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USB-Powered Portable Experiment for Classical Control with Matlab Real-
Time Windows Target 

 

Abstract 

Engineering education has the objective of not only presenting the scientific principles, 
i.e., engineering science, but also of teaching students how to apply these to real 
problems. Therefore, hands-on laboratories have been an integral part of the engineering 
curriculum since its inception. This presentation will demonstrate the use of a novel low- 
cost experimental apparatus for use in a typical undergraduate course in control systems 
taught to mechanical engineering students, i.e. students with limited exposure to electrical 
engineering. The system demonstrates the use of MATLAB tools such as Simulink Real 
Time Windows Target and Control Systems toolboxes to illustrate all stages of design of 
a closed-loop control systems including: system modeling, parameter identification, 
analysis of stability of a closed-loop system, design of  dynamic compensator in the 
continuous space and implementation of an equivalent digital controller using the 
Simulink Real Time Windows Target environment. The hardware apparatus consists of a 
DC micro-motor attached to a carbon fiber rod. The angular displacement is measured 
with an analog potentiometer, which acts as the pivot point for the carbon fiber rod. The 
DC micro-motor is powered by a low cost, custom circuit board, which is USB-powered 
requiring no external power adaptor or extra cabling.  Attached to the micro-motor is a 
small propeller which provides thrust force needed to   rotate the pendulum to a desired 
angle. The experiment is designed to operate from student's laptops, therefore no special 
laboratory space is required.   

The project was tested in a classical control systems design class offered to senior-level 
mechanical engineering students. Student feedback and survey data on the effectiveness 
of the module are presented along with examples of student assignments illustrating the 
use of hardware.  

Introduction 

Hands-on laboratories have been an integral part of the engineering curriculum since its 
inception. Their importance has been recognized by the Accreditation Board of Engineering 
Education (ABET) and its predecessors by creating criteria requiring adequate laboratory 
practice for students1-4. During the last three decades, engineering laboratories have become 
more complex, including simulation tools and computer controlled test and measurement 
equipment. This increased sophistication has also led to more expensive equipment5,6.  
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The inclusion of such laboratory courses in the undergraduate curriculum is challenging due to 
the large number of students and the increased demand for instruction and equipment time. 
Hands-on experience, on the other hand, is invaluable for active and sensory learning styles, 
which are the predominant types of learning styles used by undergraduate students9-12. This paper 
describes the development and testing of a new low-cost take-home laboratory module designed 
to supplement the experience of our students taking their first course in Controls System Design.  

While there are many turn-key desktop systems designed to illustrate controls systems courses, 
portable kits, such as Arduino are primarily designed for mechatronics and embedded computing 
courses13,14. As such, they require programming environments, installation of additional 
software, and additional plug-in modules for operating DC motors and other actuators. 
Furthermore, unless one uses advanced circuit boards and processors, implementing a PID or 
other dynamic compensators is cumbersome and requires training in digital control and 
programming. With the emergence of the Matlab Simulink graphical programming environment, 
modeling and simulation of various plants and controllers can be accomplished quite easily by 
students who might not have extensive training in digital control and numerical methods. 
However, practical implementation of such controllers remains elusive for most undergraduate 
students outside of electrical and mechatronics departments. Therefore, the objective of this 
project was to develop a simple physical plant that can be used seamlessly with the Simulink 
Real-Time Windows Target environment to allow students who are not in electrical engineering 
programs to implement and test real-time controllers using drag-and-drop style graphical 
programming.  

The target audience for the experiment was primarily students who are not electrical engineering 
majors, as these students typically do not have the benefits of electronic circuits training and tend 
to shy away from projects involving electronics. In the Aerospace and Mechanical Engineering 
Department of The University of Arizona, it is not unusual for the Control System Design course 
to have enrollment of about 100 students. This makes offering a laboratory section within the 
course nearly impossible. The project described here was developed primarily as a way to 
provide some practical experience to the students using an inexpensive and portable setup which 
can be taken home. The portability and low-cost of the setup allows them to conduct experiments 
during the semester and use the device to complete a term project. In addition to significantly 
reducing the cost of offering an experimental component, the experimental module provided an 
opportunity to demonstrate a modern approach towards control systems based on computers 
(digital control). 

 

Description of Hardware Apparatus 

The experimental setup consists of a small electric motor driven by a 5 V pulse-width modulated 
(PWM) signal. The motor is attached to the free end of a light carbon rod, while the other end of 
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the rod is connected to the shaft of a low-friction potentiometer. The potentiometer is fixed on a 
plastic stand at the proper height, so that the pendulum can swing freely (see Fig. 1). A 2-in 
propeller (model U-80) is attached to the motor shaft to produce a thrust force in order to control 
the angular position of the pendulum. The portability of the kit is enhanced by an innovative 
design allowing the kit to be shipped in a flat 2-in-thick box as shown in Fig. 1(left). A fastener-
free design allows the kit to be assembled into its operating condition by interlocking three 
acrylic plates which interlock when rotated by 45 degrees with respect to the base plate as shown 
in Figure  1(right). A self-calibrating step during the initialization allows the system to 
automatically find the vertical position (origin of the coordinate system). A custom designed 
circuit board produces the controlled voltage supply for the motor via Pulse-Width Modulation 
(PWM) with a resolution of 0.05 V. It also reads out the voltage on the potentiometer, which is 
proportional to the angular position of the pendulum. These functions are implemented using a 
Freescale MC9S08JM16 microcontroller. The apparatus communicates with the controlling 
computer (PC, Mac, or Linux) using the USB protocol, eliminating the need for the increasingly 
harder to find serial port. The device is powered by two USB ports, capable of providing a total 
of 600mA from the host computer. While the motor is capable of producing high rate of 
revolution in excess of 15,000 rpm, its current consumption is below 500 mA with typical values 
in the 200-300 mA range. This allows USB-based operation without the need for an external 
power supply.  The microcontroller is commanded to apply various PWM signals to appropriate 
sides of the H-bridge IC (two P-MOS, two N-MOS) driver depending on the desired direction. 
When queried, the microprocessor returns the result of several averaged twelve-bit analog to 
digital conversions to MATLAB, which is then correlated through a proportionality constant to 
the angle of the pendulum. 

        

 
Figure 1. Aeropendulum Kit: Flat Configuration for During Shipping (left); Operating Configuration (right)
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Matlab Simulink Control Environment 

The aeropendulum control environment can operate in real-time using Matlab/Simulink  Real 
Time Windows Target (RTW) environment (see Fig. 2).The RTW module performs classical 
control experiments using hardware in the loop simulations. Using RTW, the sampling time was 
reduced by an order of magnitude to 5 ms. This is achieved by a built-in functionality of RTW 
that compiles the Simulink model down to C or C++ code, and then builds a native executable 
file. Alternatively, a slower controller operating at 100 ms update rate can also be used with 
systems without RTW tool box as described on the project website15. 

To receive the angle of the pendulum, the microcontroller must be asked to send the angle. This 
is a done via Packet-Out blocks. Once the data is ready, the Packet-In block receives the raw 
voltage. A step function with a period of 5ms and a duty cycle of 50% is used to generate a query 
to the microprocessor every 5 ms.  

Using “Controller Select” switch, students are able to select between four modes of operation: 
open loop control (1); proportional control (2); lag controller (3); and lead controller (4).  The lag 
and lead controllers reference discrete transfer functions defined in Matlab’s workspace. In a 
typical offering of the experiment, the parameters of these controllers are detuned thus forcing 
the students to carry out the design activities and select appropriate transfer functions.  

 

 

Figure 2. Simulink Controller 

  

P
age 25.1406.5



Design Activities 

The hardware described here has been tested by senior-year mechanical and aerospace 
engineering students taking their first course in controls system design. Prior to this experiment 
this course has been a lecture-only class, therefore the experiment had to be conducted as part of 
the regular homework assignments. Typically, students receive the aeropendulum kit at the 
beginning of the semester and are asked to work independently or in groups of two or three 
students.  

The first assignment is to develop a mathematical model of the pendulum using conservation of 
linear momentum about the pivot point. The students are asked to focus on the dynamics of the 
pendulum, while the dynamics of the electronic components and the DC motor were assumed 
fast and negligible for the sake of this step. Most students correctly report an equation of motion 
given by  

TLcmgLmL    sin2 ,    (1) 

where mg is the weight of the motor, L  is the length of the rod, c is the viscous friction 

coefficient, and T is the thrust force from the propeller. The students are instructed to assume a 
proportionality law between the propeller thrust, T , and the applied motor voltage v  

vT  . 

The target board converts these to a motor voltage according to 127/5uv  , where the factor 5 is 
the supply voltage of the USB port.  Therefore, the thrust force is proportional to the PWM sent 
by Matlab RTW module,u  

KuuvT

K


127

5      (2) 

The second assignment contains an experimental task to examine the steady-state behavior of 
system (1)-(2) and to determine some of its parameters. To this end, students apply a range of 

input values ]127;0[ssu  and plot the sine of the steady-state pendulum angle expecting to find 

a plot representing  

ssss u
mg

K
sin . 

A typical experimental plot is shown in Figure 3. While the plot  is quasi-linear, it shows that for 
small input values, the motor is unable to overcome the static friction and a dead-zone exists in 

the range  ]20;0[ssu  
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Figure 3. Steady-State Response for Different Inputs Levels 

This presents the first challenge in dealing with real systems. At this stage, students are 
instructed to use a non-linear law in the form  









,0 if,20

; 0 if ,20

uu

uu
u       (3) 

and to verify that it cancels out the dead-zone in terms of the new input signal u   

.sin2 uKLcmgLmL              (4) 

Upon completion of this task, students are asked to verify that a non-linear feedback law in the 
form of  

w
L

mg
u  sin       (5) 

will also linearize the plant (3) by cancelling sinmgL   producing a linear system described 

by a second order transfer function 

cssmL

KL

sW

s





22)(

)(
.      (6) 

Using Simulink RTW environment, it is straightforward to implement the suggested feedback 
laws (3) and (4) as illustrated in Figure 4. 
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linear systems and time delay.  Interestingly, the highest gains (average rating of 3.32 in Table 1) 
were achieved in understanding of the relationship of stability and gain. When asked to comment 
on the discrepancy observed between the theory and experiment in a homework-style 
assignment, 33% of the students correctly identified the missing rotor dynamics as a possible 
cause, while 56% felt that the feedback linearization somehow masked the unstable modes or 
was imperfect, leading to loss of stability. Another 11% looked for physical limitations in the 
system or faulty components. It appears that the large number of misconceptions paired with 
challenging the students' confidence in their ability to model the plant, along with providing a 
plausible solution to the problem, could 
explain the highest gains in this 
category. Further case studies would be 
required to confirm this observation. 
Among the least understood topics was 
the use of Bode plots, perhaps due to the 
fact that it was covered at the very end of 
the semester, leaving little time for 
practice and exploration.  

The portability and convenience of the 
implementation of the experiment was 
evaluated through a second set of 
questions, where 42.9% of the students 
reported that they did not need a 
permanent lab and another 42.9% had to 
use a teaching assistant consultation for 
not more than 1 hour. Only 3.6% of the 
respondents to this question indicated 
that more consultation was needed, while 
10.7% wanted to have a permanent lab 
space dedicated to the project. The 
average duration for completion of the 
project was 7.78 hours. 

 

Conclusions 

An inexpensive portable experimental setup has been described for use as a hands-on experience 
for undergraduate students taking senior-level classical control system design courses. The 
project requires minimal or no supervision without the need for a specialized laboratory space. In 
10 out of 11 topics, students self-reported above average learning gains. Highest gains were 
achieved through a problem that challenges the student's trust and beliefs in the theory when 

  Table 1 Student Feedback Data 
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confronted with an apparent contradiction with experimental observations. Presenting the project 
as a series of short assignments allows the instructor to provide guidance to the students without 
sacrificing the ability to encourage individual experimentation. The project is particularly aimed 
at students whose major is not electrical engineering becoming familiar with the modern 
developments in implementation of real-time control systems. While simple, the hardware allows 
demonstration of advanced concepts such as feedback linearization. Evaluation data show that 
the project is well-received among students and it can be completed independently over an 
average of 8 hours. Parameter variation through modification of the configuration of the 
pendulum allows the instructor to individualize each kit.  
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