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WIP: Understanding Grader Reliability  

through the Lens of Cognitive Modeling 
 

Introduction 

The evaluation of student learning, whether formal or informal, is essential to the educational 

process as we know it.  The results of such evaluation can communicate valuable information 

that may inform highly consequential decisions for individual students, instructors, curriculum 

designers, administrators, and even policy makers.  With such significant consequences, it is 

imperative that evaluation data, often communicated through letter grades (i.e., discrete, ordinal 

classifications of student performance [1]), be as meaningful and trustworthy as possible. 

Unfortunately, the components of grades and corresponding standards of success often vary so 

extensively across instructors that grades are rendered effectively meaningless [2]. 

The meaning and trustworthiness of an assessment score or grade, often referred to as its 

validity, absolutely requires reliability—that is, the consistency of a score, regardless of when the 

assessment is conducted, when it is scored, or by whom it is scored [3], [4].  Unfortunately, 

attaining reliable assessment scores can be challenging in the many engineering courses that 

utilize open-ended performance tasks to authentically assess the engineering competencies called 

for by ABET and the Engineer of 2020 [5] – [7].  This challenge increases with larger class sizes, 

which are often encountered in first-year engineering programs [8].  The strain on resources 

imposed by large courses frequently necessitates grading by less expensive—and less 

experienced—graduate and undergraduate teaching assistants, whose inexperience often leads to 

a variety of grading inconsistencies [9], [10]. 

Based in the context of a large-scale engineering course, this study frames the grading process as 

a large, complex socio-technical system consisting of elements that are both human (i.e., graders, 

students, and content designers) and non-human (i.e., rubrics, assignments, and student work).  

As the underlying goal is to achieve a grading system that is both consistent and accurate, this 

study seeks to develop a deep understanding of how the system functions and which aspects of 

the system contribute the most to variable performance.  Thus, the work-in-progress study 

described in this paper involves a Human Reliability Analysis (HRA) of grading open-ended 

engineering problems by many graders.  More specifically, it explores how the grading system 

can be modeled and what contributes to model variability. 

Background 

Previous studies exploring the reliability of grading tend to be completely quantitative in nature, 

focusing on various measures of inter-rater reliability and consistency [11] – [13].  Some look at 

grading schemes, e.g., [14] – [16], while others focus on grading tools like rubrics, e.g., [17] – 

[19], or the graders themselves and how they think, e.g., [10], [20] – [23].  None of these 

treatments, however, fully captures the complexity of the entire grading system, particularly 

when many graders are involved.  Recognizing that variable outputs of the grading system 

initiate from variable decision making on the part of the systems’ human components makes 

HRA an appropriate analysis technique to explore grading variability. 

There are three generations of HRA techniques: the first generation focused on quantification of 

success and failure probabilities but mostly ignored underlying causes; the second generation 

shifted the focus to the underlying causes of human error; and the third generation evolved 

beyond the static systems of the first two generations to better handle more dynamic, socio-



technical systems [24], [25].  These analysis techniques derived from heavy industrial settings, 

primarily studying systems in which “human error” was rare but extremely costly.  The 

educational setting of a grading system differs: errors are relatively common but can be fixed 

easily and have minimal consequences if caught.  Still, in a large course with many graders 

grading a wide range of problems, the system is highly complex and dynamic. 

Grading open-ended performance tasks is inherently subjective and the process can vary 

significantly depending on the task or level of performance; thus, this study employs a relatively 

new approach called the Functional Resonance Analysis Method (FRAM) due to its strength 

with dynamic systems and its emphasis on variable human performance rather than the more 

traditional interpretation of “human error” [25].  Unlike older techniques that consider a static 

process and calculate error probabilities at several points throughout the process, the FRAM 

provides greater flexibility for variable systems [25].  Rather than creating a static model, the 

FRAM creates separate instantiations for every iteration of the process.  Depending on the 

specific circumstances under which the process occurs, each instantiation might contain different 

elements occurring in any order.  Therefore, developing a model of the grading system first 

involves exploration of all the elements (referred to as “functions”) that occur in the foreground 

of grading, as well as in the background. 

Methods 

The overall research study has four stages.  The first stage has already been completed and 

involved conducting direct observation of the grading process through a set of think-aloud 

interviews with undergraduate graders grading actual student work.  The second stage, which is 

currently in progress, involves the qualitative analysis of the think-aloud data to develop a model 

of the grading process using the FRAM.  Following this analysis, a third stage will use 

quantitative grading data from the course to determine the extent to which the models generalize 

to more realistic settings and a wider range of problems, rubrics, and student work.  In the final 

stage, these analyses will be processed to create a set of recommendations to reduce variability. 

Context.  This study is contextualized in a first-year engineering program at a large public 

university.  Analysis is centered in the second course of a two-semester sequence of courses.  

This course typically has over a dozen sections of over 100 students each spring semester.  Each 

section usually employs an instructor, a graduate teaching assistant, four undergraduate peer 

teachers, and two undergraduate graders.  For any given assessment, each grader typically grades 

one-third of the section responses and the peer teachers split the remaining responses.  All of the 

grading is generally overseen by the graduate teaching assistant, though specifics vary by 

section. 

Throughout the semester, students complete a collection of near-weekly problem sets.  These 

problem sets are graded by the undergraduate peer teachers and graders using extensive rubrics 

based on specific learning objectives and evidence items of proficiency.  Students are only told 

the learning objectives covered and cannot see the detailed rubrics [26].  Prior to the grading of 

each problem set, all first-time undergraduate peer teachers and graders are expected to complete 

training modules for each new learning objective in the upcoming problem set. 

Study participants.  After contacting all 76 undergraduate peer teachers and graders, 17 agreed 

to participate in the think-aloud studies.  The participants ranged between second- and fifth-year 

engineering students from various majors and had between two and eight semesters of 



experience assisting with the course.  They had each passed the course with a grade of B or 

higher.  Each participant was given $20 at the conclusion of the interview. 

Think-aloud interviews.  Think-aloud interviews (i.e., interviews in which participants 

verbalize their thought processes while performing tasks) were conducted in the spring of 2017 

following the suggestions of Boren and Ramey [27].  The interviews lasted approximately one 

hour and consisted of grading three real, de-identified student responses for each learning 

objective in one of the course’s problem sets.  The problem set used in the interview was that 

which had the lowest average accuracy with respect to the “definitive grades” during training.  

This decision was made following the assumption that lower accuracy in training corresponded 

to items that were harder to grade consistently, thereby being more likely to demonstrate greater 

variability in cognitive processes.  The three student response samples for each learning 

objective included in the interview documents were purposefully selected to represent a range of 

solution approaches and levels of achievement as well as prompt alternative cognitive grading 

processes on the part of the graders.  Data was collected using the Notability App on an iPad, 

which records both audio and notations made on the interview documents (i.e., the sample 

responses and rubrics).  Audio recordings were transcribed and checked for accuracy and notes 

were taken by the interviewer at the time of the interviews. 

Qualitative modeling with the FRAM.  The FRAM consists of four steps: (1) function 

identification and description, (2) variability identification, (3) variability aggregation, and (4) 

control mechanism identification [25].  The functions that comprise each model, identified and 

defined in the first step, represent all actions that occur within the system.  Each function is 

characterized by up to six factors: input(s), output(s), precondition(s), resource(s) or executive 

condition(s), control(s), and time.  A function may be a foreground function if it is the primary 

process of concern or a background function if it affects the process but is not directly involved.  

The first three steps of the FRAM in this work are achieved through the coding of the interview 

documents (i.e., the assignment problems, rubrics, and sample responses) and the think-aloud 

interviews. 

The background functions were identified and described by qualitative coding of the 

assignments, the rubrics, and the sample responses.  These documents were coded by the primary 

author using a thorough codebook based on the literature regarding aspects of assignments, 

rubrics, and student work that have been shown to affect grading accuracy (i.e., [21], [22], and 

[28]), in conjunction with an open-coding option for new, emergent functions.  Figure 1 

summarizes the factors identified in the literature.  Each variable aspect associated with these 

documents corresponds to a function decision function associated with the design of that 

document.  The second and third authors provided a check on coding quality and trustworthiness 

through discussion and agreement seeking regarding coding decisions. 

The foreground functions, along with new potential background functions that may have been 

missed in the literature, are currently being identified through coding of the cognitive processes 

demonstrated by the participants during the think-aloud interviews.  The cognitive strategies and 

grading stages identified in [22] and [28], namely the cognitive strategies of identifying whether 

or not there is a response, scanning, matching, scrutinizing, or evaluating, served as initial a 

priori codes, but many new codes have been added to capture additional processes and greater 

nuance.  The appendix includes a list and short description of all functions identified at the time 

of this publication. 



 

Figure 1. Coded aspects of assignments, rubrics, and student work. 

After all of the interviews have been coded, each interview will consist of many instantiations of 

the grading process model.  Figure 2 shows a simplified example of such an instantiation, where 

the letters in the circles around each function represent the factors characterizing the functions 

(inputs, time, controls, outputs, resources, and preconditions).  In the example, all “assignment,” 

“rubric,” and “student work,” functions are aggregated into single functions, but in a full model, 

these would be composed of multiple background functions.  For any given learning objective 

and student response, the “assignment,” “student work,” and “rubric” functions would be static, 

but the grading process functions (the foreground functions of “no response,” “scanning,” and 

“matching” in Figure 2) might vary from grader to grader.  Thus, there will be separate 

foreground model instantiations for each of the over 500 grades assigned during the think-aloud 

interviews.  It is expected, however, that many of these will be similarly structured, but will help 

to illustrate how functions can vary in practice (FRAM step 2) and how that variability can 

aggregate through the system (FRAM step 3).  

 

Figure 2.  A simplified example of a grading process model instantiation with the FRAM.   



Future Steps 

Ultimately, the collection of all of these instantiations, along with the secondary quantitative 

analyses mentioned previously, will allow for the final step of the FRAM: identification of 

possible control mechanisms.  Through this process, common trends will be explored to identify 

which functions lead to the most variability in the system and the outcome.  This analysis should 

give indications of design decisions that can be made to reduce the corresponding variability.  

For instance, if variability originating in an assignment function leads to large variability of 

outcome, that can inform aspects of assignment design.  While many of the specific aspects of 

this project are rooted in the context of the study, the final recommendations will be stated as 

generally as the analysis will allow.   
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Appendix 

This appendix includes tables for functions associated with the actual grading process (the foreground 

functions) as well as the functions associated with production of the documents involved in the grading 

process (i.e., the background functions for the production of the assignment, the rubric, and the response).  

At the time of submission, these functions may still be subject to further analysis and potential 

refinement. 

Table A.1. Cognitive functions (foreground) identified in the grading process based on observation and 

[22] and [23] 

Cognitive 

Functions Description 

Orienting Tasks to orient the grader regarding the task, expected performances, or specified 

portions of a response. 

Questioning Expressing confusion regarding one of the documents or part of one of the 

documents. 

Translating Stating element of rubric in simpler language to assist interpretation. 

Matching Checking to see if or how well a response or portion of response compares to the 

expected/correct response. 

Scanning Looking through a response to find specific details or chunks of the response. 

Evaluating Determining if an entire response or portion of a response meets a general or broad 

standard for performance or acceptably demonstrates proficiency. 

Scrutinizing Analyzing to understand a response and infer respondents' understanding, 

knowledge, or intention. 

Shifting Switching attention from one document (i.e., problem set, solution, rubric, sample 

response) to another. 

Error spotting Finding an unexpected part of a response. 

Scoring An appraisal of a response. 

Reassuring Convincing self of the appropriateness of a scoring decision. 

Second-guessing Questioning a grading decision or returning to/revisiting a previous item or 

response after revised understanding of criterion or expectations. 

Rescoring Changing a previous scoring decision in light of revised interpretation. 

Overruling Consciously overriding specifications of a rubric based on autonomous judgment of 

appropriateness of score with respect to quality of student response or fairness of 

the specifications. 

Documenting Making an actual physical annotation of criterion achievement or making a mental 
note. 

 

 

 

 

 

 



Table A.2. Assignment design (background) functions based on [21], [27], and additional analysis 

Assignment 

Functions  

Description 

Requiring context Designing extent a problem will require understanding of context in order to 

produce an adequate response. 

Distancing context Designing the familiarity and concreteness of the problem's context. 

Writing directions Designing the level of detail included in the problem directions. 

Designing task 

complexity 

Designing the task's complexity (i.e., how many steps or how much advanced 

planning is needed for an adequate response).  

Providing scaffolds Designing the way a problem is broken into sub-tasks or the provision of extra 

guidance or hints. 

Expecting length Expecting responses to be an approximate length. 

Expecting openness Expecting a range of acceptable answers. 

Expecting task 

dependence 

Designing the dependence of separate tasks within a problem. 

Expecting 

interpretability 

Designing the extent to which students will likely need to provide explanation 

to interpret their responses. 

Expecting depth of 

knowledge 

Designing tasks that will require a certain level of knowledge to successfully 

complete. 

Expecting diagrams Expecting responses to include visuals, diagrams, tables, or charts. 

Aligning with 

instruction 

Designing the extent to which problems align with instructional materials. 

 

Table A.3. Response (background) functions based on [21] and additional analysis 

Response Functions  Description 

Employing expected 

approach 

Student employing the approach (or one of the approaches) expected by the 

assignment and rubric designers. 

Communicating 

responses clearly 

Student communicating ideas or approach to the problem in a way that is 

reasonably understandable or interpretable for a grader. 

Writing legibly Student providing a response that can be read. 

Meeting requirements Student producing a response that meets all the requirements specifically 

stated in the assignment. 

 

 

 

 

 

 

 

 



 

Table A.4. Rubric (background) functions based on [27] and additional analysis 

Rubric Functions  Description 

Defining range of acceptable 

responses 

Addressing within the rubric how to handle different possible 

student responses to the task. 

Indicating what to grade Indicating within the rubric the specific aspect of a response 

that is to be graded for a particular rubric item. 

Communicating criteria clearly Selecting the language for communicating the criterion to be 

evaluated. 

Communicating criteria concisely Writing the criterion in concise language. 

Defining quantity graded in a criterion Designing how much of a response (or, how many parts of a 

response) are graded simultaneously by a single criterion. 

Grouping criteria Deciding how many criteria constitute a single rubric item 

(i.e., learning objective). 

Evaluating excerpt of response Deciding to focus on a specified portion of an expected 

response for multiple criteria. 

Repeating performance tasks Deciding to grade a criterion multiple times across an 

assignment. 

Including dependencies Making criteria interrelated such that success on one criterion 

is dependent upon or directly tied to success on one or more 

other criteria. 

Designing evaluation difficulty  Designing the level of difficulty involved in evaluating a 

criterion (i.e., having a specific number-valued response 

versus deciding a paragraph clearly communicates an idea).  

Aligning with problems Matching the expectations communicated within the rubric to 

the constraints placed on the students as communicated 

through the assignment. 

 


