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Using an Educational Microprocessor Architecture and 

FPGA Implementation to Introduce Interrupts 
 
Abstract 

 
The use of interrupts is an important topic in the use of computers.  Interrupts provide the 
means for a computer to quickly respond to significant real-world events.  Unlike polling, 
which is suitable for interfacing slow peripherals, interrupts provide a more efficient 
means to interface with devices.  Interrupts are generally considered to be advanced and 
unfortunately, the topic can be a challenge to present to students.  In computer 
architecture in particular, the topic of interrupts is often overly abstracted, which can 
make learning about interrupts difficult for students.   
 
Following a trigger event, an interrupt service routine (ISR) is invoked to provide 
service.  Such an event could be the arrival of data on a serial communications port, or a 
signal that the brakes in an automobile have been applied.  The latency is the actual time 
for the system to respond.  Interrupts are a critical part of the hardware-software 
interface.  With a serial port, it is necessary to quickly process received data, to avoid it 
being overwritten by more recently received data.  Likewise, with brakes there is a 
constraint on the time the controller has to respond to the external event.  Interrupts are 
also useful in debugging software. 
 
To go beyond the discussion of a generalized abstraction, it is necessary to consider an 
actual microprocessor.  This paper discusses the use of the nod4 soft core microprocessor 
to introduce the concept of interrupts to undergraduate students.  But to strike some kind 
of balance, nod4 exception handling is fairly generic roughly following the discussion in 
Tanenenbaum1 and it also borrows concepts from other processors as well.  Apart from 
the implementation, nod4 is classic accumulator based Von Neumann style architecture 
and as such is similar to many other processors.  This implementation is called soft as it is 
implemented with a Field Programmable Gate Array (FPGA).  The FPGA and modern 
computer aided design tools provide new opportunities in teaching computer architecture.  
The grand vision is expressed neatly in the motto that the nod4 processor is a simple yet 
non-trivial processor designed to be a tool for teaching introductory computer 
architecture principles to undergraduates.  
 
Introduction 

 
From a computer user’s point of view, interrupts simply provide a means for a computer 
to quickly respond to significant real-world events.  From a programmer’s point of view, 
interrupts provide a means for the hardware to almost magically invoke a subroutine to 
service a device as necessary, freeing up resources that might otherwise be used for 
polling.  Unlike polling, which is generally suitable for interfacing slow peripherals, 
interrupts provide a more efficient means to interface with devices.  Traps such as the 
software interrupt instruction (swi) are similar to interrupts and are invoked with the 
same mechanism.  The swi instruction is typically used to implement break points for use 
in program debugging. 
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In computer engineering computers are thought of as being layered, with physical 
hardware representing the lowest layer.  Invoking an interrupt starts deep within the 
hardware, working up through the layers, forcing a sudden jump in execution of the 
machine code instructions that eventually reaches the operating system and application 
software.  Interrupt latency is the overall time for the system to respond.  In this way 
interrupts involve all aspects and all layers of the computer system. 
 
By involving all layers, interrupts should be a useful pedagogical tool.  Unfortunately, 
teaching such a comprehensive topic can be a challenge.  In some computer architecture 
courses the topic of interrupts is often overly abstracted, making learning difficult.  In 
other courses interrupts are introduced in the context of an existing system, however 
many the details are hidden so that we resort to inductive technique which causes the 
topic to appear distant. 
 
To go beyond abstract generalities and make the topic of interrupts reachable it is useful 
to consider an actual system.  While on one hand students need an opportunity to closely 
study such a system, modern systems are exceedingly complex.  To strike a balance, the 
nod4 exception mechanism is designed to be simple and fairly general.  Exception 
handling roughly follows the discussion in Tanenenbaum1 and is also inspired by other 
processors, in particular, the PIC2, 80863, PowerPC-4054, Microblaze5, and the 68HC116. 
 
I have found that a deductive approach tends to be more effective in teaching new 
concepts than an inductive approach.  Interrupts come with the nod4 implementation as 
built-in, no additional functionality is needed, so that students can construct the nod4 
system without knowing anything about interrupts.  Students are provided with VHDL 
modules that they use to make symbols and use schematic capture to implement the 
processor themselves.  In fact, the topic of interrupts can be presented entirely at the 
instructor’s discretion.  Once constructed, the implementation provides students with 
hand-on opportunities to investigate interrupts. 
 
The notion of interrupts can first be presented in steps, with increasing levels of focus.  
First interrupts can be presented from an abstract point of view using a text book such as 
Tanenbaum1.  Next, the nod4 architecture provides a more deductive approach, where 
students can study an example assembly language program that uses interrupts.  The nod4 
project8 is a resource and many of the documents also include homework questions.  
Finally, students can study an actual implementation of nod4 and see all the fine detail, 
clock cycle by clock cycle, showing exactly how interrupts are invoked.   
 
The nod4 Microprocessor Architecture 

 
The name nod4, pronounced "node four" refers to a computer architecture developed for 
use in undergraduate projects involving computer architecture.  The author7 provides an 
outline and the complete details are in the project website8.  The architecture is entirely 
eight bit in that all registers are eight bits in length.  The processor supports unsigned 
arithmetic and has several notable features such as subroutines, stack relative addressing, 
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interrupts, and conditional branching.  The conceptual difference between computer 
architecture and a computer implementation is a key lesson for students to learn.   
 
The nod4 architecture outlines aspects of the computer that an assembly language 
programmer is aware of.  The nod4 architecture has an 8-bit data path and an 8-bit 
address bus.  The architecture comprises the CPU registers, the memory map and 
memory mapped devices, as well as the instruction mnemonics and addressing nodes, as 
well as the interface to the exception handling mechanism.  From the programmer’s point 
of view nod4 has the following CPU registers 
 

• A – accumulator 

• C – condition code register (Z,C,I) and IID 

• S – stack pointer 

• X – index register 

• PC – program address counter 
 
The A register is primarily for handling data.  The C register contains the zero flag (Z), 
carry/borrow flag (C), and the interrupt enable flag (I).  The lower five C register bits 
store the ID for an interrupting device (IID).  The stack pointer maintains the stack data 
structure.  The X register is a fairly general purpose index register.  The program counter 
(PC) can be thought of as referring to the next instruction however due to pre-fetching 
has a twist discussed later, that the assembly language programmer should be less 
concerned with. 
 
To express a program that makes use of the CPU registers and memory, it is convenient 
to have an assembly language.  In writing assembly code we will be most concerned with 
symbols and labels.  A symbol is a symbolic name for a value.  A label is like a symbol, 
except that the value must be an address.  The assembly language file format is broken 
into lines.  A line is organized into as many as four possible fields.  A comment can be 
inserted at the end of a line or an entire line can be a comment. 
 

1. The left-most field contains a label, symbol, or a semicolon ‘;’ used to start a 
comment line.  Each label or symbol here is terminated with a colon ‘:’ 

2. The second field contains either an instruction mnemonic or a directive, which is 
a command to the assembler. 

3. The third field contains either the operand for an instruction or data associated 
with an assembler directive.  The use of square brackets ‘[ ]’ means the contents 
of the given address. 

4. The fourth field is for comments and starts with a semicolon ‘;’ 
 
The effective address or EA is the location for a memory data access.  Four addressing 
modes are supported, namely implied, immediate, direct, and indexed.  With implied 
addressing (IMP) there is no operand however as with push and pop the EA is implied.  
An immediate instruction (IMM) follows the mnemonic by the required data.  With direct 
addressing the mnemonic is followed by the EA value.  With index addressing the EA is 

P
age 13.1328.4



calculated by adding an offset value following the mnemonic to the corresponding index 
register (S or X). 
 
A directive is a command intended for the assembler, rather than an instruction for nod4.  
The following are the directives: 

 
 
The following summarizes the given assembly language format 

 
 
Given such a program, an execution history is a listing of instructions, with relevant 
values.  The execution history shows, based on an understanding of the architecture, how 
a program is expected to execute, instruction by instruction. 
 
Architectural View of Interrupts 

 
The term exceptions collectively refer to interrupts and traps.  Interrupts are generally 
used to service devices and traps are generally invoked by a software related event.  As 
with most microprocessors, nod4 uses one mechanism to handle both interrupts and traps 
and unfortunately, quite often the language can become blurry.  Details of nod4 exception 
handling are fairly generic and generally follow the discussion in Tanenenbaum1 and also 
borrow concepts from other processors, including the PIC16 architecture2, the Intel 
80863, the PowerPC 4054, Microblaze5, the Motorola 68HC116, and others.   
 
The following is an outline of interrupts as seen in the nod4 architecture.  Interrupts are 
said to be maskable as the I-flag in the condition code register is used to enable 
interrupts.  As with the 68HC11, the interrupt vector is meant to be permanently written 
in ROM along with the program start address.  As with the 8086, invoking an interrupt 
only preserves the PC and C registers, the handler is responsible for preserving any other 
CPU registers that are used.  Also like the 8086, an interrupting device provides an 
identifier code.  But like the Microblaze and PIC processors only a single vector is 

; Here is a comment line 

Symbol: Directive  Data    ; A comment 

Label:  Mnemonic   Operand ; Another comment 

        ORG  Address 

Sets the point of assembly to ‘Address’ 
 
symbol: EQU  value 

The symbol is assigned the constant value 
 
label:  FCB  val1,val2,… 

Reserves a byte for each value in a comma separated list.  The address 
of the first value is assigned to the label. 

 
label:  RMB  n 

Reserves n bytes but does not assign any specific values to memory.  
The address of the first byte is assigned to the label 
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provided so that the exception handler is also responsible for dispatching execution to the 
corresponding interrupt handler. 
 
An interrupt is triggered at the completion of a machine code instruction when the I-flag 
and the IRQ interrupt request signal is high.  For interrupts the identifier code (IID) is 
read from the interrupting device.  For traps the IID code zero is used.  The upper 3 bits 
of the IID are masked or forced to be zero and written to the condition code register so 
that only the lower five bits are used.  The PIA value is the address of the first instruction 
in the exception handler.  The PIA value is stored in memory at address $01 and is 
written to the PC register to invoke the handler. 
 

• The programmer is responsible for assigning the programmer interrupt address 
(PIA) value at address $01. 

• Peripheral devices are configured during system initialization. 

• Following system initialization a bit-wise OR instruction sets the I-flag in the 
condition code register, enabling interrupts. 

• A peripheral device asserts IRQ to request service. 

• The interrupt mechanism is triggered at completion of the current instruction. 

• The interrupting device identifier (IID) code is read. 

• The address of the next opcode and C register value are pushed into the stack 

• The IID is bit-wise anded with $1F and put into the condition code register 

• The PIA value is read from memory and put in the PC register, which effectively 
invokes the exception handler. 

 
Given that only the PC and condition code registers are pushed into the stack, the 
assembly language programmer is responsible for preserving and later restoring other 
registers used by the exception handler.  With the PIA as the only vector for exceptions 
the IID value can be used to dispatch execution to a corresponding interrupt service 
routine.  Traps will have an IID value of zero. 
 

• Before returning from the exception handler, service must be provided in a way so 
that the requesting device no longer asserts the IRQ signal. 

• The 'rti' instruction returns execution from the interrupt handler by popping the 
condition code register and PC register values from the stack, respectively. 

 
First Example Program 

 
The following example program uses a real-time clock to generate interrupt requests, 
causing an LED display to count in binary.  The period of the real time clock peripheral is 
defined in hardware and otherwise is not configurable in software.  The device is periodic 
in that it regularly asserts the interrupt request, whether or not the request is cleared.  The 
exception handler is responsible for clearing the request. 
 
 
 
 

P
age 13.1328.6



The following is true with performing a read from the control/status register (RTCTL): 

• bits 7 to 2 - Read as '0' 

• bit 1 - RTIE - The device IRQ enable flag, when high requests can be made 

• bit 0 - RTF - The real time flag (RTF) state 
 
In performing a write to the control/status register the following applies: 

• bits 7 to 2 - Writes are ignored 

• bit 1 - RTIE - The device IRQ enable flag, when high requests can be made 

• bit 0 - RTFC - Writing a '1' clears the real time flag (RTF) 
 
The following program rtex1.asm demonstrates the real time clock.  Here we assume that 
the period is 100ms, corresponding to a 10Hz rate.  The labels RTCTL and LEDS refer to 
the address of each corresponding device.  The full details of the mnemonics and 
assembly language encoding are in the Architecture document8.  This example only uses 
implied (IMP), immediate (IMM) and direct (DIR) addressing. 
 
System initialization is performed starting with the load stack register (lds) instruction 
which initializes the stack.  Next, the load and store register A instructions (lda and sta) 
clear the count value stored at Count.  The square brackets mean the contents of the given 

address, which here indicates direct addressing.  The next lda and sta instructions enable 
and clear the real time interrupt request signal, completing system initialization.  The orc 
instruction performs a bitwise OR with the C register, enabling the exception mechanism. 
 
The exception handler starts at the address ISR.  Note that with only one source of 
exceptions, there is no need to examine the IID to dispatch execution to this interrupt 
service routine.  Likewise, there is only one place in the main program where interrupts 
can occur, that is just before or after the jump-always (jmp) instruction executes.  Given 
that the jmp instruction forms a very tight loop to itself, the exception handler need not 
preserve the A register value which it uses.  In more practical examples, the ISR must 
preserve and restore the registers that it uses. 
 
At the top of the ISR the real time interrupt request signal is cleared the same way as 
during initialization.  Next, the load, add, and store A register (lda, adda, and sta) 
instructions increment the count and update the value displayed by the LEDs.  Finally, 
the return from interrupt instruction (rti) returns execution back to the main program 
code.  The rti instruction is different from a return from subroutine (rts) instruction as the 
condition code register must also be pulled from the stack. 
 

P
age 13.1328.7



 
 
The nod4.1 Microprocessor Implementation 

 
In contrast, the implementation is how the computer is actually constructed.  Students are 
provided with VHDL modules that they use to make symbols and use schematic capture 
to implement the processor themselves.  In this way students are exposed to register 
transfer level and higher level schematics.  Constructing the given nod4.1 implementation 
is similar to drawing schematics using MSI parts.  While students are not expected to 
know VHDL, they are welcome to investigate what the VHDL modules contain.  The 
nod4 architecture strives for clarity and is transparent so that nothing is hidden from the 
student. 
 
Implementations of nod4 thus far use microcode in the controller to provide a clear way 
to investigate the cycle by cycle behavior of the implementation.  Figure 1 gives a fairly 
close conceptual outline of the fetch-execute cycle by representing related blocks of 
microcode as states.  Starting at init, the program start address or PSA is read from 
memory and is loaded in the PC register.   
 

; rtex1.asm – Jonathan Hill – Fall 2007 

; Demonstrate the real-time clock interrupt 

RTCTL: EQU  $FD 

LEDS:  EQU  $FC 

             

       ORG  $00       ; Point of assembly 

       FCB  Start,Isr ; PSA,PIA 

             

Start: lds  $FC       ; (IMM) Init stack 

       lda  $00       ; Load zero and 

       sta  [Count]   ;  (DIR) clear the count 

       lda  $03       ; Load value to 

       sta  [RTCTL]   ;  enable device 

       orc  $20       ; Enable interrupts 

 

Done:  jmp  Done      ; Hang out here 

             

Isr:   lda  $03       ; Load value to 

       sta  [RTCTL]   ;  reset flag 

       lda  [Count]   ; Get count and 

       adda $01       ;  increment value 

       sta  [Count]   ;  store count 

       sta  [LEDS]    ;  write to LEDs 

       rti            ; (IMP) Done for now 

             

       ORG  $C0 

Count  RMB  1         ; Counter value 
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Figure 1: Microcode overview 

 
The fetch1 state reads an instruction opcode and fetch2 reads a second byte from 
memory.  At this point, with the opcode and the following byte fetched, implied and 
immediate type instructions can be executed.  Direct and indexed instructions access data 
at the corresponding effective address or EA.  The access-EA states calculate the 
effective address (EA) as reads or writes data as necessary.  Once executed, as needed the 
interrupt states prepares for an interrupt. 
 
Immediate, direct, and indexed addressing instructions use both bytes fetched from 
memory.  Most implied instructions treat the second fetch as a pre-fetch of the following 
instruction.  In pre-fetching the following opcode, the current implied instructions appear 
to execute in one less clock cycle.  The choice to arbitrarily fetch two bytes in sequence 
from memory in this fashion actually has less to do with implied instructions and more to 
do with the rest.  By immediately fetching a second byte, regardless of addressing mode, 
then no time is used to decide if a second fetch is required, so that all instructions execute 
faster.  The idea of pre-fetching so that implied instructions execute faster yet is a happy 
coincidence. 
 
The downside is that the exact meaning of the PC register is less clear.  Once fetch2 is 
complete, the PC register contains the address of the current opcode plus two, which 
could be the next instruction or something after that.  Thus the PC register has the role of 
a fetch counter.  Normally this is not a problem as we know the situations where the PC 
register is expected to refer to the next opcode in memory.  All jump instructions are two 
bytes long so that in executing a jump to subroutine (JSR) instruction, the PC register will 
refer to the return address, and will properly be pushed onto the stack. 
 
In invoking an interrupt, the previous completed instruction may not be two bytes long.  
In completing an implied instruction, the pre-fetching must be first be undone before 
jumping the machine code to the exception handler, so that the correct return address is 
pushed onto the stack.  Figure 2 illustrates the flow through microcode to invoke the 
exception handler.  The states with vertical internal bars are the entry points. 
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Figure 2: Microcode flow invoking the exception handler 

 
State intx1 is entered after an immediate, direct, or extended instruction is completed.  
State intx2 is entered after a pre-fetch-type implied instruction is completed.  State swi1 
is entered when the swi instruction is executed.  States intx2 and swi1 un-pre-fetch the 
following opcode as necessary by decrementing the PC register.  Hence, intx1 is entered 
when a non-pre-fetch-type instruction is completed.  Full details of the microcode are in 
the Implementation document8. 
 
Interrupt Latency 

 
As outlined earlier, interrupts provide the means to quickly respond to significant real-
world events, so that interrupt latency is a critical parameter.  Following a request, the 
worst case interrupt latency is the worst case delay till the corresponding ISR actually 
provides service.  Interrupt latency is the sum of several delay values.  In many real time 
systems the interrupts are disabled at least some of the time.  Interrupts may be disabled 
during execution of a critical section, and are disabled when the exception handler itself 
is invoked.  Once interrupts are enabled, the exception handler must wait for the current 
instruction to complete. As outlined in the previous section, the mechanism requires six 
clock cycles to invoke the exception handler.  Once invoked, the exception handler 
provides a decision tree to dispatch execution to the corresponding ISR. 
 
With a 50MHz clock, each bus cycle consumes 20ns.  The worst case interrupt latency is 
the sum of the longest number of cycles for which interrupts are disabled, the largest 
number of cycles to execute an instruction, the number of cycles to invoke the exception 
handler, and finally the number of cycles to dispatch execution to the ISR which provides 
service.  Other than the longest number of cycles for which interrupts are disabled, the 
microcode provides a cycle by cycle account of the nod4 processor behavior. 
 
Handling Multiple Interrupt Sources 

 
In considering the handling of multiple interrupt sources, several related topics arise 
related to interrupt identifier codes (IID), interrupt priorities, and dispatching execution to 
the corresponding handler.  First off, while the processor has only one interrupt request 
input (IRQ) the IID code has five bits.  With the IID code zero reserved for the swi 
instruction, there can be as many as 31 interrupt request sources.  Given that a device 
produces an IID to identify the source, it is possible for a device such as a UART to 
produce one of several IID codes, based on the service being requested.   
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With only one exception handler present, to handle multiple interrupts, the programmer is 
responsible for providing code to dispatch execution to the corresponding ISR, based on 
the received IID value.  Such code is basically a simple decision tree.  Next consider the 
actual devices.  A single device connects with signals as shown in Figure 3.  The device 
asserts IRQ as necessary to request service.  When the processor is able, it acknowledges 
the request by asserting the IRA signal.  In the same bus cycle the device puts its IID 
code into the di memory system data bus. 
 

nod4

IRQ

IRA IRA

di

IRQ

device

di
 

Figure 3: Single interrupt requestor 
 
In systems with two or more devices, the interrupt priority encoder (IPE) establishes 
priorities between devices.  In receiving multiple requests, the IPE determines which 
device will receive service first.  In Figure 4, the IPE receives interrupt requests from two 
devices.  Inside the IPE an OR gate combines the device requests, producing the IRQ 
signal passed to the processor.  When the processor asserts IRA, the IPE passes the 
acknowledgement to the highest priority device making a request.  It is given here that 
device0 has priority over device1.  As with the case with one device, the acknowledged 
device uses the di memory system data bus to send its IID code to the processor. 
 

di

nod4 device0

IRQ

IRA

di

device1

IRQ

IRA

di

IRQ

IRA

IPE

IRQ0

IRA0

IRQ1

IRA1

IRQ

IRA

 
Figure 4: Two interrupt requestors 

 
Summary 

 
The nod4 processor architecture and implementation provide opportunities for students to 
investigate interrupts.  Details of interrupts with nod4 are fairly generic.  The concept 
roughly follows the discussion in Tanenbaum1 and also borrows concepts from several 
other commercial processors. The nod4 architecture provides students with a means to 
investigate interrupts from an assembly language programmer’s point of view.  Students 
are provided with VHDL modules that they use to make symbols and use schematic 
capture to implement the processor themselves.  In this way students are exposed to 
register transfer level and higher level schematics.  With nod4 implemented, students can 
investigate the cycle by cycle behavior of how interrupts are actually invoked. 
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