
Paper ID #9532

Unleashing Student Creativity with Digital Design Patterns

Dr. Miguel Bazdresch, Rochester Institute of Technology

Miguel Bazdresch (mxbiee@rit.edu) obtained his PhD in Electronic Communications from the Ecole
Nationale Superieure des Telecommunications, in France, in 2004. He worked for several years designing
digital integrated circuits for the telecommunications industry. After teaching at ITESO University, in
Mexico, from 2005 to 2012, he came to the Electronics, Computers and Telecommunications Engineering
Technology Department at the Rochester Institute of Technology, where he is an Assistant Professor.

c©American Society for Engineering Education, 2014

P
age 24.1299.1



Unleashing Student Creativity with Digital Design Patterns 

 

Introduction 

The design of digital logic circuits is, in part, a creative process. A solution to a logic design 

problem must be imagined before it can be implemented. Creativity takes time and effort to 

develop. With sufficient experience, students who design logic circuits can become quite 

proficient in it (this often occurs only after graduation). In a classroom environment, however, 

teaching creativity is challenging. We believe that, with specific techniques, it is possible to 

encourage its development in such a way that students are able to design, implement and test 

solutions to more complex problems than before. 

Our approach is as follows. The most general circuit design technique is arguably top-down 

design, using the divide-and-conquer strategy. When faced with a complex problem, however, 

students often have difficulty in determining how a design should be partitioned. This process is 

made easier if students formulate the end result, that is, the large set of simple problems that the 

original problem will be broken into. We mix top-down and bottom-up strategies so that the 

creative process has definite end-points, with the complex problem at one end and simple 

problems at the other end. Then, creativity is required only in the intermediate steps. 

What should the simple problems at the bottom look like? We posit that they are not the 

traditional textbook logic building blocks, such as decoders, encoders, and multiplexers. We take 

inspiration from software design patterns. A software pattern is a code template for a solution to 

a commonly found problem in programming and computer science. Moreover, software patterns 

describe accepted best practices that have been found to be correct over many years of use. We 

have started development of a library of digital design patterns, inspired by their software 

counterparts. These patterns help guide students during the top-down design process, since they 

suggest a specific strategy: decompose the large design problem into a large set of known 

patterns. 

In this paper, we present incipient results and assessment on the benefits of using design patterns 

as a learning aid in advanced digital design courses. We propose several instances of design 

patterns and our perspective on future development of this idea, including a library of anti-

patterns and architectural patterns. 

Software design patterns 

It is well known that software design is a very complex problem. In fact, software engineering is 

the discipline that aims to create tools to manage the complexity involved in any software project 

of more than trivial size. Recently, so-called software patterns have emerged as a very valuable 

tool in this endeavor.
1
 In brief, a software pattern (or software design pattern) is a template that 

P
age 24.1299.2



can be used to solve a particular, common problem. By the time a pattern has been adopted, it 

has been thoroughly tested and it is recognized as a best practice. The concept has been widely 

adopted by industry, and many different categories of patterns have emerged. For instance, there 

are patterns for user interface, for visualization, and for object-oriented programing, among 

many others. There are also patterns specific to a given language, like Java, or category of 

languages, such as dynamic languages. 

Being widely accepted in industry, patterns have naturally been introduced in programming and 

computer science curricula.
2
 Most interesting for our purpose, design patterns introduce a 

fundamental change in the way software programming and architecture is taught. Since patterns 

are “common solutions to common problems”, students learn to, whenever possible, break down 

the problem they are trying to solve into pieces that correspond to a pattern. In other words, they 

try to formulate their solution in terms of small pieces, each of which corresponds to a pattern 

and, in consequence, for which a best-practice template for a solution already exists. 

In a similar vein, software engineering practitioners have also identified anti-patterns: solutions 

that are common, and at first sight seem to make sense, but have actually been proved to be 

counter-productive. 

Patterns in digital logic design 

We propose that software design patterns can influence digital circuit design education. For 

many years, “top-down” and “bottom-up” have been the core design methodologies taught to 

students.
 3,4,5,6

 Top-down design is the most powerful flow, since it allows breaking up a complex 

problem into simple, manageable chunks. However, students who are just getting started in 

digital circuit design face a difficult challenge: what should the small, manageable chunks look 

like? Without the advantage of many years of experience to build their intuition, a top-down 

design may be difficult for the students to put into practice. In addition, limited lab and instructor 

time make any mistake in design partitioning to be very costly. 

More importantly, there are few formal ways to specify the top-down design flow. Teaching is 

done mostly by example, where the instructor follows the design flow for a sample problem. 

This does not translate into efficient student learning, since the process is intuitive and not 

structured. When faced with a different problem that they need to solve by themselves, beginner 

students often do not even know where to start. 

In summary, digital design methodologies lack a formal, structured aspect, which would make 

them more amenable to teaching and learning. We propose to adopt software engineering’s idea 

of design patterns and adapt it to digital design. As far as we are aware, this is the first time this 

idea is proposed in the digital logic design education literature. 

In our proposal, students would learn “common solutions to common problems”, or templates 

that are often applicable, just as in software engineering. Then, they would try to apply the top-

P
age 24.1299.3



down design flow, breaking up a complex problem into pieces that correspond to the patterns. 

Our hypothesis is that, by reducing intuition’s role in the design process, this “directed top-

down” methodology is easier to teach and to learn. 

We should contrast this with the traditional text book approach. Most textbooks indeed present 

fundamental building blocks, such as multiplexers, decoders, encoders, arithmetic units, etc. 

Most commonly, these are used in a “bottom-up” design flow. While some of these are very 

common (multiplexers and counters, for example), most of them are not suitable as design 

patterns for beginners. 

Some example patterns 

We have developed a small library of patterns. We expect it to grow as we gain more experience 

with this methodology. A few examples of digital logic design patterns, suitable for students 

getting started in design, are: 

The edge detector. Any design that interfaces with asynchronous, external input devices will 

require an edge detector. Both falling-edge and rising-edge detectors can be implemented. These 

can be combined to build a toggle detector. 

The single-bit memory. This is a flip-flop with its output fed back into its input through a 

multiplexer that selects either the feedback or an external signal, depending on the value of a 

“strobe” or “clock enable” signal. 

The multi-bit memory. This pattern builds on the single-bit memory to build flip-flop based 

memories of any size. It can be combined with counters, timers and other registers that require 

being loaded with a certain value at a certain time. 

The timer. This circuit is loaded with a number and counts back from it, generating a pulse when 

the count reaches zero. 

The LED indicator. This is common in user interfaces implemented in boards with LEDs. Two 

variants are the persistent indicator (stays on until turned off) and the temporal indicator (stays 

on while a condition is true). These can be extended to 7-segment displays. 

The parallel-in, serial-out register. Together with the serial-in, parallel-out register, useful in 

implementing serial communications. 

The pattern detector. This circuit detects when a given pattern of ones and zeroes is present in its 

input. 

The PWM generator. This circuit can control external devices, such as motors, or the brightness 

of a light source. P
age 24.1299.4



As can be seen, the patterns are not necessarily very complicated or different from design blocks 

that may be introduced in traditional courses. They can be used with arithmetic circuits, state 

machines, shift-registers, counters, and other digital circuits. What is different in this approach is 

that these patterns are known to solve common problems, their best implementation is given (or 

better, discussed) in class, and they are used as signposts in the top-down design flow. 

It is important to expose students to a large quantity of patterns (and ant patterns), in an 

organized way that allows them to develop their own design strategies and intuition. This is an 

ongoing task. 

Implementation 

Fully embracing design patterns in a digital design course will have an impact on the course 

organization. A sizable portion of the course will be devoted to describing patterns, having 

students get familiar with them, and providing examples of their use in larger, more complex 

problems. 

One possible way to use design patterns in a digital design course is to have students develop 

their own package of patterns. As patterns are studied and discovered, students add them to a 

package, which in turn is included in their own designs. To make the package as flexible as 

possible, generics are used to make the patterns configurable. Students are asked to instantiate 

components from their own package and configure them via generics. As a possibility, students 

could be graded on the number of patterns they are able to use in their designs, and for 

identifying new patterns to add to their packages. 

Architectural patterns 

Architectural patterns are more advanced than the kind of patterns described above. These 

patterns don’t map directly to code, but provide guidance when designing the architecture of 

more complex solutions. An example of this kind of pattern is when a complex logic design is 

divided into a “data path” section and a “control” section. 

Another architectural pattern, whose complete definition we are working on, is called the “chain 

of events” pattern. We have identified that students have the tendency to partition a logic design 

into blocks that run independently of each other, and then run into problems when they need the 

blocks to coordinate and produce a definite result. An example would be a problem where the 

user pushes a button and a result is displayed. The design consists of two state machines plus 

some logic. The state machines run independently, and in consequence produce an incorrect 

result (besides being very hard to simulate and debug). The “chain of events” pattern would 

guide students towards a design whose blocks activate in sequence as result of user action. 

These patterns would be appropriate for a senior design course. P
age 24.1299.5



Assessment 

We have only started testing the idea of digital design patterns in our courses, and any results are 

preliminary. We have two assessment measures at this point. One is indirect, and is the difficulty 

of the capstone project in a course on hardware description languages. Most students were able 

to design and test a craps game simulator on an FPGA-based educational development board. 

The design included the user interface, the rules implementation and the random number 

generators. Students implemented a small package of their own with some design patterns, and 

were asked to use them, but were not graded on their use. 

The second measure is the students’ self-evaluation, specifically their own perception as digital 

designers. 100% of the respondents agreed or strongly agreed that the course had helped them 

become better digital designers. 

Conclusions 

We have presented a proposal to adopt and adapt some ideas from the field of software design 

patterns to digital logic design teaching. In particular, we believe that the top-down design 

methodology, as traditionally taught, is hard for students to master because it is too unstructured. 

The top-down flow seems to students to be open-ended, because often they do not know how the 

design problem should be partitioned. When provided with a set of common digital blocks, along 

with their best-practice implementation, students can work to express a large design problem in 

terms of known patterns, resulting in more efficient learning. 

 

 

 

 

Bibliography 

1. Gamma E. et al, “Design Patterns. Elements of Reusable Object-oriented Software”, Addison-Wesley, 

1994, ISBN 978-0201633610. 

2. Chatzigeorgiou A. et al, “An Empirical Study on Students’ Ability to Comprehend Design Patterns”, 

Computers & Education, Vol. 51, No. 3, pp. 1007—1016, Nov. 2008. 

3. Chang M., “Teaching top-down design using VHDL and CPLD”, in Proc. of the 1996 Frontiers in 

Education Conference, pp. 514—517. 

4. Comer D. J., “Application of Top-Down Principles to Digital System Design”, IEEE Transactions on 

Education, Vol. 26, No. 4, Nov. 1983, pp. 170—172. 

5. Sandige R. S., “Top-Down Design Process for gate-Level Combinational Logic Design”, IEEE 

Transactions on Education, Vol. 35, No. 3, Aug. 1992, pp. 247—252. 

6. Hadjilogiou, J., “An Innovative Top-Down Approach to Teaching Engineering Courses”, in Proc. of the 

2001 Frontiers in Education Conference, pp. 19—24. 

P
age 24.1299.6


