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Unleashing the Power of Data Analytics to Examine Engineering Students’ 
Experiences and Outcomes 
 
Abstract  
 
In this theory paper, we integrate literature from different fields. We argue that efforts to  expand 
engineering education research through data analytics need to be grounded in the established 
literature and understanding of student development. We discuss the opportunities and 
challenges associated with using data analytics to examine engineering students’ experiences and 
outcomes. We suggest that engineering schools should enhance data infrastructure, along with 
data governance policies, to foster a culture of collaboration among units and divisions, and 
better utilize existing student data sources through greater data integration. We also suggest that 
engineering education researchers equip themselves with knowledge on data science, in addition 
to knowledge about different types of student experiences, and actively explore a wider range of 
data sources for research. Thereby, we envision a new research landscape with expanded data 
sources, integrated data systems, and new analytical techniques to enable predictive analysis and 
more actionable findings. 
 
 
Introduction 
 

Engineering students develop competencies through classroom learning, work-integrated 
learning outside the classroom, and extra-curricular activities on and off campus [1-3].  In two 
ways, current engineering education research (EER) does not adequately reflect these multiple 
interlinked experiences that contribute to competency formation. Firstly, while  much EER has 
been devoted to students’ classroom learning [4, 5], less emphasis has been placed on work-
integrated learning and the synergies arising from learning inside and outside classrooms. 
Secondly, the potential of existing data sources, such as administrative data, academic records 
and student surveys which engineering schools routinely collect, remains relatively untapped. 
These data sources are rarely cross-linked, significantly reducing the potential of building a rich 
holistic understanding of student experiences.  
 

Lack of data linking and alignment is not just a missed opportunity within engineering 
education [6, 7]; there have been calls to use data analytics to leverage the explanatory and 
predictive power of student data broadly across postsecondary education [8, 9]. Hence, this 
theory paper aims to explore how a holistic view of student experiences and the rapidly emerging 
field of data analytics in postsecondary education can contribute to improved engineering 
education practice and research.  

 
In the following sections, we will present concepts and insights from two bodies of 

literature: student development and data analytics in postsecondary education. Then, we will use 
examples from EER literature to discuss opportunities and challenges in applying data analytics 
to examine engineering students’ experiences and outcomes. This  paper aims to enhance 
methodologies in EER by integrating knowledge from different fields and engaging with the 
scholarship of integration according to Ernest Boyer’s typology of scholarship [10]. 
 



 

Student Development Perspectives 
 

The holistic view of student experiences is manifested in two interrelated concepts about 
student learning: lifewide learning and integrative learning.  

 
Lifewide Learning 
 

The notion of “lifewide learning” is often coupled with “lifelong learning” and is 
understood as all learning and personal development that emerges through activities in the 
multiple contexts and situations people inhabit contemporaneously at any point in life, with the 
aim of fulfilling roles and achieving specific goals, and continuously developing knowledge, 
understanding, skills, capabilities, dispositions and value for their personal, civic, social and/or 
employment-related contexts [11]. Lifewide learning can be self-directed and incidental (often 
unacknowledged and even unnoticed) [12].  
 

Lifewide learning reflects the social dimension of learning; therefore,  it is rooted in the 
sociocultural theory of situated learning and community of practice [12]. According to Lave and 
Wenger, learning is viewed as “a dimension of social practice” (p. 47) [13] and “a fundamentally 
social phenomenon” (p. 3) [14]. Through participation in a community of practice, learners go 
through a process of beginning to acquire knowledge and skills that prepare them to become full 
members of the community—a process of “legitimate peripheral participation” [13]. In order for 
a group of individuals to become a community of practice, they must enter into  a process that 
features mutual engagement, joint enterprise, and shared repertoire [14]. Within this process 
Mutual engagement includes “engaged actions whose meanings [are] negotiated with one 
another” (p. 73). Joint enterprise involves a fluid process of negotiating and renegotiating 
actions, behaviours and participation that “reify standards and competent engagement in 
practice” as “important aspects of becoming an experienced member” (p. 92). Shared repertoire 
represents a marker of community in which, over time, community members develop 
“coherence” in which “they belong to the practice of a community pursuing an enterprise” (p. 
82). When engineering students participate in different communities of practice on and off 
campus, they engage in these three areas of experience, which help them develop their technical 
and professional skills.  
 
Integrative Learning 
 

Integrative learning represents a desired learning outcome of postsecondary education. It 
is defined as “an understanding and a disposition that a student builds across the curriculum and 
co-curriculum, from making simple connections among ideas and experiences to synthesizing 
and transferring learning to new, complex situations within and beyond the campus”[15]. 
Integrative learning demonstrates a deep learning approach; other deep learning strategies 
include reflective learning (reflecting on how individual pieces of information relate to larger 
constructs or patterns) and higher-order learning (i.e., learning by analyzing information, 
synthesizing ideas, making judgments and applying theories to practical problems) [16-18]. In 
contrast, surface learning involves learning strategies such as rote learning memorization [16, 
18]. 
 



 

Literature shows disciplinary differences in use of deep vs. surface learning approaches. 
One framework for examining disciplinary differences is Biglan’s disciplinary classification 
[19], in which there is a divide between the physical science-related disciplines (“hard”) and the 
arts and social science-related disciplines (“soft”); with the fields of engineering fall under the 
cluster of hard, applied, nonlife system. Empirical studies using Biglan’s framework found that 
in general deep learning is used more frequently by students in "soft" disciplinary areas and less 
frequently in "hard" fields of study [17]. In particular, surface learning was found to dominate in 
engineering [20]; this finding appears to be related to the dominance of long-standing lecture-
based learning in engineering education practice [21]. 
 
Implications 
 
 The concepts of lifewide learning and integrative learning have two implications for  
examining experiences and outcomes of engineering students. First, engineering education 
research needs to include data that reflect multiple dimensions of student experience, that is, 
classroom experiences, co-curricular and extra-curricular experiences. Grounded in different 
communities of practice, these experiences manifest the social interactions between engineering 
students and their learning environments. Therefore, it is important to integrate various data 
sources that were collected about different student experiences. Second, although engineering 
students learn from various social practices, integrative learning may not be happening as  
evidenced by existing literature on disciplinary differences of student engagement in deep 
learning. It seems that engineering students do not necessarily translate lifewide learning 
experiences into an integrative learning process.  
 
Data Analytics in Postsecondary Education 
 

Data Analytics is a term “devised to describe specialized processing techniques, software 
and systems aiming at extracting information from extensive data sets and enabling their users to 
draw conclusions, to make informed decisions, to support scientific theories and to manage 
hypotheses” (p. 2); it has emerged from scientific disciplines, such as engineering, natural, 
computer and information sciences, and life sciences [22]. Discussion about the role of data 
analytics in postsecondary education is a more recent phenomenon and this literature contains 
different definitions for data analytics in postsecondary education. In US-based EDUCAUSE 
publications, analytics is defined as “the use of data, statistical analysis, and explanatory and 
predictive models to gain insights and action on complex issues” (p. 6) [9]. This definition places 
particular emphasis on prediction and action.  

 
Typology  
 

US-based research has classified the use of analytics in postsecondary education into two 
complementary types: institutional analytics and learning analytics [23]. While institutional 
analytics is intended to improve existing services and practices across the institution, learning 
analytics is intended to enhance or improve student success (slightly modified from [23]), with 
indicators of student success such as student learning outcomes, retention, or course completion 
[24]. As core practice in postsecondary education is related to teaching and learning, these two 
dimensions of analytics overlap to a certain extent. In an Australian study [25], although there 



 

was no differentiation between institutional and learning analytics, two trajectories of learning 
analytics implementation were identified. One trajectory was focused on institutional concerns 
such as student retention and efficiency; the other trajectory was underpinned by a focus on 
student learning and understanding the learning process that precedes student retention and 
success. These foci appear to be reflected in  the two types of analytics identified in the US-
based research [23]. 
 

An often cited definition of learning analytics is offered by the Society for Learning 
Analytics Research. With a similar focus on student learning, this society defines learning 
analytics  as “the measurement, collection, analysis and reporting of data about learners and their 
contexts, for purposes of understanding and optimising learning and the environments in which it 
occurs.”1 Main data sources for learning analytics include data collected from virtual learning 
environments and student information system of postsecondary institutions [26]. While the 
definition does not make prediction and action explicit, these two purposes appear  to be 
embedded in practice. This is illustrated by case studies in US, UK and Australia, which 
document how learning analytics has been used to identify at-risk students and reduce attrition 
rates, facilitate student advising, monitor or measure student progress, enhance teaching and help 
students plan their own pathways [24, 26].  

 
Patterns in Current Development 
 

Literature suggests three key patterns  in the current development of analytics in 
postsecondary education. Firstly, data analytics is an emerging and rapidly evolving field of 
research and practice; secondly, professionals within the field tend to work in silos; and thirdly, 
there is significant variation in the type of data analysis performed within institutions.  

Data analytics in education emerged as a field that is separate from educational data 
mining and academic analytics, with the first international Conference on Learning Analytics 
and Knowledge and the formation of the Society for Learning Analytics Research in 2011 [27]. 
The field of learning analytics has been influenced by a wide range of disciplines including 
education, psychology, philosophy, sociology, linguistics, learning sciences, statistics, 
intelligence and computer machine learning/artificial science; with the two most dominant 
disciplines being computer science and education [26]. Two Australian studies revealed that as 
of 2016, postsecondary institutions were at early and preparatory stages for learning analytics 
implementation as many of them reported no or nascent strategy development [25]; but there is 
growing investment in technologies that will effectively support the institutional uptake of 
learning analytics [28]. In the U.S., less than half of postsecondary institutions indicated they 
were making major investment in student data analytics as of 2018 [8]. A recent learning 
analytics survey in Ontario, Canada reveals the potential of developing a strategic framework to 
guild learning analytics activities at Ontario postsecondary institutions [29]. All these studies 
suggest that data analytics in postsecondary education is an emerging field that will continue to 
evolve and change.  
 

It can be anticipated that this relatively new field will rapidly develop, and become a new 
driver for the development of postsecondary education. This is evidenced by two recent 

                                                        
1 https://www.solaresearch.org/about/what-is-learning-analytics/ 



 

publications. One is a book entitled The Analytics Revolution in Postsecondary education [30], 
calls for postsecondary institutions to harness the analytics revolution to improve student 
success. The other is a joint statement released in 2019 by three US organizations within U.S. 
postsecondary education communities (The Association for Institutional Research (AIR), 
EDUCAUSE, and the National Association of College and University Business Officers),  
expresses a strong sense of urgency to reaffirm postsecondary education’s commitment to the 
use of data and analytics to make better strategic decisions [31]. 
 

 Data analytics has arisen from existing, well-established practices within postsecondary 
institutions carried out by data-oriented professionals in the areas of institutional research (IR), 
information technology (IT), student life (or student affairs), and business intelligence [8, 9]; 
however, professionals from these areas do not necessarily work together or share data with each 
other. Two US-based analytics landscape assessment studies revealed that less than half of 
surveyed institutions deliver analytics services as a joint program run by IR and IT [23]. It has 
been argued that a successful analytics program require better communication and partnership 
among these data-oriented professionals [8, 9, 32].  
 

Perhaps partly due to the existing practice of working in silos, some data sources 
collected by postsecondary institutions are not connected and integrated with other data sources, 
resulting in lost analytical opportunities . As shown in a US-based study [23], data collected 
from learning management system and integrated planning and advising services that inform 
learning analytics had a higher chance of being “collected but not connected”, than data collected 
for student information system and admissions. These results suggest that postsecondary 
institutions have not been able to optimize their analysis t of the data they have  available. An 
Australian study [25] took this further by recognizing the integration of actionable data with 
educator practices as an important implementation capability of postsecondary institutions that 
perform learning analytics.  
 

There are considerable variations among postsecondary institutions in terms of what 
resources are in place for learning analytics. US-based research also reveals that learning 
analytics lags institutional analytics in terms of priority and investment [24]. It was also found 
that while more than four-fifths of surveyed institutions reported that they had data-oriented 
leaderships and had identified potential targets for analytics; and approximately half of them 
reported having the right data and storage capacity, the right data policies, and appropriate IT 
professionals;  less than one fifth reported having adequate funding or adequate number of 
analysts [9]. These variations have introduced the concept of measuring “analytics maturity” of 
institutions.  EDUCAUSE has developed an analytics maturity index that consists of 32 factors 
on a five-point scale being organized into six dimensions [23]: 

• decision-making culture;  
• policies for data collection access and use;  
• data efficacy relating to quality, standardization and “rightness” data and reports and 

the availability of tools and software for analytics;  
• investment/resource;  
• technical infrastructure; and  
• IT involvement. 



 

Along a similar line of research, an Australia-based study  [25] has identified a number of  
“readiness” factors (i.e., leadership, strategy, organizational culture, organizational capacity and 
technology) that mediate outcomes of learning analytics implementation.  
 
Implications 
 

Literature on data analytics in postsecondary education has three implications on 
engineering education and practice. First, as an emerging field, the development of data analytics 
in postsecondary education lags behind analytics used in other fields; and hence there is 
considerable potential to explore how the use of analytics can inform engineering education and 
practice. Second, data-related activities within engineering schools can be viewed from two 
perspectives: institutional analytics and learning analytics, which have different objectives and 
can use different analytical methods. Third, engineering schools may achieve  a higher level of 
analytics maturity than the academic units in other academic fields due to the expertise in data 
analytics residing in engineering faculty and student communities. Some approaches and 
methodologies already used in the engineering fields may be transferrable to engineering 
education research on data analytics. 
 
Exploring the Potential of Data Analytics 
 
 The recent development in data analytics in postsecondary education has brought forth 
both opportunities and challenges to engineering education research. 
 
Opportunities 
 

How can data analytics strategies enhance the current engineering education research 
(EER) related to student experiences and outcomes? Three main areas of research have been 
identified in EER: instructional or curriculum development, student learning and its assessment, 
retention and diversity of engineering students [4, 5]. Research on instructional or curriculum 
development focuses on educational interventions introduced to courses, programs or curricula, 
often from the perspective of instructors and educators. Research on student learning and 
assessment typically examines engineering students’ learning experiences and perceptions, and 
contributing factors to their learning outcomes such as academic achievement and competency 
development. Research on retention and diversity of engineering students addresses how to 
retain engineering students in their engineering studies, particularly female and other minority 
students. Other possible research areas include paradigms, methodologies and communities of 
engineering education research itself; academic and career pathways of engineering students; 
admission process of engineering students; engineering workplace practice; and validation of 
new instruments [5]. Most of these areas involve use of student data to probe learning 
experiences and outcomes. Based on the taxonomy presented in the previous section, the first 
two main areas of EER (i.e., instructional or curriculum development; and student learning and 
assessment) fall under the domain of learning analytics whereas the last one (i.e., retention and 
diversity of engineering students) can form part of institutional analytics. Among other areas of 
EER, admission, and academic and career pathways of engineering students can also fall under 
the domain of institutional analytics.  

 



 

To understand the current status of how data analytics has been used in EER, we 
conducted a literature search using keywords of “engineering education” and “data analytics” or 
“machine learning” in Google Scholar and in the proceedings of the American Society of 
Engineering Education (ASEE) annual conferences. The ASEE proceedings search showed that 
there has been a steady increase, in the past decade and particularly during the last five years, in 
the number of papers that addressed different topics related to machine learning, a technique for 
predictive data analytics. These papers discussed cases of course or program development that 
integrated data science and machine learning into the engineering curriculum, and applications of 
machine learning techniques to understand engineering education related issues. Many of these 
papers were situated in classroom teaching and learning, and addressed issues in the domain of 
learning analytics. The considerable increased interest in machine learning among engineering 
educators and researchers reveals that machine learning incorporating learning analytics may 
become a new area for growth in EER.  

 
The articles we reviewed provided a few interrelated patterns that may shed light on the 

foreseeable future of the evolving field of applying data analytics to EER. First, more researchers 
are using or building new data systems to capture a broader range of student data than ever 
before. These new data systems can be created by integrating existing data sources. For example, 
a study on the use of the flipped classroom approach [33] integrated data from traditional 
assessment methods, such as assignments and exams, with student demographic data and the 
“hidden” data collected from educational technology tools, for a new data system.  A combined 
analysis of data mining and classical statistical techniques was then applied to the integrated data 
set. In addition, data from learning management systems have been used to examine the 
predictors for engineering students’ academic performance in an entirely online learning 
environment [34]. New data systems can also be built using new data sources. For example, in a 
study on introductory programming classes [35], researchers developed an online coding 
environment capturing time-stamped keystroke-by-keystroke data and embedded it in the 
learning management system so that students could receive instant feedback to allow for early 
interventions. Similarly, clickstream data have been used to capture students’ design behaviour 
and associated metadata (e.g., the system time when a click was made) in aerospace engineering 
capstone courses [36]. Efforts to integrate various data sources for analytics and visualization 
purposes have also been documented in ASEE conference papers  (for example, [37]).  

 
Second, researchers have extended data analysis to examining student experiences that 

were not observable using traditional analytical methods. A new area is affective assessment. For 
example, a study [38] captured  students’ facial keypoint data when they were reading the 
instructions of a task to assess their affective state, and used the assessment results to predict 
student performance. In another study [39], researchers used data mining techniques to capture 
the curiosity levels among students. In addition, fine learning behaviours, such as students’ 
learning engagement [26] and design behaviors [36]. can be examined using data analytics. In a 
pedagogical module framework, manufacturing engineering educators have  suggested that 
collecting real-time operational data from the target machine tools allows process-based 
information to be condensed and block-by-block simulations to be demonstrated in real time, to 
achieve the educational goals in manufacturing courses [40].  

 



 

Third, as all these applications entail new analytical techniques,. machine learning 
techniques, such as classification, ensembling, and K-Nearest Neighbours [22, 41], offer new 
methodological approaches to analyzing student data. An illustration of a new approach is  a 
web-based technique known as Social Networks Adapting Pedagogical Practice, or SNAPP, 
which built an extension for multiple learning management systems and performed social 
network analysis of data collected from online student discussion forums. The generated network 
diagram can help instructors identify high-performing and low-performing, disconnected (at risk) 
students so that they can better plan learning interventions. Potentially, these learning analytics 
could allow a learning design to be evaluated in light of its pedagogical intent, by using a set of 
real-time, behavior-based data on learner interaction within the learning environment [26, 42-
44]. Another set of techniques being introduced is related to text analysis. For instance, 
researchers went beyond traditional coding approaches to analyzing texts and used unsupervised 
learning clustering algorithms and information retrieval techniques for text analysis [45]. 
Researchers also used text mining and web log mining techniques to gain deeper insights on 
major discussion topics in design capstone engineering courses [36]. As such, new data sources, 
integrated data systems and emerging analytical techniques demand technology-enhanced 
learning analytics system design emerge [46] and, once the system is in place, will enable what is 
called “multimodal learning analytics” [47]. These developments have already begun in EER.  
 

On the side of institutional analytics, a possible way of enhancing research on academic 
and career trajectories of engineering students is to create data-driven student personas. The use 
of personas, sometimes called “user profiles,” is a user-focused design methodology [48] and has 
been used in education research to understand experiences and perceptions of faculty [49], 
library users [50] and students [51]. Personas are user archetypes that characterize the needs, 
goals, technical experience, accessibility requirements and other personal characteristics of larger 
groups of people [48]. In the context of EER, personas are fictional descriptions of groups of 
engineering students, who have experienced engineering education in certain ways and followed 
particular academic and career pathways; these experiences and pathways may be specific to 
students with certain demographic characteristics. The first step toward the creation of student 
personas is to build an integrated data set that is able to capture curricular, co-curricular and 
extra-curricular activities among engineering students. Data integration is important because 
student learn lifewide, and multiple contextual factors, including different kinds of student 
experiences, influence engineering students’ career pathways [52] and presumably academic 
pathways as well. A recent US national report [7] also pointed out that national survey-based 
datasets provide only periodic snapshots of employment status of engineering students and 
recommended linking administrative and survey data to obtain a more fine-grained 
understanding of engineering educational and career pathways. Potential methods for data 
analytics to create student personas include k-means cluster analysis, latent class analysis and 
random forest approach. The creation of student personas can not only help better understand the 
student population, but also improve data efficacy in terms of predictive power. The identified 
student personas may also shed light on how engineering students integrate their learning from 
different experiences to build various academic and career pathways, thus complementing the 
existing research related to integrative learning among engineering students [20, 21].  

 
Examining the role of experiential learning in engineering education and investigating the 

structure and integration of professional and transdisciplinary skills among engineering students 



 

have been identified as two areas underrepresented in EER literature [53]. Experiential learning 
for engineering students is often exemplified in co-op programs and internships. Better 
understanding of students’ co-op or internship experiences require synthesizing perspectives 
from students, the postsecondary institutions that support students’ work-integrated learning, and 
the workplaces that offer co-ops or internships [54]. Therefore, data analytics  built upon 
integrated data points could help inform contextual factors that contribute to, or impede, 
achievement of positive student outcomes. Similarly, while engineering students’ skill 
development takes place in both formal in-class and experiential off-class settings, how 
integrative learning happens has been rarely studied. Additional data sources, new data system 
building and analytical techniques will be needed to explore transdisciplinary skill development 
in greater depth.  

 
Challenges 
 
 Implementing data analytics in EER is not without challenges. As suggested earlier in the 
discussion, identifying opportunities for data collection and integration will be an enabling factor 
for enhancing research in both institutional and learning analytics domains. However, landscape 
analysis of analytics in postsecondary education reveals that some of the student-related data sets 
are either not systematically collected or not connected with one another. For example, a US 
study [23] showed that over 50% of the surveyed institutions systematically collected learning 
management data but did not link them with other data sources; and a similar failure to link 
admission data to other sources occurred at nearly 25% of the surveyed institutions. Similarly, an 
Australian report [55] shows that while course/program enrolment and student assessment data 
were systematically collected at all institutions, they were not used for the purpose of learning 
analytics; and only less than half of the institutions systematically collected data that could 
inform lecture attendance and interpersonal interactions. While little research is available  
regarding data use within engineering schools, the patterns may be quite similar to the overall 
picture in postsecondary education. On the other hand, as technology-enhanced learning 
environments are increasingly deployed in engineering classrooms, so it can be anticipated that 
even more data sources on student learning engagement will become available for use. 
Therefore, the question is how these new data sources are purposefully connected to existing  
data sources for analytics. A necessary step for making data integration possible is establishing a 
data governance policy. Most engineering schools will be able to  draw upon an existing 
institution-based data governance policy. If the existing policy does not include data integration 
as part of the framework, researchers may need to seek agreement with relevant stakeholders to 
formalize a data integration process.  
 
 As the number of data sources to be included into analytics-oriented research expands, 
the need to capture quality data that truly measure what the researcher wants to assess becomes  
another challenge. Existing research [35, 38, 43] has demonstrated that new tools and platforms 
need to be created to capture new data sources that measure student learning. The design of these 
new tools often requires both technical skills and disciplinary knowledge. For example, in 
affective assessment, researchers need to validate the results from the new tool with the 
properties of a socio-cognitive construct, such as curiosity [39]. Along a similar line, a potential 
area of future research will be to draw upon the tools and techniques from cognitive psychology 
for learning analytics. For example, a neuroscience research tool called portable 



 

electroencephalogram, or EEG, has been used in cognition-based education research, for 
example, on the relationship between brain-to-brain synchrony and learning outcomes [56]. This 
tool could be used in engineering education research to capture brain activities; the obtained new 
data source could then be integrated with other student data to predict learning outcomes among 
engineering students.  
 
 Another area of challenge that needs to be addressed is creating ethical policies for using 
data analytics methods in research. The limited availability of policies  tailored for analytics-
specific practice to address issues of privacy and ethics has been identified as a major challenge 
in the adoption of learning analytics in the United States [23], Australia [55, 57] and Europe 
[58]. A comprehensive review of the ethical and legal issues in learning analytics [59] has 
suggested that postsecondary institutions follow a code of practice when undertaking learning 
analytics so that their practices are legal, ethical and truly beneficial to students. Some of the 
guiding principles are: 

• Clarity and transparency on practices: letting students know what data are being 
collected from them, how and when data are collected, and how data are stored in 
real time.  

• Privacy by design: incorporating privacy protections in every procedure 
• Accountability: ensuring that every aspect of learning analytics has a person or unit 

designated as responsible for its proper functioning 
 
Concluding Thoughts 
 
 In this paper, we have drawn upon different sources of literature to discuss theoretical 
underpinnings and the development of data analytics in postsecondary education. Based on the 
integrated knowledge on these areas, we argue that expanding EER using data analytics 
techniques should be grounded in well-studied notions in student development literature and can 
be a direction to take in EER. 
 

Without doubt, a promising analytics-oriented area of EER will emerge and potential 
opportunities and challenges are in store. We would like to make the following 
recommendations.  

• For engineering schools (and affiliated postsecondary institutions). It is essential for 
institutions to enhance data infrastructure, along with data governance policies that 
include protocols for data security, as data governance is the precursor for data 
integration and data system building. Fostering a culture of collaboration among 
units and divisions within an engineering school and with IT and business 
intelligence offices of the institution will facilitate the process. Greater efforts need 
to be made to  cross-link existing data sources within engineering schools to better 
use those data and enhance data efficacy. Engineering schools could then 
demonstrate a stronger capability in implementing student data analytics.  

• For engineering education researchers. Researchers should equip themselves with 
two types of knowledge: (a) knowledge on data science and machine learning, which 
is a driver of the fourth Industrial Revolution; and (b) knowledge  specific to the 
types of student experiences (i.e., curricular and co-curricular) of their research 
interest. These two bodies of knowledge appear to be increasingly important to the 



 

interdisciplinary field of engineering education. Researchers also need to keep an 
open mind and explore a wider range of data sources for EER.  

 
In conclusion, we envision a landscape for engineering education research and practice 

where different administrative units of an engineering school collaborate with each other to 
create integrated data platforms that are enabled by a set of data governance procedures; and 
researchers draw upon their interdisciplinary knowledge and skills to use the linked data sources 
in analytics to generate explanatory and predictive information about engineering students’ 
experiences and associated outcomes. We encourage engineering communities—researchers, 
educators and students—to take lead in building this new landscape so that the power of data 
analytics can exert a transformative impact on engineering education research and, more broadly, 
postsecondary education research in general. 
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