

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright  2001, American Society for Engineering Education

 Session 2358

University Data Warehouse Design Issues: A Case Study

Melissa C. Lin

Chief Information Office, University of Florida

Abstract

A discussion of the design and modeling issues associated with a data warehouse for the
University of Florida, as developed by the office of the Chief Information Officer (CIO).
The data warehouse is designed and implemented on a mainframe system using a highly
de-normalized DB2 repository for detailed transaction data and for feeding data to
heterogeneous data models owned by different administrative units. The details of
technology selection, business requirements, tools building, cultural challenges,
architecture modes, models, and hardware information will be described. The data
warehouse analysis, logical and physical design, application server, and implementation
issues will also be explained.

I. Introduction

The computing and data service environment at the University of Florida is large and
diverse. It was formed within the numerous political and funding boundaries of the past
several decades. The advancement of new technologies and the need for quick access to
up-to-date student and employee data have put great pressure on the university to develop
and to maintain a central database for administrative use. The data warehouse project had
to utilize existing computing facilities and databases, bringing them together and using
their strengths in new ways. The Office of the CIO had to create a data warehouse that
supported all administrative units and provided easy, timely, accurate access to the
information maintained by key administrative offices across campus. These offices
include the Office of Information Systems, the Office of the University Registrar, the
Dean of Students Office, the International Student Center, Student Financial Affairs, the
Health Science Center, Academic Advising Center, University Libraries, the Graduate
School and others.

Our data warehouse is a central, logical site that stores many data models, supports
central management’s priorities, and complements the university’s business needs. It
facilitates a broad scope of tasks, such as:

• Extracting data from legacy systems and other data sources,
• Cleansing, scrubbing, and preparing data for decision supports,

P
age 6.1085.1

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright  2001, American Society for Engineering Education

• Maintaining consistent data in appropriate data storage,
• Ensuring and protecting information assets at minimum cost,
• Accessing and analyzing data using a variety of end user tools,
• Mining data for significant relationships, and
• Providing both summarized data as well as extremely fine-grained data.

II. Academic Data Warehouse Analysis

UF Data Warehouse Requirements
After the concept and the budget for the data warehouse was approved, many
administrative units volunteered to become campus test sites and were involved in the
data warehouse project from the beginning of the design phase. Our customers helped us
to ensure that the data modeling and system design precisely fit their business
requirements, which included protection of the source data from legacy systems,
consistency of transaction and warehouse data, intense security, naming standards, and a
variety of reports needs.

Frequently asked questions during our requirement analysis:
 Q: What level of security will the data warehouse provide to ensure and protect data

assets?
 A: We will follow the Buckley Amendment to provide system and data security

down to the individual record level. The owner of the data source will authorize
usage.

 Note: The Buckley Amendment is State University System rules, state statutes,
and the Family Educational Rights and Privacy Act of 1974.

 Q: How do we maintain the data increment and recover from potential system
failure?

 A: We will provide two parallel interface systems using EAGLE (Enhanced
Application Generation Language for the Enterprise) that is a locally written and
developed application for Web access, and Java applications to access the data
warehouse. Each serving is as the other’s substitute. In addition, we also will
back up the system daily.

 Q: What is the basic knowledge required of end users?
 A: We build many choices of canned queries for end users. So they click the

buttons to select the options that they need. We also provide training for end
users that need to run their own queries.

The Architecture of the UF Data Warehouse
We decided to build our data warehouse on our existing UF systems that have already
offered certain functions we need. The NERDC (Northeast Regional Data Center is
located on campus) provides hardware and software infrastructures and IBM mainframe
9672-R55 with DB2/OS390 support. After acquiring a better understanding of our
hardware systems, network and operating systems, software tools, and business
requirements, we began to design a UF data warehouse taking data source, technical
infrastructure, customer expectations, and budget into consideration.

P
age 6.1085.2

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright  2001, American Society for Engineering Education

We assessed our software needs during initial design of the architecture review. The
software needs to accommodate our data warehouse are to build data models, to extract,
integrate, transform, and load data to DB2 tables, and to deliver data via application
servers to end users. The architecture of the UF data warehouse, as shown in Figure 1,
supports an integrated, single, enterprise-wide collection of data with object-oriented,
nonvolatile, and time-variant characteristics.

Figure 1. The Architecture of UF Data Warehouse

Data Flow from Source System to End User Desktop
To drive the business requirements effectively, we analyzed the key factors of each
source data file to determine and translate the data into design considerations. We
discussed data flow of the input and output with each administrative unit, taking into
consideration who has the information, what is the information, to which end user and
what end-results are expected. We then defined demand, verified the business analysis
and priority, and reviewed the design of the data structure with our customers.

By now, we understood how raw data is extracted from various source systems, and how
that data is driven to the warehouse. The raw data is combined and aligned in a data
staging area. The same set of data staging services are used to select, aggregate, and
restructures the data into the data set, as defined in the data models. These data sets are
loaded into DB2. End users view the data through dynamic Web pages that access
predefined canned queries produced by Eagle Server Pages (ESP).

The UF data warehouse is designed for continuous change; tasks include adding and
changing the attributes of entities such as students and courses. The data warehouse is
built to collect data from several source systems. Data will be cleaned, integrated, and
stored de-normalized in a central repository. As shown in Figure 2, the data is extracted
from the legacy systems and transformed in the data staging area, then loaded to the
warehouse for user view.

DDL modeling /
Data structure: Create
entities, tables, table

Data staging:
Extraction, integration,
transformation, clean & load

Data warehouse:
Data models
repository / data
structures

Application server:
Eagle Server Pages
and Java Servlets

Legacy
system:
VSAM,
Access

End User: View, run
query, strategic
reports, etc.

P
age 6.1085.3

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright  2001, American Society for Engineering Education

Figure 2. Data Flow of the UF Data Warehouse

III. Logical and Physical Design of the UF Data Warehouse

Logical Design of Data Models
After designing the architecture, we designed the logical data structures and data models.
The logical data model is built to define entities, to add attributes, data type and index
key group, and to determine primary key and foreign key relationships. Based on the
business requirements, each data model consists of the related entities and data
definitions. Modeling activities include consideration of:

a. The Entities Relationships
The relationship between entities is based on our business requirements. Some entities
may stand alone in a data model. There are four basic entity relationships:
One-to-One: Relationship is a single value in both directions.

Example: Each student has one SSN and each SSN represents one student.

One-to-Many or Many-to-One: One and only one instance of the first entity is related to
many instances of the second entity.

Example: A professor teaches more than one subject. More than one section is
opened for a subject, so more than one professor teaches the same subject.

Many-to-Many: Relationships are multi-valued in both directions.

Example: Students take more than one course and courses have more than one
student.

Figure 3 shows one-to-one, one-to-many, many-to-one, and many-to-many relationships.

 Figure 3. Entity relationship

b. Identifying the Attributes and Data Type

Each entity has many attributes. Each attribute is defined with a related data type, valid
values, and keys (primary key, foreign key, alternate key, etc.). We defined the data

Extraction
process

Transform and
integrate data

Processing &
cleaning data

Load to
repository

Metadata
repository

Application
server

End
users

Extract
data from
resource

Load data
to file or
table

Entity
Relationship

Entity

P
age 6.1085.4

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright  2001, American Society for Engineering Education

attributes and data columns that customers must collect in the database, and made sure
that each data column corresponds to an attribute of an entity.

c. Dimensional Model
The dimensional model is a logical design technique that seeks to make data available to
end users in an intuitive framework to facilitate querying. It identifies and classifies the
important business components in a subject area. Each dimensional model contains one
table with multi-part keys from a fact table and a set of dimension tables.

Each dimension table is assigned a primary key with a set of attributes that are not related
to one another. The primary key is a unique key for the dimension table, which is
replicated in a fact table where it is referred to as a foreign key. The fact table contains
many foreign keys that relate to the appropriate rows in each of the dimension tables.
The purpose of a foreign key is to establish the uniqueness of each fact table record.
Figure 4 shows the Dimension Table and Fact Table with Primary Key and Foreign Key.

 Figure 4. Dimension Table and Fact Table with Primary Key and Foreign Key

d. Normalization Design and De-Normalization Design
Based on the business requirements, our tables are either normalized or de-normalized.
In a normalization design, one fact is stored in one place in the system with related facts
of the single entity. A normalized design avoids redundancy and inconsistency. It also
optimizes data access at the expense of data retrievals.

In a de-normalized design, one fact is stored in many places. A de-normalized design has
much redundant data. It optimizes data access at the expense of data modification. A de-
normalized relational design is preferred when browsing data and producing reports.

Frequently asked questions to help the designer determine a table design:

• Can the system achieve acceptable performance without de-normalizing?
• Will specialized expertise be required to code ad-hoc queries against the de-

normalized data?
• Will system performance be acceptable or unacceptable after de-normalizing?

Physical Design of Data Models
After designing the logical data models, we designed the physical data models to
implement the entities and relationships of the logical data model with DB2. In the
physical design, we defined data naming and data type, reviewed the table plan, and
created DB2 tables, table space and indexes to maximize database access performance
within a DB2 data structure.

Dimension Table

*STUDENT_ID (PK)
 .

Fact Table

*STUDENT_ID (FK)
*COURSE_NUMBER (FK)

P
age 6.1085.5

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright  2001, American Society for Engineering Education

Figure 5. Data Flow and Processing

Figure 6. Physical Design of Data Models

The physical design includes the following activities:
• Define the naming standards – Set up a primary word to describe the data

element’s subject. For example: database is UDW (University Data Warehouse),
table is TDW, table space is SDW, and index is IDW.

Upload
data model
to OS/390
mainframe

Extract,
transform,
and load

Unload flat
VSAM file

Load DB2 table
for query

Create DDL:
logical &
Physical data
models

Data
architecture

Business
field
definition

Create table, table
space, and index

Modify SYSIN,
run batch job to
create table, index
table space, etc.

Run query
to produce
output

P
age 6.1085.6

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright  2001, American Society for Engineering Education

• Determine the data types, primary key, foreign keys, and how data will be passed
between tables.

• Define and determine the parameters of the table storage.
• Estimate the size of the table storage and the entire data warehouse – The lengths

of each attribute, the number of rows for the initial prototype, the full historical
load, and incremental rows per load when in production.

• Develop the initial indexing plan and define the indexes – Overview the indexes
and query strategies to optimize the database in the process. We build many sets
of indexes for queries to increase the efficiency of data retrieval. We use query
analyzers to view the results of queries, optimize the queries, and improve the
indexes on the query.

When the physical design of the data models was completed, all tables, table space, and
indexes were created. The indexes that include primary index, alternate index, and
cluster index, are to maintain the process efficiently to allow the end user to share disk
architectures. Finally, we uploaded the data models with File Transfer Protocol (FTP) to
build tables in DB2 OS/390.

IV. Application Server

Once the data is loaded into the data warehouse, the next step is to deliver these data to
an appropriate web page for end user viewing by communicating with an application
server. The application server, the mainframe system, is the platform where the data is
stored for end users’ direct query, reporting systems, and other applications. Figure 7
illustrates the communications between the data warehouse and an end user’s browser.

Figure 7. Communication between the data warehouse and the end user’s browser

The University of Florida has developed EAGLE, Enhanced Application Generation
Language for the Enterprise, a CICS-based application server that enables direct
Internet access to mainframe databases and the university’s CICS resources. EAGLE
provides both dynamic and static access to DB2 data, including singleton and cursor
select, insert, update, and delete. The EAGLE server is a communication bridge that
migrates administrative and/or student-based data between computer platforms to a
Web-based environment. It sends or receives data via TCP/IP to any device with a
socket listener, and enables linking of different sites within one logical site.
Currently, EAGLE uses proprietary Electronic Data Interchange (EDI) and XML
data formats to pass data to the other servers.

Data
warehouse:
DB2 database

Web
server

Application
servers

End users

P
age 6.1085.7

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright  2001, American Society for Engineering Education

EAGLE provides page management, which enables the programmer to generate Web
pages that invoke existing business logic to display information contained in mainframe
database. These pages allow the Internet user to manipulate the data. We used a feature
of EAGLE called Eagle Server Page (ESP) language and HTML to code SQL queries to
extract data from the data warehouse and to display these data on Web pages.

The ESP is a tag-based mark-up language for creating dynamic Web pages that access
DB2 data. It uses a simple set of XML-like tags to integrate HTML or XML with data
from dynamic queries. It does not require any user-written CICS programs for data
access. We designed the Web page format using ESP and HTML. We also used a DB2
program generator as an Eagle application to analyze SQL select statements and to build
a DB2 I/O subroutine to access the table or view used in the select. We manage queries
between our end users and the data by using an EAGLE application to maintain DB2
data.

V. Implementation

Since the data warehouse will grow over time, implementation issues are very important.
The data warehouse must provide data services to numerous administrative units on
campus. It is both a parallel and serial processing environment, which executes different
tasks and requests concurrently. Implementation goals include:

• Dramatic performance gains for as many categories of user queries as possible,
• A reasonable amount of extra data storage to the warehouse,
• Complete transparency to end users and to application designers,
• Direct benefit to all users, regardless of which query tool they use,
• Impact the cost of the data system as little as possible, and
• Impact the DBA’s administrative responsibilities as little as possible.

VI. Conclusion

This paper summarizes the UF data warehouse design and modeling experience. This
data warehouse is a user-centered design that has met the needs of the whole university
community, including administrators, faculty, and students. We have analyzed the UF
data warehouse requirements and designed its architecture to fit the needs of our
customers.

The logical design focuses on the correctness and completeness of a desired data
warehouse so that the user's business requirements and environment can be represented
accurately. The physical design must consider cost, data security, data relationships,
naming standards for data types, tables, indexes, etc..

We chose to use DB2 OS/390 because this mainframe system is already in use, and we
can have the benefit of minimizing the initial implementation cost. We have successfully
developed and tested a prototype data warehouse to deliver data from source systems to

P
age 6.1085.8

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright  2001, American Society for Engineering Education

the end user’s desktop. We currently are looking into implementation issues such as
result interpretation, data selection and representation. We hope to attain a fully
functional, responsive, and high quality data warehouse in the near future.

VII. Bibliography

1. M. Carla DeAngelis – “Data Modeling with Erwin,” 2000, Sams, U.S.A.

2. Ralph Kimball, Laura Reeves, Margy Ross, and Warren Thornthwaite – “The Data
Warehouse Lifecycle Toolkit”, 1998, John Wiley and Sons, New York.

3. David Marco – “Building and Managing the Meta Data Repository,” 2000, John Wiley
and Sons, New York.

4. Paul I-Hai Lin – “Building Web Application with HTML”, 2000, Indiana-Purdue
University at Fort Wayne.

5. The Office of the CIO – “Eagle Developer’s Manual”, “Eagle User’s Guide”, and
“Eagle Sever Page Menu”, 2000, University of Florida

VIII. Biographical

Melissa Lin is a database administrator at the University of Florida’s Office of the CIO.
She currently is in charge of designing and implementing the university’s first data
warehouse. Previously, she was a Visiting Professor in the Computer Science Department
of Indiana University - Purdue University, Fort Wayne, during 1999. Before that, she
worked as systems analyst at GTE Data Service, Fort Wayne, Indiana, for 11 years,
responsible for E911 and CBSS billing supports. Lin's current interests include data
warehouse modeling and Web-based user interface applications.

P
age 6.1085.9

