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Unit Operations Lab Bazaar 

Session Coordinator: Michael E. Prudich 
Department of Chemical and Biomolecular Engineering 

Ohio University 
 
The Unit Operations Lab Bazaar is a special topics session that will be part of the poster session 
sponsored by the Chemical Engineering Division of ASEE.  It is envisioned that the Unit 
Operations Lab Bazaar will be a sharing of information regarding novel chemical engineering 
laboratory experiments and/or experiences as well as innovations related to more traditional unit 
operations laboratory and chemical engineering laboratory topics.  Innovations and experiences  
in terms of overall chemical engineering lab course design and course assessment would also be 
legitimate topics for a poster presentation.  Ideally, all participants and attendees will be able to 
go home with a number of ideas that might be applied to the improvement of the unit operations 
and other chemical engineering laboratories at their home institutions. 

Extended abstracts describing the poster submissions are included below: 

 

Integration of Statistics into Lab Practice and Analysis 
Daina Briedis, Tim Bender, and Robert Ofoli 

Department of Chemical Engineering and Materials Science 
Michigan State University 

 
We have recently re-designed our unit operations laboratory course to directly support the hands-
on component, experiment design, and data analysis with instruction in statistics and probability. 
This paper describes the process by which this course was developed and also offers evidence 
that the regular assessment of the student learning outcomes coupled with attention to 
constituency feedback can provide motivation for meaningful curricular improvement. 

Background 

A few years ago, our faculty received contradictory student and industry feedback on the utility 
of a required course in our program, a calculus-based course in probability and statistics 
specifically offered for engineers. Students who had taken this course found it to be irrelevant to 
what they were learning in the chemical engineering curriculum. Our industrial advisory board, 
however, was emphatic about the need for statistics in the curriculum. In addition, the 
assessment of the ABET outcome on experimentation and data analysis showed some evidence 
of sub-threshold student performance. 

Further interrogation of the issues by our curriculum committee indicated that the course offered 
by the campus statistics department rarely included examples relevant to chemical engineering. 
In addition, the students took the required statistics course at various points in their curricular 
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progression—as it fit their schedules—and then were rarely asked to apply the concepts in 
chemical engineering in any meaningful way. Thus, the concept of “use it or lose it” prevailed. 
The faculty responded to this situation by re-designing our undergraduate unit operations course 
to include both statistics content and its direct application in the planning of laboratory 
experiments and analysis of data. 

The original junior-level three-credit course was comprised of two hours of lab (two 2 ½-hour 
sessions per week) and one hour of lecture. The course included a good blend of traditional and 
modern experiments and lecture topics on lab safety, writing skills, professionalism and ethics, 
and a token discussion of statistics and experimental design. When a one-credit junior seminar 
course, “Chemical Engineering as a Profession,” was introduced in our curriculum, students 
learned about many of the professional topics (including safety issues) in that course. This 
eventually opened up the lab course to include material significantly more focused on statistics 
and probability and how those topics related to the laboratory experiments. Since the seminar 
course and the unit operations course are taught in a fall-spring sequence, with proper 
coordination, the topics presented in the fall seminar course could also serve as preparation for 
the spring lab course. The most significant transfer of content from the lab to the seminar course 
was communication skills with particular emphasis on writing. 

The New Course 

The new unit operations course, first offered in the spring of 2006 as “Lab Practice and 
Statistics,” was expanded to four credits—a two-hour lecture and a two-hour lab. The main 
purpose of the lecture was to introduce key statistics concepts appropriate to the laboratory 
experiments. Initially, the coordination between lecture material and laboratory experiments was 
weak due to the sequence by which student teams rotated through the experiments. Inevitably, 
some teams would conduct the experiments most suited for statistical applications before the 
appropriate material was covered in lecture. In addition, as is frequently the case in many typical 
unit operations laboratories, obtaining a meaningful number of data points for statistical analysis 
was and continues to be a problem. However, a few years of experience, input from students, and 
adjustment of the statistics topic sequence in the course syllabus has led to good integration of 
“just-in-time” statistics with the cycle of laboratory work. Students also have a theoretically 
supported, heightened sense of awareness of the need to use lab time wisely and gather as much 
good data as possible. 

At its current “steady state,” some level of meaningful statistical analysis, often using Minitab, is 
included in every lab report. The statistical application culminates in a “stats report” that is given 
as a team poster presentation at the end of the semester. Teams are encouraged to select their 
most fruitful experiment of the semester on which to conduct and report their best shot at 
statistical analysis. P
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It is clear that a two-credit course cannot offer comprehensive instruction in statistics and 
probability. Therefore, topics have been selected and sequenced such that students are able to 
apply their learning to data analysis as soon as possible. The general sequence of topics is as 
follows: 

 Basic descriptive statistics; Introduction to Minitab 
 Error analysis 
 Regression 
 Design of experiments 
 Distributions (mainly Gaussian) 
 Central limit theorem 
 Statistical inference and point estimation 
 Hypothesis testing 
 Inference on two samples; extended to multiple samples 
 ANOVA 
 Linear models; Model adequacy 
 Probability 
 Statistical process control 
 Six Sigma 

 
Resources 

At least two excellent textbooks are available for the two-credit format. These are “Principles of 
Statistics for Engineers and Scientists” by William Navidi, and “Engineering Statistics” by D. 
Montgomery, G. Runger, and N. Faris Hubele. In the former example, the text represents a 
shortened format of a more comprehensive text.  The latter text is used by the authors for a 
course of a similar format to our ChE 316 lab-lecture. Extensive web-based instructor resources 
are available for both. 

Our course is taught by two faculty members, one for the lecture and one for the laboratory. 
Course administration and scheduling is coordinated closely between the two. Additional staffing 
includes teaching assistants for the lecture and for the lab, and a grader for the lecture. 

Results 

Our approach of shrinking a three-credit curricular requirement in statistics to only two credits 
may be questioned. The fact that the course is taught by chemical engineering faculty rather than 
statistics faculty may also be suspect. However, we believe that the pedagogical advantages of 
introducing core concepts that students immediately apply in a hands-on setting provides 
significant enough added value to overcome these criticisms. Our assessment of the ABET 
outcome in the design of experiments and analysis of data has also shown improvement and 
stabilization over the past several years. Most encouraging, however, is the feedback we have 
received from our students and alumni about their experiences with statistics in the workplace. 
One example is cited below from a 2009 graduate: 
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“I just started at Kimberly-Clark in Neenah, WI . . . and statistical analysis seems to be as 
important as ever. More and more, I find myself thankful for having taken this class and at least 
knowing what people are talking about when they say, "statistically similar/different" or “setting 
up a DOE;” it's nice knowing that there's one less thing I need to learn on-the-fly. My position 
does not require me to do the calculations myself, but it is expected that I know how to interpret 
the data. Sometimes, it's hard as a student to realize how a subject like statistics will actually tie 
into your future career, but it has probably been the one course that has been applicable across all 
positions I've considered.” 

 

A Senior-Level Biological Engineering Laboratory at the University of Colorado 
Charles R. Nuttelman 
University of Colorado 

 
Introduction 
 
The Chemical and Biological Engineering degree in the Department of Chemical and Biological 
Engineering at the University of Colorado at Boulder was initiated in the fall of 2005. The 
required senior-level Biological Engineering Lab course was taught for the first time in the fall 
of 2008. As the popularity of the degree has skyrocketed over the last three years, the size of the 
class has gone from nine students in the first year to two sections of 20 students each in the fall 
of 2010.  Consequently, the course has evolved to accommodate the increase in enrollment and 
experiments have been modified and adjusted to address technical and practical shortcomings 
and difficulties.  Lab modules that have been used with varying degrees of success throughout 
the last three years include yeast and E. coli growth in sophisticated bioreactors, E. coli bacterial 
growth and transfection, lysozyme enzyme stability assays, protein gel electrophoresis and 
Western blotting, computer modeling of biological engineering processes, “virtual” on-line 
simulations of bioreactors, and ion-exchange chromatography.  These experiments have been 
used to address various course-related learning goals and ABET outcomes. 
 
Course Format and Deliverables 
 
Biological Engineering Laboratory (CHEN 4810) is a senior-level laboratory course that is a part 
of the Chemical and Biological Engineering B.S. degree.  The semester-long course meets once a 
week for 4 hours during the 15-week semester.  Students are required to do either 3 or 4 
experiments (this has varied during the past years) as a group; there are 3 weeks of class devoted 
to each experiment.  Advance preparation is expected and required of students prior to 
performing the experiments and instructor interaction is strongly encouraged during the process.  
Course deliverables include an Individual Written Report (Experiment #1), an Oral Presentation 
(Experiment #2), and a Poster Presentation (Experiment #3).  In addition, a Team Assessment is 
required, in which students evaluate their team members, and is an integral part of the final 
course grade.  During the fall of 2010, the first three weeks were devoted to teaching important 
laboratory skills to the students.  These skills include exercises and tutorials related to making 
solutions from stock solutions, serial dilutions, and pipetting correctly and accurately.  Past 
experience has indicated that students struggle with these areas. 
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Lab Modules 
 
E. Coli Growth and Transfection:  Students have access to two types of E. coli bacteria – a strain 
with the pGLO plasmid and one without.  The pGLO plasmid contains a green fluorescent 
protein (GFP)-producing gene under the control of an arabinose-inducible promoter.  When 
induced with the sugar arabinose, pGLO-containing cells will produce GFP and this can easily 
be quantified using a fluorometer.  Cells without pGLO will not fluoresce.  In this experimental 
module, students first investigate growth parameters important to cell growth and secondly 
modulate arabinose concentrations and temporal profiles with the goal of maximizing GFP 
production.  Students are responsible for designing their experiments and analyzing their data.  
This has perhaps been one of the most valuable experiments primarily since important controls 
are required and this experiment works well while allowing students to design their experiments 
with minimal input from the instructor. 
 
Yeast Growth in a Bioreactor:  During the first week of this experiment, students investigate the 
relationship between gas sparging and agitation on mass transfer rates of oxygen in a benchtop 
fermentor (bioreactor).  On weeks two and three, students select two different growth conditions 
(pH and temperature can be manipulated) and investigate the growth rate of cells.  This particular 
experiment also has a design component – students must scale up their benchtop bioreactor to a 
100-L scale vessel using common scaling laws and equations.  While the in-class lab is quite 
simple, the analysis and design component are challenging. 
 
Lysozyme Enzyme Stability:  This experiment demonstrates protein stability.  Students denature 
the protein lysozyme using a variety of techniques (freeze-thaw cycles, urea, and guanidine) with 
or without cryoprotectants (trehalose, sucrose).  Activity of lysozyme after these treatments is 
assessed using a lysozyme activity assay in which a cloudy solution of bacteria is hydrolyzed by 
the active lysozyme and relative enzyme stability can be assessed according to the rate of 
bacteria hydrolysis.  Students are responsible for creating serial dilutions, diluting stock 
solutions, and pipetting small amounts and substantial calculations and experimental design is 
required.  While the experiment works very well for those trained well in laboratory techniques 
(i.e., pipetting and diluting), students have a hard time pipetting very small solutions.  This 
experiment has been eliminated from the current curriculum due to these problems and issues. 
 
Protein Gel Electrophoresis and Western Blotting:  During the first week of this lab module, 
students set up and run a standard protein gel using several known proteins.  The second week is 
spent doing the same but finishing with a Western blot, in which the electrophoresed proteins are 
transferred to a membrane and stained with an antibody.  Both the gel and membrane are imaged.  
Finally, on week 3 the students are given several unknown solutions and, using the techniques 
acquired during the first 2 weeks, determine which proteins are in each unknown solution.  This 
experiment was found to be quite simple and lacked any sound engineering principles or 
fundamentals.  In addition, protein gel electrophoresis is an art that is only learned after repeating 
the process many times.  Students’ gels did not turn out well and the utility of this experiment 
was small.  Furthermore, the electrophoresis process is a long one with lots of down time and 
students were not finishing in the four-hour weekly time slot allotted to this course. 
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Computer Simulations/Modeling of Biological Processes:  Using a relatively easy finite element 
analysis software package (COMSOL), students would set up a biological engineering problem 
and attempt to solve it using a computer simulation.  There were two problems.  One involved 
drug delivery from microparticles and the other involved microbial growth in a milk carton left 
out on the kitchen counter.  This module had mixed reviews.  While students could generate a lot 
of information and investigate the effect of changing a particular parameter (e.g., the diameter or 
diffusivity of drug microparticles) on the response (drug delivery rate), it was quite difficult to 
learn the software and set up the constraints and physical system in COMSOL.  This experiment 
was eliminated during the fall of 2010 but the instructor will resurrect it for the fall of 2011 with 
some modifications. 
 
Virtual Online Simulations:  During the fall of 2010 the student groups participated in a virtual, 
online experiment module hosted by Oregon State University (School of Chemical, Biological 
and Environmental Engineering).  The simulation is very “real world” in that students start with 
little information about their yeast strain and must maximize productivity in a bioreactor by 
changing parameters such as temperature, batch time, fed batch time, fed batch flow rate, etc.  
Moreover, students are provided a fixed budget and each of the yeast optical density 
measurements, product concentration, and other measurements cost money.  Consequently, there 
is much thought that must be put into how the budget should be utilized and what steps the 
students should take to improve productivity.  This experiment has been very successful. 
 
Ion Exchange Chromatography:  The final experiment involves ion exchange chromatography.  
Students use bovine serum albumin (BSA) in an anion exchange column.  While ranges of 
pertinent parameters (flow rate, loading concentration, buffer pH, NaCl concentration, others) 
are provided to the students, the groups must design experiments themselves since they don’t 
have time to do everything.  This experiment is a worthwhile experiment despite some of the 
frustrations that are encountered.  Students seem to learn a lot about chromatography since 
nothing is automated except for the simple pump that is used to perfuse the column. 
 
Conclusions 
 
The Biological Engineering Lab has been designed with primarily three considerations in mind.  
The first goal is to teach the students the necessary skills to carry out biological experiments.  
This includes things like serial dilutions, creating solutions from stock solutions, and pipetting 
correctly, skills that have not been developed elsewhere in the curriculum.  The second goal of 
the course is to have several lab experiments that provide good data (i.e., are “easy” experiments) 
yet have a more complex design or statistical analysis component.  The third goal of the course is 
to have at least one experiment that requires quite a bit of thought and troubleshooting as well as 
some frustration, aspects that will be encountered in their future.  The experiments designed in 
this course touch on these aspects and have been designed to give the students experience in a 
variety of areas that will be representative of their eventual working environment. 
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New Experiments on a Limited Budget for ChE Unit Operations Laboratory 

 
Robert Barat and Norman Loney 

Otto York Department of Chemical, 
Biological, and Pharmaceutical Engineering 

New Jersey Institute of Technology 
 
Current budgetary constraints facing all universities, especially state-supported institutions, 
particularly impact teaching laboratories, both from capital and operating perspectives. 
Accommodating larger class sizes with limited funding has dictated an increasing dependence on 
available laboratory components assembled in new ways. Converting obsolete equipment into 
new experiments requires imagination, though can often be done at a modest cost.  During the 
last two years, we have introduced four new experiments into the second course of our two-
course capstone Chemical Engineering Laboratory.  The first course emphasizes heat and 
momentum transfer, while the second course considers separations, reactor engineering, and 
process control.   
 
Three of the new experiments emphasize chemical reaction, while one is based in process 
dynamics and control. While many of our ChE experiments are at the preferred pilot scale, 
chemical reactions on this scale often require large amounts of expensive reagents.  In addition, 
there can be costly waste disposal issues.  Therefore, in order to utilize existing equipment as 
well as keep operating costs low, the new experiments can all be classified as bench scale.  The 
reaction experiments use inexpensive reagents available in commercial or consumer form.  All 
four experiments have active data collection via PC.   

Semi-Batch Reactor  

The first new experiment uses a semi-batch reactor.  The reaction is H2O2(aq) + NaOCl(aq)  
H2O(l) + NaCl(aq) + O2(g).  The reagents used are consumer hydrogen peroxide (3 wt.%) and 
laundry bleach (e.g. Clorox 6 wt.% NaOCl).  The reaction is rapid, exothermic, and evolves 
oxygen gas. Besides the usual safety measures (e.g. goggles), chemically resistant gloves (e.g. 
nitrile) are worn in handling both the peroxide and bleach solutions.   

We are unaware of any convenient and inexpensive means for in-situ monitoring of H2O2 or 
NaOCl.  However, evolved O2 is easily monitored with a calibrated rotameter.  Product NaCl can 
be monitored with a chloride ion specific electrode.  However, these probes – similar to pH 
probes – are not as robust as simple, stainless steel conductivity probes. The system is pictured in 
Figure 1. A surplus bench fermentation vessel is used, though any agitated vessel that can 
accommodate ports, probes, and can be sealed will suffice.  The peroxide, cold from a 
refrigerator, is charged to the vessel.  Bleach is pumped in at a fixed rate. Any small pump will 
do, though it should be corrosion-resistant. Solution conductivity, temperature, and evolved 
oxygen rate are all monitored as functions of time for a fixed bleach feed rate. The conductivity 
and temperature probes were purchased from Vernier, and feature a very convenient USB-
based interface and accompanying data collection program.  The probes are stainless steel, and 
have proven to be rugged.  With the vessel sealed, O2 evolving as the bleach is pumped in flows 
through a calibrated rotameter.  Inexpensive air and water rotameters are available from Dwyer.  
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Due to an approximately 10% higher specific gravity of bleach as compared to water, a 
calibrated-for-water rotameter should be recalibrated for bleach.    

 

 

Figure 1:  Schematic of the semi-batch reactor experiment  

This experiment is not difficult to execute, but the modeling is challenging.  A transient model of 
species and energy balances, and conductivity, simulates the runs. The model is run on a math 
solver (e.g. Polymath).  All measured quantities are directly compared to the predictions 
(conductivity, temperature, O2 rate).   Sample data and predictions of O2 rate and temperature are 
shown in Figure 2.  Better fits to the temperature data are obtained if heat losses are accounted 
for in the energy balance model.  This is accomplished by inserting any simple electrical 
resistance heater of known output into a known volume of water in the vessel, and then 
comparing the actual and ideal temperature profiles.  A paper (Derevjanik, Badri, and Barat) 
detailing this experiment was accepted in October 2010 for publication in Chemical Engineering 
Education.   
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Figure 2: Observed and predicted temperature and O2 rates in the semi-batch reactor.   

P
age 22.1578.11



CSTR with Optical Diagnostic  

The second experiment features a CSTR processing the oxidation of an organic dye; specifically, 
a 0.33 grams/liter solution of erioglaucine (blue food color) in water is reacted with household 
bleach (6 wt. % NaOCl active ingredient).  The powdered dye is available from Sigma-Aldrich.  
The blue dye has a broad-banded absorption spectrum peaking in the red.  Any collimated red 
light will be absorbed (e.g. helium-neon laser, laser pointer).   The transmission of a laser beam 
through the dye solution is governed by the Beer-Lambert law.  The absorbance is directly 
proportional to the dye concentration, and serves as the basis for experimental determination of 
reaction conversion.  Absorbance measurements are made using an optical flow cell located after 
the reactor.  The flow cell can accept either the reactor effluent directly or an inlet bypass stream.  
A schematic of the experiment is shown in Figure 3.  The temperature of the reactor is measured 
with a thermocouple.   

 

 

 

Figure 3: Schematic of CSTR with Optical Diagnostic experiment  

The reactor is a surplus agitated bench fermentation vessel.  The feed can be introduced either 
above the liquid level in the vessel, or below the surface near the bottom.  The effluent can be 
withdrawn from either the top or bottom.  A typical experiment involves observation of dye 
conversion as a function of space-time, feed/effluent configuration, or even agitation rate.  
Students compare their experimental conversions to those predicted by a CSTR model using 
independently determined kinetics.  

Protein Oxidation  

While the first two reaction experiments are fairly well defined, the third is quite exploratory.  A 
solution of powdered egg whites (10 wt.% in water) – consisting almost entirely of proteins, and 
available from a food ingredients supplier (e.g. Honeyville) – is fed with household bleach at 
known rates through a long glass tube equipped with thermocouples at each end.  A schematic is 
shown in Figure 4.  The setup is currently being fitted for rugged pH probes at either end.   
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Figure 4:  Schematic of protein oxidation experiment   

The oxidation is exothermic, but little other information is available.  The students are 
challenged to make engineering assumptions about the reactor and the reaction.  Simultaneous 
species and energy balances are solved with parameter values “optimized” to yield the observed 
temperatures.   

Temperature Control 

The final new experiment is a simulated CSTR with feedback temperature control, as shown in 
Figure 5.  A surplus agitated fermentation vessel contains an immersed coil for flowing coolant 
water controlled by a surplus proportional solenoid valve.  An electrical immersion heater 
provides simulated reaction exothermicity.  After open-loop dynamic characterization of the key 
components of the system, feedback control experiments are performed with a relatively 
inexpensive digital temperature controller.  Proportional and proportional-integral control are 
tested with servo and regulator problems, respectively. 

 

 

Figure 5:  Schematic of temperature control experiment  
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Experiences at the Unit Operations Laboratory at Texas A&M University-Kingsville 
Horacio A. Duarte and Ali A. Pilehvari 

Department of Chemical and Natural Gas Engineering 
Texas A&M University-Kingsville 

 
This poster discusses the advantages and disadvantages of manual operation versus fully 

automated operation of the Unit Operations laboratory experiments.  Ten out of the twelve 
experiments in our laboratory involve typical chemical engineering units such as distillation and 
liquid-liquid extraction columns that are pilot plant size.  The construction material of most of 
these pieces of equipment is glass so the students can see the inner workings of the experiment.  
While there are some digital transducers in these units, most of the measurements are done 
manually.  Most flow rates are measured with rotameters.  Pressure drops are measured with 
glass manometers.  Compositions are measured indirectly by measuring other properties such as 
density or electrical conductivity. 
 

It has been recommended that these laboratory experiments should be modified to allow 
computer data acquisition of all pertinent parameters.  This will involve replacing all the old 
measuring devices with digital ones that can be connected to a computer.  While there are 
advantages to this approach, we believe that some learning experiences may be lost if all the 
experiments are fully automated.  The advantages and disadvantages of these two modes of 
operation are discussed in this poster using specific examples related to our Unit Operations 
Laboratory experiments. 
 

Three laboratory experiments are discussed.  The first experiment involves complete 
manual operation and data acquisition.  The second experiment involves automatic operation and 
manual data acquisition.  The third experiment involves automated operation and data 
acquisition. 

 
The first experiment is a liquid-liquid extraction experiment.  Acetic acid is extracted 

from a dilute solution of acetic acid and kerosene using water as a solvent.  The experiment is 
conducted at ambient temperature and pressure.  The extraction column is a glass column (York 
Rotating Disk Contactor), four inches in diameter and six feet tall.  The students have to bring 
the column to steady state by manually adjusting the flow rates of water and acetic acid-kerosene 
solution to keep the liquid-liquid interface at the midpoint of the column.  The students can 
usually bring the extractor to steady state in less than 90 minutes.    Flow rates are measured with 
rotameters and compositions are measured by drawing samples and measuring thermal 
conductivity.  The students can run experiments at different rotating disk speeds to determine the 
effect of rotating disk speed on the HETP (Height of Equivalent Theoretical Plate).  This 
experiment is extremely labor intensive but the students seem to enjoy it. 

 
The second experiment involves a continuous distillation column.  The stream to be 

separated is a binary mixture of water and isopropanol.  This is a column made out of glass 
(bubble-cap trays).  It has a diameter of 12 inches, a height of about 20 feet (eight actual trays), a 
reboiler heated by steam and a condenser cooled by water.  The column operation is controlled 
by controlling the liquid level in the reboiler pot and the condenser vessel.  These liquid levels 
are controlled using PI controllers.  The final control elements are two control valves, one 
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controls the distillate flow rate and the other controls the bottoms flow rate.  The rest of the 
column operation, such as changing the reflux ratio, is manual and so is all of the data 
acquisition.  The temperature measurement devices have digital readouts but are not connected to 
a computer.  The compositions are measured by sampling.  Compositions are determined 
indirectly by measuring liquid densities of the binary mixtures at 25˚C.  The flow rates of the 
feed stream and the reflux stream are measured with rotameters.  Flow rates of the distillate and 
the bottoms are measured with a graduated cylinder and a timer.  The flow rate of the cooling 
water (condenser) is measured with a bucket and a timer.  The steam flow rate (reboiler) is 
measured by measuring the flow rate of the condensate (bucket and timer method).  The steam 
pressure is measured with a Bourdon pressure gauge.  The main objective of this experiment is to 
determine the overall efficiency of the column.  Even though there is some computer control for 
the operation of the column, students do not really learn about process control in this experiment.  
The liquid level controller’s main purpose is to facilitate getting the distillation column to steady 
state.  Students learn about process control in a separate laboratory that is an integral part of the 
process control course.  One advantage of this experiment is that students get a more hands on 
experience on how process variables can be measured in different ways.  A disadvantage of this 
experiment is that the students get less exposure to computer data acquisition tools and 
techniques. 

 
The third experiment involves a miniature power plant (Rankine cycle experiment).  This 

is a recently acquired piece of equipment.  This apparatus is almost completely automated.  A 
distinct characteristic of this piece of equipment, as compared with the previous two, is its size.  
It is fairly small.  Also, its fabrication material is steel, so students cannot see the inner workings 
of its different components.  The data acquisition on this piece of equipment is completely 
automated.  All temperatures and pressures, as well as the current and voltage generated by the 
miniature plant, are automatically recorded and stored in a computer file.  The fuel flow rate is 
controlled and automatically recorded in the data file.  The only variable that needs to be 
recorded manually is the steam flow rate.  The equipment is very well instrumented.  It measures 
the turbine’s inlet and outlet temperature and pressure, the boiler’s temperature and pressure, the 
current and voltage generated by the electric generator coupled to the turbine, as well as the 
speed of rotation of the turbine and the fuel flow rate.  With this information, the students 
determine the efficiency of the turbine, the boiler, the electric generator and the entire cycle.  
One could argue that this experiment exposes our students to modern data acquisition techniques.  
Unfortunately, this is not correct.  The students are only exposed to a black box that does all the 
data acquisition for them, but they do not know the inner workings of this black box. 

 
In conclusion, we think it is desirable to have some process automation in our unit 

operations laboratory experiments.  However, we think that manual operation of some of these 
experiments should be kept because it serves as a useful teaching tool. 
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Simulating heat exchanger fouling for unit operations laboratory experiments 
Michael J. Elsass, and Robert, J. Wilkens 

University of Dayton 
 
One challenge when instructing a unit operations laboratory is developing a variety of 
experiments for a limited number of apparatuses.  While it is possible for each laboratory group 
to perform the same experiment on a given apparatus, there is a potential for groups to 
collaborate across experiments thus reducing the level of knowledge gained.  A good 
experimental design will have the students calculate a set of operational parameters from 
experimental measurements as well as developing some type of mathematical model for the 
apparatus.  Each different experiment performed on an apparatus should retain the basic set of 
calculations and modeling to ensure sufficient complexity for data analysis.  For instance, several 
experiments can be performed on a continuous distillation column including a feed tray location 
study, a tray efficiency study, and a reflux ratio study.  Each of these experiments require the 
students to operate the column but the variables altered for each run will differ based on the 
experimental specifications.  For each experiment, the students will use material and energy 
balances as well as vapor-liquid equilibrium relations to evaluate column performance, and will 
compare this data to a model such as McCabe-Thiele.  Therefore, there is a variety of 
experiments that students can perform and still retain the conceptual complexity that underlies 
the apparatus operation while lessening the potential for collaboration amongst groups working 
on the column during the semester. 
 
The shell and tube heat exchanger is a common unit operations laboratory experiment.  It 
introduces the students to industrial heat transfer equipment operation as well as providing them 
a means to apply heat transfer theory to a real apparatus.  A downside of the heat exchanger is 
the limited number of experiments that can be performed.  Typical experiments involve 
calculating an experimental overall heat transfer coefficient and comparing it to a correlated 
value.  Comparative studies of the overall heat transfer coefficient for countercurrent versus 
concurrent operation can also be performed if the apparatus is appropriately piped.  Comparing 
the effectiveness of different fluids is another possibility but water is usually used as both the hot 
and cold fluid due to cost and safety considerations.  Another potential experiment is to evaluate 
fouling in the heat exchanger.  This experiment can be difficult because the level of fouling in 
laboratory heat exchangers is very low due to the fluids used and the short time period the heat 
exchangers are in use.  However, a heat exchanger can be configured to simulate fouling.   
 
Heat exchanger fouling is defined as the scales or deposits that build up on the shell and tube and 
is caused by the fluids flowing through the exchanger.  Fouling increases the resistance to heat 
transfer within the exchanger, which causes the performance to decrease[1,2].  Fouling is 
measured as a part of the overall heat transfer coefficient (U).  The overall heat transfer 
coefficient (U) is the sum the resistances to heat transfer and provides a measure of heat 
exchanger performance. 
		
1 1 ⁄

2
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In the above equation, Rs is the shell side fluid resistance, Rw is the tube wall resistance, Rt is the 
tube side fluid resistance, and RF is the fouling[1,2].  For a clean exchanger, there is no fouling 
resistance and 0.  Heat exchanger fouling can then be calculated by comparing the heat 
transfer coefficients calculated when the exchanger is clean to that of when it is fouled. 
 
The University of Dayton has designed and assembled a 1-2 pass shell and tube heat exchanger 
for the unit operations laboratory which is piped in a manner that does not allow for different 
flow configurations.  This exchanger consists of 32 copper tubes inside a glass shell.   Water is 
heated in a hot water tank and pumped through the tubes while cold city water flows through the 
shell.  Both flow rates are measured and adjusted with rotameters and the inlet and outlet 
temperatures of both the shell and tube flows are measured with thermocouples.  Tube side flow 
can be reliably operated at a range of zero to three gallons per minute and shell side flow at a 
range of zero to nine gallons per minute.  Due to safety concerns, the hot water tank temperature 
is limited to a maximum of 55˚C.  Cooling water inlet temperatures are a function of the seasonal 
temperature. 
 
During the course of the semester, the heat exchanger is modified to simulate fouling.  The 
students operating the heat exchanger for the first experimental session are tasked with finding 
the overall heat transfer coefficient both experimentally and by correlation at a range of different 
shell and tube flows.  Once the report is complete, the data for experimental heat transfer 
coefficient is saved for the next session as “clean” data.  For the next experiment, six tubes in the 
heat exchanger are plugged to simulate fouling but students are not told of the modification.  
Students operating the heat exchanger for this experimental session are tasked with calculating 
the resistance due to fouling.  They are provided with the experimental data from the previous 
session and told that this data was obtained when the heat exchanger was clean.  The students 
operate the heat exchanger at the same flow rates and as close to the same inlet temperatures as 
possible as the clean data and record the flows and temperatures.  With this data, the students 
calculate the heat flow from the tube flow to the shell flow for both the clean and fouled data 
with 
 

 
 
Heat flow is calculated for both the tube and shell, and due to the conservation of energy, these 
values should be similar.  Students can use this energy balance closure as a means to reject data.  
The heat flow is used to calculate the overall heat transfer coefficients as shown below[3]. 
 

∆
 

 
The fouling resistance is then calculated by the following equation[3,4]. 
 

	
1 1
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Another metric to evaluate performance is heat exchanger effectiveness.  The effectiveness is the 
ratio of the heat flow from the hot to the cold fluid to the maximum heat flow possible for the 
given inlet conditions.  Effectiveness relations are shown below[4]. 
 

≡  

 
where  
 

, ,  
   
For this experiment, the decrease is effectiveness is due to the simulated fouling and is measured 
as the difference between the clean and fouled effectiveness values.  Once the calculations are 
complete, students compare their calculated values with literature. 
 
With six of 32 tubes plugged, or three tubes of sixteen when factoring in two tube passes, the 
fouling factors ranged from 0.00018 to 0.00059 m2 ·K/W which corresponds to a decrease in U 
from 10% to 40%.  These values compare well with literature for water which lists fouling 
factors as 0.0002 m2 ·K/W [4,5], 0.0004 m2 ·K/W [6].  Similarly, the heat exchanger effectiveness 
decreased in the range of 1% to 4% as the tube and shell flow rates increased. 
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Integration of the Chemical Engineering Laboratory with a Focus on Bio-Fuel Production 
Danilo C. Pozzo, Jim Pfaendtner,Marvi Matos, Dave Gery, Arne Biermans, Bill Baratuci 

University of Washington 
 
The production of renewable energy is one of the most important technological problems that we 
face today.  This challenge also offers us an opportunity to motivate and shape the early careers 
of chemical engineering undergraduate students.  With this goal in mind, we have designed an 
innovative pedagogical model for the Chemical Engineering Laboratory that is based on the 
central theme of producing fuels from biomass.  The most innovative component of the new 
laboratory is the complete integration of new and existing experimental stations.  The second 
part of the unit operations laboratory course at the University of Washington was integrated to 
model a bio-fuel production plant where student groups work on individual operations that make 
up a complete process.  This full-plant view of the laboratory allows students, for the first time, 
to evaluate the effects of their decision on upstream and downstream plant operations.  
Furthermore, it also provides a common framework to promote active discussion and 
engagement amongst student groups.  The transformation of the course included the 
development of completely new modules for fermentation of biomass and the modification of 
existing equipment and modules for the treatment, separation and extraction of product and 
waste streams.  The new fermentation modules utilize internet-based remote monitoring 
technologies to track the development of fermentations while students are outside of the 
laboratory.  Fully interconnected units now define a common goal of reducing costs and 
improving productivity and replace the original independent design concepts, such as cost 
analysis and environmental compliance, into the laboratory.  The objective of the re-designed 
course is to provide a realistic structure that is congruent with what students will experience after 
graduation.  The new laboratory structure is also designed to foster leadership, creative thinking, 
composure under uncertainty and the critical review of information.  Furthermore, with the new 
structure, we also continue to meet the original learning objectives of instructing students on the 
basics of experimental planning and reporting. 
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Jimmy Crack Corn and I DO Care: Fluidized-Bed Drying of Cracked Corn 
Michael E. Prudich 

Department of Chemical and Biomolecular Engineering 
Ohio University 

 
Fluidized-bed fundamentals and technologies are often only briefly covered in undergraduate 
chemical engineering curricula, if at all.  However, fluidized-bed reactors, fluidized-bed coating 
systems, and fluidized-bed driers play important parts in the chemical process industry.  This 
abstract describes a laboratory experiment used in the senior unit operations laboratory at Ohio 
University.  Students who complete this laboratory assignment are introduced to the basic 
concepts of fluidized-bed behavior. 
 
The unit operations laboratory course at Ohio University consists of a two quarter sequence in 
which teams of students perform eight laboratory experiments, four each quarter.  The course is 
team taught, with each experiment being motivated by a design problem.  The course is writing 
intensive with each student team producing two reports for each experiment - a prelab planning 
report and a postlab analysis report.  Each report is evaluated on a number of criteria.  Failure to 
satisfactorily pass on even one of the criteria results in the requirement of a rewrite of the report.  
The unit operations laboratory is also used as a point for end-of-program assessment of the 
ability of students to apply statistical methods.  The details of the operation of this course are 
reported elsewhere [1-3]. 
 
This extended abstract deals with a specific laboratory experiment that focuses on determining 
the fluidization characteristics and drying behavior of a bed of cracked corn.  The equipment 
used is a batch fluidized bed which consists of a 4-inch ID section of plexiglas tubing.  Air is 
supplied to the bed as the fluidizing gas.  The volumetric flow rate of the air is controlled with a 
hand valve and measured using a rotometer.  There is an electronic heater in the inlet air line 
which allows the students to control the temperature of the air entering the fluidized bed.  The 
bed is instrumented with temperature, relative humidity and differential pressure sensors.  
Temperature and relative humidity can be measured both at the bed inlet and outlet.  Differential 
pressures can be measured both across the bed and across the distributor plate.  Cracked corn is 
the solid to be fluidized, and is purchased directly from a local feed store.  Students separate the 
corn, using standard screens, into “large” and “small” fractions (typically with nominal diameters 
in the order of 0.1 to 0.2 inches).  The screening of the corn is always an adventure since the 
students are not familiar with the concept of screen sizes and/or screening techniques and have to 
be instructed as to how they can be effectively used. 
 
For each experiment, the lab meets for two sessions of five hours each.  Some independent 
prelab work is required (determination of corn particle density and fixed-bed voidage) prior to 
the first lab meeting as the students learn that the physical characteristics of cracked corn and 
fixed beds of cracked corn are not easily found using Google.  During the first lab session, the 
students characterize the fluidization behavior of their two size fractions of cracked corn 
(minimum fluidization velocity, pressure drop versus superficial air velocity for both fixed and 
fluidized beds, and bed expansion versus superficial air velocity).  Their assignment is to take 
this experimental data and compare it (using statistical techniques) to data predicted using 
appropriate correlations found in the literature.  Figure 1 illustrates typical data collected by the 
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students for the first day’s 
experimentation.  During the second 
lab session, the students dry their 
cracked corn.  So that a significant 
amount of drying can occur, water is 
pre-added to the cracked corn in a 
ratio of 4 masses of water to 10 
masses of ‘as delivered’ cracked 
corn.  Since the fluidized bed 
operates in a batch mode, unsteady 
state behavior is observed.  Upon 
adding the dampened corn to the 
fluidized bed, the exit gas 
temperature quickly decreases to a 
minimum and then slowly increases 
to a constant value, while the exit 
gas relative humidity quickly 
increases and then slowly decreases 
to a constant value.  The drying is said to be over when the absolute humidity of the exit gas 
stream is equal (within some predetermined specification) to the absolute humidity of the inlet 
gas stream.  The unsteady-state behavior of the batch fluidized-bed drying system is often 
initially confusing to the students as most of their previous experiences, both in laboratories and 
in class problems, have been with steady-state systems.  Figure 2 illustrates typical data collected 
by the student for the second day’s experimentation. 
 
Statistical skills are reinforced as 
students are required to define the 
reproducibility of their data and to 
make statistically-justified judgments 
as to whether or not the data that they 
generate is effectively described by 
models found in the literature.  The 
drying portion of the experiment 
requires the application of an 
unsteady-state mass balance to 
determine the percentage of the water 
removed from the dry corn product. 
 
This experiment introduces a number 
of new concepts to our senior 
students as well as reinforcing several concepts already learned in our chemical engineering 
undergraduate curriculum. 
 
New concepts introduced with the experiment include: 

(1) Pressure drop for fluid flow through a fixed bed (superficial velocities below the 
minimum fluidization velocity - Ergun’s equation). 

umf 

Figure 1.  Fluidization characteristics for the ‘small’corn sample.  

umf = minimum fluidization velocity. [4] 

Figure 2. Drying characteristics for the ‘small’ corn sample. [4]
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(2) Minimum fluidization velocity (superficial velocity at the minimum fluidization velocity 
- the minimum fluidization velocity being predicted by a force balance). 

(3) Fluidized bed expansion as a function of superficial velocity (superficial velocities above 
the minimum fluidization velocity - the bed expansion behavior being described by one 
of a number of relationships, for example, the Richardson-Zaki equation). 

(4) Bed voidage (how it is measured for both fixed and fluidized beds). 
(5) Sphericity (how to determine the “diameter” of particles that are not spheres) . 
 
Familiar concepts reinforced include: 
 
(1) Drag coefficients and force balances (related to both the minimum fluidization velocity 

and fluidized-bed expansion behavior). 
(2) Relative and absolute humidity (needed to complete an unsteady-state water balance on 

the batch system). 
(3) Unsteady-state mass balance (calculation of the drying rate and percentage water removal 

based on the knowledge of gas flow rate, relative humidity, and temperature). 
 
As stated earlier, our students encounter many conceptual challenges while completing work on 
this experiment.  Among the most common challenges are: 
 
(1) Accounting for and dealing with unsteady-state behavior. 
(2) Performing calculations with relative and absolute humidities and distinguishing between 

the two. 
(3) Dealing with uncertainties in the particle diameter and accepting that, while sphericity 

has a specific theoretical definition, it can be successfully used as a fitting factor for the 
cracked corn.  [Cracked corn is neither spherical nor monodisperse.] 

(4) Understanding the relationship between fluidized-bed expansion and terminal velocity. 
 
Additional details regarding the apparatus, experimental procedures, desired learning outcomes, 
and the mini-design project associated with this experiment will be described as part of the 
poster presentation. 
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The Use of COMSOL Multiphysics Simulations to Enhance the Learning of Basic Concepts 
of Heat and Momentum Transfer 

Sergio Mendez 
Chemical Engineering Department 

California State University, Long Beach 
 
 
Abstract 
 
In the chemical engineering curriculum, students are taught about the fundamentals of heat and 
momentum transfer.  The teaching process involves classroom lectures and often corresponding 
undergraduate laboratory experiments.  Another tool that can be used to reinforce the concepts 
introduced in the classroom and practiced in the lab is computer simulation.  The benefits of 
using COMSOL are many: 1) it is designed to model heat, momentum, mass, etc. transfer; 2) 
ease of learning the software; 3) the ability to have either simple or complicated models; 4) quick 
simulation time; 5) and relative low cost.  We have developed two systems that incorporate 
COMSOL simulations.  For the heat transfer lab, students perform a simple transient heat 
conduction experiment.  First the density and thermal conductivity, k, are determined.  Then a 
material in the shape of slab that is originally at room temperature is put in contact with a hot 
surface.  The rise in temperature of the material is measured.  To estimate the heat capacity, a 
COMSOL model is implemented with density, k, and Cp as the input parameters.  The students 
can make a direct comparison between their experimental findings and the COMSOL simulation.  
In another application, the students can use the Navier-Stokes equations to derive the parabolic 
velocity profile of liquid flowing through a narrow slit.  The students can compare the derived 
analytical expression and a COMSOL simulation.  We hope that introducing students to 
COMSOL will intrigue them to explore the power of the software, especially the built-in 
“Chemical Engineering” module. 
 
I. Introduction 

The three modes of heat transfer are conduction, convection and 
radiation.  In this lab, students can learn how to estimate the thermal 
properties of a material by performing heat conduction experiments.  
The two properties of interest are the thermal conductivity and the 
heat capacity. 
 
To illustrate the concept of heat capacity, suppose that a cold slab of a 
material is suddenly put in contact with a hot medium.  In Figure 1 is 
shown a cold slab of material exposed to a hot surface.  From the 
second law of thermodynamics we know that heat flows in the 
direction of high to low temperature.  Thus the left side of the slab 
will always be hotter than the right.  A plot of the temperature at the 

right edge versus time would show an initial gradual rise, then a rapid increase, and finally a 
plateau, or an “S” shaped T-vs-t curve.  Intuitively, we know that the temperature rise of the slab 
should be proportional to the amount of heat transferred to it.  Actually, the constant of 
proportionality is the heat capacity, Cp, which is a thermal property of the slab material. 

hot 

f

initially 

ld l b
Figure	1.	1‐D	heat	transport.	
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Once the slab temperature is equilibrated, a plot of the temperature as function of distance away 
from the hot surface might be a straight line with a negative slope.   The magnitude of this slope 
will be determined by another property of the material, the thermal conductivity, k.  For a given 
heat flux, a material with a high k will exhibit a smaller magnitude slope than a material with a 
low k. 
 
For the case of 1-dimensional, transient heat conduction through a slab, the governing partial 
differential equation (PDE) is 

T

t


k

 Cp

2T

x2  or  2

2

x

T

t

T






     Equation 1 

where ρ is the density and α is the thermal diffusivity of the material.  The solution to this PDE 
depends on the boundary conditions, and to solve it analytically one must use advanced math 
techniques.(Bird 1960) 
 
For the case of 1-dimensional, steady-state heat conduction through a slab, the governing 
differential equation is 

dx

dT
k

A

q
       Equation 2 

where q/A is the heat flux.  If the heat flux, slab thickness and temperature gradient can be 
measured, Equation 2 can be used to calculate the thermal conductivity. 
 
II. Experimental Method 
 
Prior to beginning the heat conduction data collection, a slab of red oak wood was weighed and 
its volume was measured to determine the density.  Briefly, the thermal conductivity was 
determined by a simple method that had a stack composed of an upper steam block, an upper 
slab of wood, a water-cooled block at the center, a lower slab of wood, and a lower steam block.  
Since the focus of this paper is in the COMSOL modeling to find the heat capacity, the details of 
the procedure to measure k are not included.   

The experimental set-up is shown in Figure 2.  
The wood block was sandwiched between two 
steam blocks with a constant temperature of 
400 K.  At the beginning of the transient heat 
conduction data collection, the three 
components were clamped tightly to ensure 
adequate thermal contact.  The temperature at 

the center of the slab was collected with a digital thermocouple for a period of ten minutes.  
 
III. Computational Method 
 
In this lab, students performed heat conduction experiments to determine the thermal properties 
of a slab of material.  The easiest way to model the unsteady state portion of the experiment with 
COMSOL is to treat the system as an infinite one-dimensional slab as shown below. 

Figure	2.	Experimental	set‐up.	
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Initial condition:   at t=0, T(x,0)=300 K 
 
Boundary conditions:   at x=0, T(0,t)=Ts=400K 
    at x=L, T(L,t)=Ts=400K 
    where L = 0.02 m 
 
To make the transient analysis even simpler, we can take 
advantage of the symmetry and model the heat transport for only 
half of the slab.  Now the 2nd boundary condition becomes:  at 
x=L/2, heat flux = 0.  With these initial and two boundary 
conditions, COMSOL can solve the transient heat transfer 
behavior.  The simulation can provide curves of the temperature-
versus-position (along the x-direction) at a given time, and 

temperature-versus-time at a given position. 
 
IV. Results 
 
All of the experimental data was collected at the University of New Mexico chemical 
engineering undergraduate unit operations laboratory.(Johns 2008)  The material used was a slab 
of red oak.  The density was measured to be 707 kg/m3 and the thermal conductivity was 0.189 
W/(m K).  According to the literature, the value k for a given type of wood will depend on the 
moisture content.(Anton 1999)  According to the Wood Handbook, for lumber with 12% 
moisture content, k is in the range of 0.1 to 1.4 W/(m K).(Anton 1999)  Because we had no way 
to determine the moisture content of our oak wood slab, in the future we will perform similar 
experiments with material with well known thermal properties such as a slab of pure aluminum.  
 
A one-dimensional model was constructed with the COMSOL software.  With the initial and 
boundary conditions noted above, temperature-vs-position (T-vs-x) profiles were generated at 
various times.  In Figure 3, are the COMSOL results.  The x=0 m position represents the location 
where the slab of wood is in contact with the hot steam block, and the x=0.01 m is the center of 
the wood slab.  At t=0 s, there is an obvious discrepancy with the computer results since the 
temperature away from x=0 is non-zero and because the temperature of the slab drops below the 
initial temperature of 300 K.  At longer times, all of the curves exhibit zero slope at x=0.01 m as 
expected because the heat flux must be zero at the center of the wood block.  The curves indicate 
that after a long time (600 s), the temperature of the wood approaches that of the steam block.  
Unfortunately, we could not obtain such curves with our experimental set-up so a comparison 
could not be made.  However, since the thermocouple was placed at the center of the wood 
block, we could compare the time-dependent temperature at this position (x=0.01 m). 

Ts Ts 

L 

T(x,t) 

x 
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Figure 3.  COMSOL T-vs-x results at varous times. 
 
In Figure 4 is shown both the experimental and COMSOL transient response (T-vs-t) at x=0.01 
m.  The experiment was run three times, and we plotted the average temperature at 60 second 
intervals.  The error bars indicate a bigger standard deviation at low times as compared to long 
times.  Once the COMSOL model was established, it was easy to vary the heat capacity.  
Although many others were calculated, in Figure 4 we only show T-vs-t curves calculated with 
Cp=400, 1400, and 2000 J/(kg K).  Based on the comparison with the experimental data, our 
model indicates that the best fit is with Cp=1400 J/(kg K).  According to the Wood Handbook, 
the heat capacity is a function of moisture content as well as temperature.  For the sake of 
comparison, we choose a literature value for wood with 12% moisture content at 300K that is 
1700 J/(kg K).(Anton 1999)  Again, because we do not know the moisture content of our wood 
sample, a direct comparison cannot be made; however, there seems to be reasonable agreement. 
 
V. Summary 
 
In this paper, we demonstrate a simple method of using the commercially available COMSOL 
software to augment a chemical engineering heat conduction lab.  The simple experimental set-
up requires a heat source (e.g. steam blocks), a slab of solid material (e.g. wood), and a 
thermocouple.  To ease the level of complexity, a one-dimensional model can be implemented 
with COMSOL.  The partial differential equation can be presented along with the initial and 
boundary conditions.  Once the model is established, it is easy to perform a parametric computer 
study of the effects of various material properties such as density, thermal conductivity and heat 
capacity on the thermal behavior.  In this paper, we used red oak and found that the best fit of the 
heat capacity was in reasonable agreement with literature values. 
 
In the future, we hope to repeat this study with a slab of a well-characterized material such as 
aluminum.  Within COMSOL, we can input a function (from the literature) that captures the 
temperature dependence of the heat capacity.   We could also increase the complexity by using 
3-dimensional geometry, and by including heat loss from the edges of the slab due to heat 
conduction through insulation or heat convection to the surrounding air.  Allowing the students 
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an opportunity to use this sophisticated modeling software will help them realize how such 
modern tools can be used to understand and optimize engineering systems. 
 

 
Figure 4.  Experimental and COMSOL T-vs-t results. 
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Reaction Experiments: Low Cost, Safe, Hands-On Visually Observable 
Reaction Experiments 

Jim Henry 
University of Tennessee at Chattanooga 

 
Denture cleaning tablets (Efferdent, Polident and drugstore generic) are not only cheap but easily 
available and safe to handle.  The tablets contain sodium bicarbonate and citric acid as solids. 
When immersed in water, they dissolve and react quite vigorously. 
 
Reacting the tablets in water can illustrate several aspects of reactions and chemical engineering:  
Varying the temperature demonstrates different reaction rates. Different ratios of tablet mass to 
water can be explored (Efferdent and Polident tablets have different masses).  
 
The experiment is intended to determine the order of the reaction, the rate constant at a 
given temperature, and the activation energy of the reaction. The denture cleaner works by the 
reaction between citric acid and sodium bicarbonate to produce sodium citrate, carbon dioxide, 
and water. Figure 1, below, shows the balanced reaction. 
 

 
 
The experiment set-up involved using standard 150mL beakers filled to the 100mL mark with 
water. For reactions at greater than room temperature, a Fisher Scientific Isotemp stirring hot 
plate was used. Figure 2 shows a picture of the Isotemp loaded with a series of reactions. 

 

 

 

The figure to the left shows 
the stirring hot plate with 9 
different beakers with the 
reaction in progress. The 
reaction is observable as 
bubbles are released from 
the tablet-reaction system. 
The total reaction time is 
taken to be an estimate of 
the reciprocal of the 
reaction rate.
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The procedure we used is as follows: 
 
1. Measure into a 150mL beaker 100mL of water and record the temperature of the water. 
2. Weigh to the nearest 0.1 g the individual denture cleaner tablets and record the weight. 
3. Record the weight of the beaker with the 100ml of water. 
4. Drop the tablet into the water and observe the effervescent reaction. 

a. Begin the timer to record the length of the reaction. 
i. The reaction is assumed to reach completion when the tablet has 

completely dissolved and any bubbling/foaming has stopped. 
b. Stop timer and record reaction time. 

5. Repeat each experiment 2 more times to get sufficient data for statistical analysis. 
 
The graph below shows the results from one set of experiments for reaction time as a function of 
temperature. "Brand A" had a larger mass of tablet:  2.8 g vs 2.1 g for the other two. 

 
 

The activation energies were calculated using the data from 25°C to 45°C. They were found to 
vary from about 28 kJ/mol to 35 kJ/mol.  The graph shows a halving of the reaction time (and 
thus a doubling of the reaction rate) for a change of temperature of 20°C. 
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One student suggested measuring the weight change as the CO2 evolved. This experiment was 
attempted and less than 1 mg weight loss could be measured.  In discussion between the 
instructor and the student, it was concluded that the foam above the reaction liquid was actually 
trapping the CO2, so consequently it still contributed to the mass of the reaction system. 
 
Safety issues: those conducting the experiments were to wear safety glasses and use protective 
gloves for handling the tablets. 
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Integrating Sustainability in Unit Operations Laboratory 
Naoko Ellis 

Chemical and Biological Engineering 
University of British Columbia 

 
Abstract 
 
More than ever, we need global citizens with the ingenuity to solve complex problems. We are 
faced with many urgent challenges: climate change, pollution, and the shortage of energy, food, 
and water. These problems require technical, social, ecological, economical, and political 
solutions. Engineering education sits at the core of this, as many industries and various 
engineering professional bodies have identified “sustainability” as a top priority (Hesketh et al. 
2004). In the field of chemical engineering education, the evolution of green chemistry and 
pollution prevention have led to dedicated courses such as green engineering and industrial 
ecology in the senior levels. However, in order to bring the concepts of sustainability into the 
basis of all engineering design and practice, “full integration of the sustainability concept into 
engineering curricula” (Glavič 2006) is required and an Integrated framework of sustainability in 
chemical engineering connecting the pathway from individual to global levels has been described 
as the hierarchy in sustainability (Batterham 2006).   

This paper presents a case study of how sustainability was incorporated into our 3rd year unit 
operations laboratory course. There are two unit operations laboratory courses taken by 3rd year 
students where ten lab stations are available, including fluidized beds, fuel cell, heat exchanger, 
sedimentation, rotary viscometer, rotary filtration, air cyclone, pumps and valves, and 
thermocouple data logging. The class was split into four groups with 8-9 students per group to 
work on each project. This project was part of the University of British Columbia (UBC) SEEDS 
(Social Ecological, Economic, Development Studies program - http://www.sustain.ubc.ca/seeds) 
with projects pre-arranged  to work on the UBC aquatic centre, UBC steam plant, UBC farm, 
and UBC composting facility. The UBC SEEDS program is “Western Canada’s first academic 
program that combines the energy and enthusiasm of students, the intellectual capacity of 
faculty, and the commitment and expertise of staff to integrate sustainability on campus” 
(http://www.sustain.ubc.ca/campus-sustainability/getting-involved/faculty-staff). Each group 
was responsible for contacting their campus client to define the scope of the project, conducting 
research, proposing solutions, and reporting. The output of the group project was a report and a 
presentation where they stated the problem (as defined with the client) and proposed a solution. 
The clients were invited to the presentations to participate in questioning and providing 
feedback. A section on “Reflections on UBC and Sustainability” in the final report emphasized 
their learning and understanding of where the university stands, and how their project can 
contribute to sustainability on campus. 

Introduction 

The laboratory courses in the Chemical and Biological Engineering have traditionally had a 
strong component of hands-on learning. During the 3rd year curriculum, students conduct 
experiments on 10 different units. Additionally, there is a week-long field trip to the industry, 
data acquisition and analysis on the campus boiler unit, and a session on mechanical and 
electrical workshop. The project described here was conducted in place of the boiler trial for 
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Table 1. Mark distribution for the lab course (CHBE 344).

2010. Thus, the second term of the 3rd year lab consisted of 4 experiments in the lab, and the 
project based on SEEDS, as shown in course evaluation scheme in Table 1. The four labs, which 
will not be covered here, were: heat exchanger; fuel cell; rotary viscometer; and rotary filtration.  

SEEDS Projects 
 
The four SEEDS project were 
predetermined and set up with the 
assistance of the SEEDS coordinator 
from the Campus Sustainability Office; 
UBC Farm; UBC Aquatic Centre; UBC 
Steam Plant; and UBC In-line 
Composting. An introductory lecture 
included the information on past SEEDS 
projects on campus 
(http://www.sustain.ubc.ca/seeds-
library), and the overall UBC 
sustainability initiatives.  
 
The overall learning objectives of the 
projects from engaging in one of the 
SEEDS projects were to: 
 

 gather relevant background information; 
 define the scope of project; 
 conduct the assessment; 
 effectively communicate with staff and faculty; 
 present results to peers; and 
 prepare a final report to the staff. 

 

Each SEEDS project had a loosely defined objective provided by the staff and redefined by the 
instructor, myself, as listed in Table 2. Students were given a short window to sign up for their 
project of interest through the course web site. From then on, the projects were run according to 
the timeline given in Table 3. Consulting hours were set up to allow students to share their 
challenges and progress with the instructor.  

Table 2. SEEDS project and objectives. 

SEEDS projects Objectives 
UBC Steam Plant Looking into options for recovering residual heat from the flue gas 
UBC Aquatic Centre Possible ways to utilize the condensate of the steam used for heating 

the pool 
UBC Composting Measuring the flow rate and composition of the gas coming out of the 

composter 
UBC Farm Measuring the temperature and composition of the composter pile 
 

Item Format Mark 
1st lab Group formal report 10% 
2nd lab Individual short report 15% 
3rd lab Group presentation 15% 
4th lab Individual formal 

report 
15% 

SEEDS 
Project 

Mid-term presentation 10% 

SEEDS 
Project 

Final presentation 10% 

SEEDS 
Project 

Final report 15% 

Field trip Report 10% 
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PRESENTAION EVALUATION FORM 
 

COMMENTS ABOUT CONTENT OF TALK: 
a) Introduction and Background Information: 
b) Definition of Problem: 
c) Scope of Project: 
d) Explanation of Experimental Apparatus and Procedures: 
e) Conclusions: 
f) Overall Organization: 
 
COMMENTS ABOUT PRESENTATION OF SEMINAR: 
a) Delivery (volume level, pronunciation, grammar, speech 
mannerisms, flow, etc.) 
b) Style (appearance, confidence, rapport with audience, etc.) 
c) Slides (legibility, neatness, impact, etc.) 
 
COMMENTS ABOUT SPEAKERS ABILITY TO ANSWER QUESTIONS: 
 
OTHER COMMENTS AND/OR QUESTIONS: 
 
Presentation Mark (OUT OF 10):                                                 
MARKER: 

 

Table 4. Presentation Evaluation Form. 

Table 3. Timeline of SEEDS Project. 
 

 
Both mid-term and final presentations were marked by the instructor, teaching assistants, and the 
peers, according to the criteria shown in Table 4. Quick feedback was given after the mid-term 
presentation which encouraged the students to improve their final presentations. 
 

The outcome of the projects 
consisted a final presentation 
and a report. Each client, i.e., 
staff member, was encouraged 
to attend the final presentation 
and raise questions and 
comments. The final report 
had a well-defined structure 
including: Introduction; 
Problem Definition; 
Methodology; Results and 
Discussion; Reflection (on 
UBC and sustainability); 
Recommendations for UBC 
Key Partners; 
Recommendations for Future 
CHBE 363 Groups; 
Conclusions; 
Acknowledgement; 
References; and Appendix.  
 
  

Dates Tasks 
January – April  Duration of the course 
Late January  Meet with team and client: include Naoko in the initial meeting 

with the staff. Contact info is written in the SEEDS project form 
 Fill out SEEDS project form and Student Registration Form. 

Submit to Naoko 
Early February Mid-term Project Presentation 

 define scope of project 
 objectives and tasks 

March  work on project  
 read “UBC Climate Action” report when available 

Mid April Final Project Presentation  
Late April Final Report submission 

Online peer evaluation 
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Overall, the projects have collected and analyzed data, and come up with solutions and 
recommendations to the clients, who were very interested in the outcome. All the reports are 
available online. Some reflections from the reports are included below. 
 
“This experience has taught us a lot about sustainable thinking.  As the purpose for this project, 
our objectives and methods were developed with sustainability in mind. As a first exposure to its 
practices for all the group members, this project has taught us to think more about 
environmentally safe practices in our daily lives as well as to see areas that could be improved to 
be more efficient or less damaging.  As student engineers, we believe this is an extremely useful 
lesson, as it will continue to be our responsibility to continually improve the area in which we 
live as well as pass on our knowledge to younger generations of engineers.” (UBC Farm report) 
 
“UBC is working strongly toward sustainability and it has high hopes for the way that the 
campus can be run. Using a somewhat closed loop system for compostable waste, UBC is 
working in the right direction toward being a fully sustainable entity. In order become fully 
sustainable in terms of organic matter UBC would have to grow all of its own food, process the 
waste through a compost facility, then use said compost as nutrients for more food to be grown. 
By starting with a compost facility that helps to keep some the organic matter on campus, while 
not emitting a significant amount of GHG emissions, UBC has taken the first step.” (UBC 
composting) 
 

In summary, the SEEDS project served as an excellent mode for students to engage in a part of 
the campus operation through dialogues with the staff, learning about the operation, collecting 
and analyzing data, testing the change or recommendation, and presenting the solutions. Students 
were enthusiastic about their projects and their solutions as they presented to their peers and the 
clients. It is hoped that a sense of belonging to the campus by engaging in such project has been 
cultivated. In fact, UBC has developed the Sustainability Academic Strategy in which the 
Campus as a Living Laboratory (http://www.sustain.ubc.ca/hubs/campus-living-laboratory) as a 
working model. Further engagement of students in this form is expected to continue.  
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SEEDS Project Reports 

http://www.sustain.ubc.ca/sites/default/files/seedslibrary/CHBE%20363%20SEEDS%20Aquatic
%20Centre%20Report%20FINAL.pdf 
 
http://www.sustain.ubc.ca/sites/default/files/seedslibrary/CHBE%20363%20SEEDS%20compos
t%20FINAL.pdf 
 
http://www.sustain.ubc.ca/sites/default/files/seedslibrary/CHBE%20363%20SEEDS%20steam%
20plant%20FINAL.pdf 
 
http://www.sustain.ubc.ca/sites/default/files/seedslibrary/CHBE%20363%20SEEDS%20Farm%
20FINAL.pdf 
 
 
 
 
 
 
 
 

Downsizing Space and Equipment, But Not the Experience: Reinvigorating the Unit 
Operations Laboratory at Vanderbilt University 

Bridget R. Rogers 
Vanderbilt University 

 
 
In August of 2010 the Chemical and Biomolecular Engineering Department at Vanderbilt 
University completed a major renovation of our teaching laboratory.   Our increasing 
undergraduate enrollment (up from 27 graduating seniors in 2007 to 59 graduating in the class of 
2013, assuming no attrition between the sophomore and senior years) has increased the need for 
larger classrooms and teaching labs.  Also, our growing graduate program (29 total students in 
2007 increasing to 39 total students in 2010)  lead to faculty hires and the need for more research 
space.  These demands for increased space and/or better utilization of existing space drove the 
need for the renovation. 

As seen in Figure 1, a photograph of the lab before renovation, our lab was a traditional high-bay 
lab with a large hole cut in the top floor to enable the installation of large-scale separation 
columns and their associated condensers, reboilers, and feed/product tanks.  Smaller 
experiments, mostly used in our junior laboratory course, were set up around the perimeter of the 
upper floor.  Additional work stations were located on the basement floor to facilitate 
characterization of the bottoms products from the large columns, chemical storage, and storage 
of many other research and teaching tools and instruments.    P
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Figure 1. Photograph of the space before renovation 

The renovation involved completely gutting the space on the top floor, filling in the hole in the 
top floor, and refitting the space with new utilities and furniture.  Figure 2 is a photograph of the 
renovated space taken from approximately the same spot as the photograph in Figure 1.  The 
solid doors leading out the loading dock were replaced with doors with windows and additional 
windows were added above the door.  The added natural light and the new lighting design 
brightens up the space compared to the old space.  We added a large support grid on the ceiling 
to enable full use of the space.  Utilities are bundled in the ceiling.  Ten utility panels, shown in 
Figure 3, each contain seven 110V, 20 A connections, each on its own circuit, and one 20 A, 208 
connection.  Each electrical receptacle connects to a twist-lock extension cord.  In addition to the 
electrical connections each utility panel contains supply lines for filtered house water and a 
supply for house compressed air each with its own ball-valve shut-off.  

 
Figure 2. Photograph of the renovated space taken from approximately the same spot as that in 

Figure 1. 
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Figure 3. Utility panel supplying seven 110 V and one 208 V circuits along with compressed air 

and filtered water. 

The space was designed to hold ten groups, four students each, in each laboratory section.  This 
will eliminate the need (in the foreseeable future) to add laboratory sections to meet our growing 
undergraduate enrollment.  The space was also designed with flexibility in mind.  All laboratory 
benches are height adjustable and on casters.  This enables us to rearrange the space as needed 
for both the junior and senior lab set-ups.  Additionally, several storage cabinets which also have 
casters are in the space to hold support equipment and lab consumables. 

Students in our unit operations lab complete four laboratory exercises.  For each exercise the 
students are challenged with a design problem which will require data collection using the 
laboratory equipment to solve.  They work in groups of three or four students, with the same 
students working together for the entire semester.  During the Fall 2010 semester we had one 
section of five groups and one section of seven groups.  Figure 4 is a photograph taken during a 
Fall 2010 laboratory section.. 

 
Figure 4. Photograph taken during a Fall 201 laboratory section. 

We currently have a distillation column, a liquid-liquid extraction column, batch and CSTR 
reactors for evaluation of kinetic parameters and reactor design, and a fermentation system.  
Figure 5 contains a photograph of the kinetics set up. Photographs of each of the distillation, 
fermentation, and liquid-liquid extraction set-ups are provided in Figure 6.  Note that we have 
chosen to use mostly peristaltic pumps in these systems.  Peristaltic pumps provide flow 
metering as well as flow, eliminating the need for flow sensors.  They also provide flow rates in 
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the ranges needed for these smaller scale set-ups and can pump many types of chemicals without 
damaging the pump.  The pumps we use also have the capability to be computer controlled, 
enabling us to build control systems for these experiments in the future. 

 
Figure 5. Photograph of the kinetics laboratory set up 

The renovation created a flexible, open-concept space for teaching.  The light and airy space is 
much more esthetically pleasing to work in, especially during the long five-hour laboratory 
sessions.  While the renovation removed the basement from the teaching space, it created more 
usable space than we had prior to the renovation.  The basement space is currently being turned 
into two research laboratories to support new faculty hires. 
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Figure 6. Photographs of experimental set-ups.  Top-left: distillation; Top-right: fermentation; 
Bottom-left: liquid-liquid extraction. 
 
 

 

Intended Outcomes of a Unit Operations Laboratory Experience 
David W. Caspary, John F. Sandell, Adrienne R. Minerick, and Jason M. Keith 

Department of Chemical Engineering 
Michigan Technological University 

 
Graduates from an accredited ChE undergraduate program should enter the workforce with the 
ability to identify, understand, and solve the problems they encounter. Science, mathematics, 
design, and social sciences can be taught in a traditional classroom setting, while chemical 
process problem solving skills are best developed in a laboratory setting. For chemical engineers, 
the Unit Operations Laboratory is the ideal opportunity to develop this special skill set. 
 
Due to resource limitations, Unit Operations Laboratory courses are typically designed around 
available equipment. Experimental objectives are formulated based on equipment capabilities; 
students run an experiment following an accepted procedure; data are collected and analyzed; 
and a report is submitted for grading. An alternative to this “equipment-defined assignment” is to 
develop experimental objectives based on the program’s ABET Outcomes. 
 
An “Outcomes-based Assignment” encourages the students to explore the equipment’s possible 
range of operation to a) determine applicable theory and appropriate empirical relationships, b) 
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develop an experimental strategy bounded by safe work practices and the equipment’s operating 
range, and c) develop a plan to minimize the effects of experimental error. Materials provided to 
the students at the start of the planning stage should provide only enough information for the 
students to make these determinations. For example: piping, instrumentation and equipment 
specifications are provided along with a cover memorandum stating the specific experiment 
objectives. If the unit operation of interest is one not typically introduced in a prerequisite 
course, then suggested references might also be included. Equipment diagrams, operating 
procedures, MSDSs, and determination of parameter space are left to the teams of students to 
discover or develop. The Unit Operations Laboratory at Michigan Technological University has 
been designed and built to facilitate development of the ABET Outcomes-defined skill set. The 
year-long course sequence is split into a traditional Unit Operations Laboratory course where the 
students operate five different unit operations experiments during the 14 week semester. The 
second semester builds on the skill set from the first semester and requires the students to work 
in “teams of teams” to operate each of our two pilot plant processes in a course called Plant 
Operations Laboratory. The theme of the second semester course is Continuous Improvement in 
Chemical Manufacturing. 
 
Michigan Tech’s Unit Operations Laboratory (semester 1) includes 17 unit ops, most of which 
were designed and fabricated in-house. These units are of large enough scale that industrial 
instrumentation is used for measuring flow, level, temperature, and pressure, thus exposing the 
students to the types of instrumentation they will encounter professionally. The large-scale 
equipment also forces the students to work as a team to accomplish their experimental 
objectives. The laboratory safety program develops an awareness of safety in all actions within 
the lab environment and encourages the students to take ownership of the safety of others. The 
pre-laboratory work requires the team to divide the work into manageable tasks to explore a 
range of possibilities for problem definition, examination of the parameter space and 
development of a strategy for success. The laboratory proposal and final report helps prepare our 
students to write succinct, accurate, engineering reports. Finally, a requirement for two oral 
presentations in the first-semester Unit Operations Laboratory course develops professional oral 
presentation skills.  
 
The mandatory unit operations used in this course include the heat exchanger (each lab group 
must complete this experiment) and centrifugal pumping (each lab group must complete one of 
two pumping experiments). The optional unit operations experiments offered in fall 2010 were: 
air cyclone, continuous stirred tank reactor, comminution, fixed bed reactor, membrane 
separation, cooling tower, fluidization, liquid-liquid extraction, non-Newtonian flow, and 
vacuum drying. 
 
The laboratory facilities for the Plant Operations course (semester 2) are the two pilot plants 
included in the Process Simulation and Control Center. The Solvent Recovery Unit (SRU) is a 
continuous distillation pilot plant that is operated in shifts without shutting down between 
transfer of responsibility between teams of students. The Polymerization Reaction Unit (PRU) is 
a 30-gallon batch reactor, complete with all supporting equipment to batch process 
polydimethylsiloxane. The SRU is a continuous process while the PRU is a batch process, so 
control, operation, and analysis of these processes is very different. In both cases, the students 
are assigned to improve an imperfect process. In a seven week project, they research historical 
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data to determine assignable causes for variation that produced off-specification product, then 
develop a total solution to eliminate this type of event from occurring in the future.  

These capstone laboratory courses prepare students for a career in chemical manufacturing and 
are unique to the Michigan Tech Chemical Engineering undergraduate experience. The 
outcomes-based approach allows students to practice ABET skills while functioning as a 
Chemical Engineering Professional team to solve real-world problems.  

 

 

Integration of A Biodiesel Production Platform as A Teaching Tool in the 
Senior Unit Operation Laboratory at UM 

Pablo LaValle and Henry Y. Wang 
Department of Chemical Engineering 

The University of Michigan 
 

The mission of the Chemical Engineering (ChE) curriculum at The University of Michigan (UM) 
is to provide a solid technical education that prepares our students for a future career and 
leadership in chemical engineering or related fields.  Among many technical and non-technical 
knowledge items that the students need to acquire during their study, we sincerely believe that 
the important life long skills of teamwork, open-ended problem solving, and critical thinking 
should also be included within the curriculum.  The students must take two laboratory courses, 
ChE 360 and ChE 460 during their junior and senior years respectively. These courses are 
focused on educating our students in the fundamentals of experimental design, data gathering 
and analysis, uncertainty estimation and propagation, teamwork, and written and oral 
communication skills in a simulated laboratory/pilot plant environment.  While all these skills 
are required for both courses, data gathering, uncertainty estimation and written communication 
skills are mainly emphasized in the junior lab and teamwork, process integration, and oral 
presentation skills are emphasized in the senior lab. 
 
To meet the mission of our ChE curriculum, the Unit Operations Lab (ChE 460, senior lab) has 
been revamped recently to simulate several unit operations required in a sustainable biodiesel 
pilot plant production facility using soybean oil as the starting material.  The goal is to generate 
an ASTM grade biodiesel product with an emphasis on process integration with product recovery 
and reprocessing.  The main difference of this new approach is to integrate most of the existing 
but previously isolated unit operations in the laboratory into a “virtual” process where the inputs 
and outputs of each unit operation are intimately related with each other.  This approach 
illustrates how decision-making in one operation may affect the other parts of the entire plant 
operation.  During the entire semester, the students are encouraged to interact with student 
members of other teams and to understand the entire process and grasp the interconnectedness of 
all the processing streams in the proposed plant.  Students address the need to meet the product 
quality and specifications, as well as byproducts recycling to minimize waste generation.  We 
strongly encourage the students to identify various technical problems associated with the 
process, generate possible solutions, and evaluate the economic consequences of these solutions 
for the proposed plant. 
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In the beginning of the semester, a memo was sent out to the students to introduce them about a 
proposed biodiesel production scheme developed and published by the United States Department 
of Agriculture (USDA) (Haas et al).1 and expect them to improve on this process using critical 
thinking and problem solving skills.  The ultimate goal is to design a new process generating 
minimal amount of waste streams by proposing ways to recover, reuse, or recycle all the 
byproduct streams.  Students use laboratory information obtained through experimentation and 
data analysis to evaluate each of the proposed improved processes and subsequently scale-up to 
meet the desired output of the plant.  The semester is divided into three 4-week rotations. Teams 
of three students work for 3 weeks on an assigned unit operation and spend one week to present 
their results orally to the entire section.  Each team produces a final report that will be used by 
the following student team as a starting point for follow-up assignments.  The students are all 
assigned randomly to these project assignments so as not to work more than once in a project 
assignment or with the same partners.   
 
Process Equipment and Assignment Flow in ChE 460 Laboratory 
 
The ChE 460 Unit Operations Laboratory has the following small scale or pilot equipment to 
simulate the biodiesel production process:  A. Reaction Cell:  It is used for the transesterification 
of triglycerides (vegetable oils or waste fats) to produce Fatty Acids Methyl Esters (FAMES or 
Biodiesel).  B. Liquid-Liquid Extraction: this Podbielniak centrifugal contactor is used for the 
removal of impurities from the FAME (biodiesel) phase produced in the transesterification 
reactor, using water as the solvent.  C. Fractional Distillation Column: used to separate the 
components of aqueous methanol mixtures produced in the centrifugal contactor used to purify 
the biodiesel product.  D. Double Effect Evaporator: used for the production of concentrated 
glycerol solutions from any dilute glycerol feed stream.  It can be used to model the recovery of 
methanol from the glycerol-methanol-catalyst product stream from the transesterification 
reaction. E. Process Control Simulator: used to simulate the process step in which the washed 
biodiesel fuel from the centrifugal contactor is heated to a specified temperature prior to the de-
watering of the fuel in a flash dryer.  In addition to these major equipment to simulate different 
unit operations, the laboratory is also equipped with analytical instruments to analyze various 
effluent streams to determine their operation parameters. These include GC, uv-vis 
spectrophotometers, titration, balances, etc.  Students are encouraged to analyze all sources of 
error, from initial sample preparations to the final interpretation of results from the instruments.   
 
In the beginning of the semester, each designated student team is expected to define the overall 
goal and specific objectives of the specific assignment. They must always keep an eye in the 
“Bigger Picture” of the assignment so that they know what to achieve in each task and how this 
fits in with the overall improvement of the biodiesel process.  During the first rotation, students 
use the laboratory to characterize the process or equipment for the assignment.  For example, 
establishing reaction rates as function of catalyst concentration and reactor operating parameters; 
or measuring mass transfer characteristic of a proposed packing to be used in the plant 
distillation operation etc.  In some cases, simple Design of Experiment (DOE) concept will be 
encouraged in the experimental plan.  For the second rotation the students are usually asked to 
generate correlations using modeling techniques for the specific unit operation so they can be 
                                                            
1 A process model to estimate biodiesel production costs; Michael J. Haas *, Andrew J. McAloon, Winnie 
C. Yee, Thomas A. Foglia;  US Department of Agriculture, Agricultural Research Service, (ERRC,1) 
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used in the prediction of various operation conditions encountered in the proposed plant.  For this 
aspect of the project students are encouraged to use simulation packages such as “Aspen Plus” or 
simpler spreadsheet modeling.  Concept of “sustainability” through recycling and waste 
minimization have been encouraged throughout the semester as the students start to evaluate the 
use of the process equipment and test various operating conditions to be used in the plant.  
During the final rotation, students are encouraged to interact with other student teams as they 
embark on the assignment to pull all the unit operations together and produce an overall process 
flow sheet for the entire process.  This requires the students to focus not only on their particular 
unit operation and the best way to operate the specific equipment, but also to think of how the 
output of their specific processing step may affect the process downstream, and how the 
processing conditions of the upstream process step would affect their performance. 
 
Skill development using this new approach of learning: 
 
The new approach has helped the students to learn additional technical skills as well as 
teamwork beyond the usual technical training of focusing on a specific piece of equipment as in 
the Junior Laboratory (ChE 360) and UG research. The following are some examples that the 
student would have missed: 
 

A. The reactor group may think it better to operate with high catalyst concentration 
because it reduces residence time so they can propose smaller reactor units.  
However this will provide a larger problem for the groups trying to recover the 
glycerol byproduct, which now will contain a larger amount of catalyst waste that 
need to be neutralized or removed. 

B.  The biodiesel washing process with water may operate better if higher water to 
biodiesel ratio is used, but that will require a larger distillation column and larger 
energy consumption to recover the methanol from a larger volume of a more 
dilute solution. 

C.  The residual amount of water left in the recovered methanol to be recycled back 
to the reactor may affect the reaction yield, or the product purity  

 
Figure 1 below shows the schematic drawing of the final outcome produced by a particular 
student team at the end of the third rotation. 
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Figure 1:A Sample of the final proposed biodiesel plant by a student team during the Winter 
2010 Semester 
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