the orbit
experiment is much like the seek algorithm with one alteration. A chosen value represents a
certain intensity of light. When the robot is at a distance that represents that intensity, an
additional interrupt occurs. This interrupt turns the robot away from the light source. As soon as
the threshold value is low enough for the interrupt to stop, the robot resumes its seek mode for
light. The experiment setup involved several parts. The first part used one light put in an open
area first without obstacles and then with obstacles. The next part involved the use of two lights.
The first set of lights where the same intensity. The second set of lights had a light with a
different intensity. Both experiments ran with and without different obstacles.

 The last series of experiments involved modifying existing functions and programs. A
few of the programs such as seek light and follow objects allow a simple bias adjustment to
affect the reaction of the robot. The intention of this series of experiments was to find out the
limitations of the processor with the existing sensors. A brief explanation of the follow program
is necessary. The follow program uses the infrared system to actively find an object that crosses
it sensor path. When the object reflects infrared light back to the sensor, the robot follows where
the side with most strength. The modification involved incrementally adding a bias or multiplier
to the section of code that controlled the amount of power applied to the robot’s motors.
Eventually the bias level increased to a level that caused a processor error. After recording the
number, the target moved at a slower pace to see if the robot would stabilize. Likewise, the target
moved at a faster pace with a lower bias to find out if the robot could enter an unstable condition.
The same process was used for the seek function to explore the limits of the robot.

Results of the Experiments
 The first experiment resulted in a robot that moved in a generally straight line. The robot
did tend bear to the right. As stated, the motors do not turn at the same rate when the same
voltage feeds both motors. The solution exists in the standard library that comes with the
interactive C program for the robot. A bias for the motor function can modify the output to the
motors to correct for imbalances. If the robot bears to the right, use of positive correction applies.
If the robot bears to the left, use of negative correction applies. The robot bears to the right
without bias correction hence, the bias had a positive value. The objective was met for this
experiment. The robot moved in a straight line for short distances. The program required to
accomplish this is simple and robust.

 In the second experiment, the robot encountered some minor problems that needed
attention. As mentioned previously, the infrared system proved too sensitive on the left side of
the robot. The first attempt of this series of experiments caused the robot to jerk around and

P
age 7.1219.4

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright Ó 2002, American Society for Engineering Education

shake in one spot. The robot’s infrared system showed that an obstacle was in the robots path at
all times. The robot acted erratically, veering first one way then another. Eventually the
processor overloaded and the robot simply spun in circles. To correct the problem, the eyeholes
where cut until a window formed the eyehole.

 The robot performed very well after the adjustment to the bumper shield. Objects used in
the experiment, ranged in shape, color, material, and size. The robot avoided most objects before
having to resort to the bumper switches to avoid an obstacle. The problem obstacles were objects
that were a dark color. These objects did not reflect infrared very well and the sensors did not
sense then until the robot was too close. The bumper system did very well to help the robot in
situations that the infrared system did not work well. One situation for the robot did prove quite a
challenge. In the lab the wall has a flat black trim at the point where the floor and wall join. The
area that had this black trim also formed a corner or narrow corridor. The robot eventually went
into this particular area. The infrared system did not pick up the wall very well, so the robot had
to rely on the bumper switches to avoid the wall. Because the robot hit a corner about the same
time the infrared system did finally sense the wall, the robot became confused for a brief period.
This confusion sometimes caused the robot to take a few extra attempts to navigate out of the
situation. To help alleviate the confusion, extra time was added to the escape function to allow it
to have more time to back away from an object. Adding too much time could cause the robot to
encounter another obstacle in conditions where numerous objects exist. Overall, the robot
performed this experiment well and avoided being stuck. The only problem encountered was the
avoidance of flat black objects. If several flat black objects were in the path of the robot, the
robot could occasionally become stuck.

 For the third experiment, the robot performed several light seeking and avoidance tasks.
The first series of experiments had the robot find a single light source. The lab has several aisles
formed from workbenches as well as numerous obstacles. In various locations, there were light
sources. The robot then sought out one of the lights. Location of the light, the contrast between
the source and the ambient light, and the narrowness of the beam determined how quickly the
robot found the source. Location determined how much ground needed exploration before the
robot found the light. If there were several obstacles or pathways, the robot needed to choose
different paths to find the light. Several times the robot avoided an obstacle only to loose track of
the light source and locate it using a different path. If the ambient light and the light source were
approximately the same, the robot did not detect the source at further distances. Consequently, if
there was a very bright ambient source, an open window with direct sunlight for example, the
robot tended to ignore the light source. During some of the test runs, a flashlight with a narrow
focus beam became the light source. When the area had low light conditions, the robot detected
the light relatively easy. When the robot found the beam of light directly, the robot tended to stay
on the beam regardless of surrounding light.

 The second series of light seeking experiments involved several light sources. In the first
set, several lights placed in close proximity were the source. These lights had approximately the
same intensity. The robot invariably chose the light source closest to its sensors. When the robot
encountered the light source, the escape function caused the robot to back away and turn from
the light. Depending on the side bumped by the light, and the orientation of another light, the
robot sought out the other light. The choosing of any individual light depended on the escape
path of the robot and the position of lights. The next part of the experiment had light with

P
age 7.1219.5

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright Ó 2002, American Society for Engineering Education

different intensities. The robot acted predictably if the robot encountered the lights in an open
area with each light at about the same distance from the robot. The robot chose the brightest
object. Arranging the lights in a line caused a slightly different reaction, with the approach of the
robot determining its reaction. An approach where the robot arrived at the brightest one caused
the robot to essentially lock onto the light and stay. If the robot approached from a side in line
with the less bright light, it still locked on the light and stayed, with some exceptions. If an
obstacle near the path caused the robot to turn at an angle slightly greater then ninety degrees, the
robot pursued the brighter light. The only time the robot locked on the dimmer light happened
when the orientation of the sensors was one hundred eighty degrees from the brighter light. The
robot turned to the dimmer light rarely and only with several obstacles or distractions present.
The robot followed lights and avoided objects well in most cases. There were some problems
encountered when the ambient light and the light sources were approximately the same intensity.

 During the first part of the fourth experiment, the robot orbited the lights in smooth
motion. The second part of the experiment involved two lights. The robot would alternately orbit
the lights if they were at a certain distance, dependent on the ambient light. If the distance
between the lights was too great for the conditions, the robot orbited one light only. When the
condition allowed the robot to orbit two lights alternately, the robot chose a figure eight path or
an elliptical path. The path depended on the turning bias applied when the robot sensed a light
source on either photo detector. A high turning bias caused a figure eight path; a lower turning
bias caused an elliptical path.

 The reason for this action is what happens when the robot turns toward or away from the
light. A high turn bias causes the robot to turn quickly into the light when in orbit. When the
turning action is completed the robot’s photoelectric cell that is closest to light will tend to stay
that way. The design of the program is to react to a difference in light, the robot will turn into the
light it is already orbiting until the opposite photoelectric cell detects enough light to turn
towards the other light. A lower turn bias causes a slower reaction to light. The slower reaction
allows the robot’s photoelectric cells more opportunity to compare the light sources, allowing the
robot to move in a straight line long enough to detect the other light source and start an orbit
around it.

 The next portion of the experiment involved light sources with different intensities. If the
light sources were close in intensity, the same results occurred as in the previous portion of this
experiment. To make the robot orbit the lights in the same manner as the previous portion, the
lights had to move closer. If one of the light source intensity is much greater, the robot reverts to
the situation in experiment 2 where it locks on to a light and stays with that one exclusively.

 If obstacles are in between the two light sources and relatively small, the robot generally
performed the experiments the same as without obstacles. When the obstacle size approached the
width of the robot path when it orbited in the non figure eight path is when different results
occurred. The setting that determined the orbiting distance caused the robot to act differently. If
the robot had a large orbiting path, the robot almost never orbited the lights in a figure eight path.
The obstacle blocked the opposite source in a way that prevented the photoelectric cells from
sensing the opposing light early enough to go into a figure eight path. The large orbiting path,
combined with the obstacle avoidance, caused the robot to go around the obstacle. Consequently,
if the robot had a small orbiting distance, the robot orbited around one light almost exclusively.

P
age 7.1219.6

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright Ó 2002, American Society for Engineering Education

A small orbit path combined with the large obstacle tended to keep the robot focused on one
light only. The robot performed the series of experiments well and to expectations.

 For the fifth experiment, the robot remained stable until a bias multiplier for the turning
approached eight. At that level, the processor would overloaded, causing erratic behavior, when
a situation called for the robot to turn. For operations such as tracking moving objects and
avoiding tight spaces, a bias of three to five, depending on the level of difficulty, work well
without overloading the processor. When the bias was at a six, the robot overloaded in many
situations except in the case where it tracked from a standing position. When the robot was in the
follow program, an object must cross the path of the infrared system before it activates. A high
bias caused to the robot to lock on the target very well. Unfortunately, if the object turns too
quickly or there is several objects encountered while tracking the robot processor overloads. The
experiment worked well only if the object turned slowly and there was no obstacles. Overall, the
robot performed most tasks well at a bias level of three. The object of this series of experiments
was finding the level of bias that would prove useful and not overload the processor.

Advantages of the Rug Warrior™ as a Research Tool.
 The Rug Warrior™ is a reasonably priced (less than one thousand dollar) platform that
provides mobility, control circuitry, and a basic set of sensors which will allow an investigator to
explore issues associated with autonomous mobile robotics without the requirement to first
develop the basics of a mobile platform itself. The MC68HC11 micro-controller can be
programmed using an included interpretive C compiler, the 6800 assembly language, or a
combination of the two. This provides the investigator the ability to work at the lowest level
when a topic requires that level of interface while allowing the investigator capacity to formulate
more complex problems at a conceptual level.

 The Rug Warrior™ is also an expandable platform. The architecture of the system
provides the ability to add various emitters and sensors to experiment with alternative control
schemas. In addition to open locations on the existing printed circuit board, the platform has
expansion ports providing the industrious investigator with the capability of providing parallel
and serial communications for add-on boards of the investigator’s own design.

 The basic control programs that are provided with the Rug Warrior™ help move the
investigator quickly beyond the basics of motion, thereby allowing pursuit of more advanced
queries regarding autonomous mobile robotic platforms.

Suggestions For Further Research
 A recharging station for the robot is almost a necessity. The robot could continually
monitor the battery level on the circuit board. During operations, the battery pack will
eventually drain to a point that requires the robot to recharge. The robot would then find its way
back to the charging station and parks itself in the station for recharging. The implicat ions for
this function becomes obvious in an off world exploration project. The mother station could land
on a planet and disperse several exploration robots. The mother station could comprise of a solar
collector or more likely a nuclear generator. The exploration robots would come to the mother
station when a recharge is necessary. To add greater versatility, the mother station could move
when another area needs exploration. P

age 7.1219.7

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright Ó 2002, American Society for Engineering Education

 Several Rug Warrior™s could be programmed to work together as a robot colony. A
dedicated program would handle the communication among the robots. An experiment might
comprise of the following scenario. The lead robot searches for an event that is of interest, e.g. a
source of heat or noise. The robot signals a need for more specialized robots for investigation.
Several variations of this experiment provide a wealth of possible experimentations.

 Exploration of hostile or inaccessible needs accurate plotting of where the robot is and
has been is of paramount importance. Therefore, an experiment where the Rug Warrior™ maps
the surrounding area provides an interesting experiment. One possible scenario uses the
Rugbat™ add on kit for the Rug Warrior™. The Rugbat™ uses sonar to locate objects; the same
sonar can map objects as well. Consumption of memory resources requires additional memory
modules several megabytes as a minimum. A memory management function similar to the
battery function provides a means to manage large amounts of data. The primary difference is the
robot could transmit the data to a central location for processing.

Bibliography
1 Joseph L. Jones, Anita M. Flynn and Bruce A. Seiger. Mobile Robots: Inspiration to Implementation.
Second Edition, A K Peters, Ltd. Natick, MA, 1999.

2 Valentino Braitenberg. Vehicles: Experiments in Synthetic Psychology. MIT Press. Cambridge, MA, 1984.

Biographies
RALPH TANNER is an Associate Professor in the Electrical and Computer Engineering Department. His research
interests include mobile robots, walking machines, and controls. He may be contacted at: ralph.tanner@wmich.edu.

WILLIAM MITCHELL is an undergraduate student majoring in Electrical Engineering.

MASSOOD ATASHBAR is an Assistant Professor in the Electrical and Computer Engineering Department. His
research interests include mobile robots, sensors, and VLSI. He may be contacted at:
massood.atashbar@wmich.edu.

DAMON MILLER is an Assistant Professor in the Electrical and Computer Engineering Department. His research
interests include nonlinear circuits and systems, soft computing, and engineering education. He may be contacted
at: damon.miller@wmich.edu.

P
age 7.1219.8

