
AC 2008-2081: USING AN EDUCATIONAL MICROPROCESSOR
ARCHITECTURE AND FPGA IMPLEMENTATION TO INTRODUCE
INTERRUPTS

Jonathan Hill, University of Hartford
Dr. Jonathan Hill is an assistant professor on Electrical and Computer Engineering in the College
of Engineering, Technology, and Architecture (CETA) at the University of Hartford, located in
Connecticut. Ph.D. and M.S. from Worcester Polytechnic Institute (WPI) and Bachelor's degree
from Northeastern University. Previously an applications engineer with the Networks and
Communications division of Digital Corporation. His interests involve embedded microprocessor
based systems.

© American Society for Engineering Education, 2008

P
age 13.1328.1

Using an Educational Microprocessor Architecture and

FPGA Implementation to Introduce Interrupts

Abstract

The use of interrupts is an important topic in the use of computers. Interrupts provide the
means for a computer to quickly respond to significant real-world events. Unlike polling,
which is suitable for interfacing slow peripherals, interrupts provide a more efficient
means to interface with devices. Interrupts are generally considered to be advanced and
unfortunately, the topic can be a challenge to present to students. In computer
architecture in particular, the topic of interrupts is often overly abstracted, which can
make learning about interrupts difficult for students.

Following a trigger event, an interrupt service routine (ISR) is invoked to provide
service. Such an event could be the arrival of data on a serial communications port, or a
signal that the brakes in an automobile have been applied. The latency is the actual time
for the system to respond. Interrupts are a critical part of the hardware-software
interface. With a serial port, it is necessary to quickly process received data, to avoid it
being overwritten by more recently received data. Likewise, with brakes there is a
constraint on the time the controller has to respond to the external event. Interrupts are
also useful in debugging software.

To go beyond the discussion of a generalized abstraction, it is necessary to consider an
actual microprocessor. This paper discusses the use of the nod4 soft core microprocessor
to introduce the concept of interrupts to undergraduate students. But to strike some kind
of balance, nod4 exception handling is fairly generic roughly following the discussion in
Tanenenbaum1 and it also borrows concepts from other processors as well. Apart from
the implementation, nod4 is classic accumulator based Von Neumann style architecture
and as such is similar to many other processors. This implementation is called soft as it is
implemented with a Field Programmable Gate Array (FPGA). The FPGA and modern
computer aided design tools provide new opportunities in teaching computer architecture.
The grand vision is expressed neatly in the motto that the nod4 processor is a simple yet
non-trivial processor designed to be a tool for teaching introductory computer
architecture principles to undergraduates.

Introduction

From a computer user’s point of view, interrupts simply provide a means for a computer
to quickly respond to significant real-world events. From a programmer’s point of view,
interrupts provide a means for the hardware to almost magically invoke a subroutine to
service a device as necessary, freeing up resources that might otherwise be used for
polling. Unlike polling, which is generally suitable for interfacing slow peripherals,
interrupts provide a more efficient means to interface with devices. Traps such as the
software interrupt instruction (swi) are similar to interrupts and are invoked with the
same mechanism. The swi instruction is typically used to implement break points for use
in program debugging.

P
age 13.1328.2

In computer engineering computers are thought of as being layered, with physical
hardware representing the lowest layer. Invoking an interrupt starts deep within the
hardware, working up through the layers, forcing a sudden jump in execution of the
machine code instructions that eventually reaches the operating system and application
software. Interrupt latency is the overall time for the system to respond. In this way
interrupts involve all aspects and all layers of the computer system.

By involving all layers, interrupts should be a useful pedagogical tool. Unfortunately,
teaching such a comprehensive topic can be a challenge. In some computer architecture
courses the topic of interrupts is often overly abstracted, making learning difficult. In
other courses interrupts are introduced in the context of an existing system, however
many the details are hidden so that we resort to inductive technique which causes the
topic to appear distant.

To go beyond abstract generalities and make the topic of interrupts reachable it is useful
to consider an actual system. While on one hand students need an opportunity to closely
study such a system, modern systems are exceedingly complex. To strike a balance, the
nod4 exception mechanism is designed to be simple and fairly general. Exception
handling roughly follows the discussion in Tanenenbaum1 and is also inspired by other
processors, in particular, the PIC2, 80863, PowerPC-4054, Microblaze5, and the 68HC116.

I have found that a deductive approach tends to be more effective in teaching new
concepts than an inductive approach. Interrupts come with the nod4 implementation as
built-in, no additional functionality is needed, so that students can construct the nod4
system without knowing anything about interrupts. Students are provided with VHDL
modules that they use to make symbols and use schematic capture to implement the
processor themselves. In fact, the topic of interrupts can be presented entirely at the
instructor’s discretion. Once constructed, the implementation provides students with
hand-on opportunities to investigate interrupts.

The notion of interrupts can first be presented in steps, with increasing levels of focus.
First interrupts can be presented from an abstract point of view using a text book such as
Tanenbaum1. Next, the nod4 architecture provides a more deductive approach, where
students can study an example assembly language program that uses interrupts. The nod4
project8 is a resource and many of the documents also include homework questions.
Finally, students can study an actual implementation of nod4 and see all the fine detail,
clock cycle by clock cycle, showing exactly how interrupts are invoked.

The nod4 Microprocessor Architecture

The name nod4, pronounced "node four" refers to a computer architecture developed for
use in undergraduate projects involving computer architecture. The author7 provides an
outline and the complete details are in the project website8. The architecture is entirely
eight bit in that all registers are eight bits in length. The processor supports unsigned
arithmetic and has several notable features such as subroutines, stack relative addressing,

P
age 13.1328.3

interrupts, and conditional branching. The conceptual difference between computer
architecture and a computer implementation is a key lesson for students to learn.

The nod4 architecture outlines aspects of the computer that an assembly language
programmer is aware of. The nod4 architecture has an 8-bit data path and an 8-bit
address bus. The architecture comprises the CPU registers, the memory map and
memory mapped devices, as well as the instruction mnemonics and addressing nodes, as
well as the interface to the exception handling mechanism. From the programmer’s point
of view nod4 has the following CPU registers

• A – accumulator

• C – condition code register (Z,C,I) and IID

• S – stack pointer

• X – index register

• PC – program address counter

The A register is primarily for handling data. The C register contains the zero flag (Z),
carry/borrow flag (C), and the interrupt enable flag (I). The lower five C register bits
store the ID for an interrupting device (IID). The stack pointer maintains the stack data
structure. The X register is a fairly general purpose index register. The program counter
(PC) can be thought of as referring to the next instruction however due to pre-fetching
has a twist discussed later, that the assembly language programmer should be less
concerned with.

To express a program that makes use of the CPU registers and memory, it is convenient
to have an assembly language. In writing assembly code we will be most concerned with
symbols and labels. A symbol is a symbolic name for a value. A label is like a symbol,
except that the value must be an address. The assembly language file format is broken
into lines. A line is organized into as many as four possible fields. A comment can be
inserted at the end of a line or an entire line can be a comment.

1. The left-most field contains a label, symbol, or a semicolon ‘;’ used to start a
comment line. Each label or symbol here is terminated with a colon ‘:’

2. The second field contains either an instruction mnemonic or a directive, which is
a command to the assembler.

3. The third field contains either the operand for an instruction or data associated
with an assembler directive. The use of square brackets ‘[]’ means the contents
of the given address.

4. The fourth field is for comments and starts with a semicolon ‘;’

The effective address or EA is the location for a memory data access. Four addressing
modes are supported, namely implied, immediate, direct, and indexed. With implied
addressing (IMP) there is no operand however as with push and pop the EA is implied.
An immediate instruction (IMM) follows the mnemonic by the required data. With direct
addressing the mnemonic is followed by the EA value. With index addressing the EA is

P
age 13.1328.4

calculated by adding an offset value following the mnemonic to the corresponding index
register (S or X).

A directive is a command intended for the assembler, rather than an instruction for nod4.
The following are the directives:

The following summarizes the given assembly language format

Given such a program, an execution history is a listing of instructions, with relevant
values. The execution history shows, based on an understanding of the architecture, how
a program is expected to execute, instruction by instruction.

Architectural View of Interrupts

The term exceptions collectively refer to interrupts and traps. Interrupts are generally
used to service devices and traps are generally invoked by a software related event. As
with most microprocessors, nod4 uses one mechanism to handle both interrupts and traps
and unfortunately, quite often the language can become blurry. Details of nod4 exception
handling are fairly generic and generally follow the discussion in Tanenenbaum1 and also
borrow concepts from other processors, including the PIC16 architecture2, the Intel
80863, the PowerPC 4054, Microblaze5, the Motorola 68HC116, and others.

The following is an outline of interrupts as seen in the nod4 architecture. Interrupts are
said to be maskable as the I-flag in the condition code register is used to enable
interrupts. As with the 68HC11, the interrupt vector is meant to be permanently written
in ROM along with the program start address. As with the 8086, invoking an interrupt
only preserves the PC and C registers, the handler is responsible for preserving any other
CPU registers that are used. Also like the 8086, an interrupting device provides an
identifier code. But like the Microblaze and PIC processors only a single vector is

; Here is a comment line

Symbol: Directive Data ; A comment

Label: Mnemonic Operand ; Another comment

 ORG Address

Sets the point of assembly to ‘Address’

symbol: EQU value

The symbol is assigned the constant value

label: FCB val1,val2,…

Reserves a byte for each value in a comma separated list. The address
of the first value is assigned to the label.

label: RMB n

Reserves n bytes but does not assign any specific values to memory.
The address of the first byte is assigned to the label

P
age 13.1328.5

provided so that the exception handler is also responsible for dispatching execution to the
corresponding interrupt handler.

An interrupt is triggered at the completion of a machine code instruction when the I-flag
and the IRQ interrupt request signal is high. For interrupts the identifier code (IID) is
read from the interrupting device. For traps the IID code zero is used. The upper 3 bits
of the IID are masked or forced to be zero and written to the condition code register so
that only the lower five bits are used. The PIA value is the address of the first instruction
in the exception handler. The PIA value is stored in memory at address $01 and is
written to the PC register to invoke the handler.

• The programmer is responsible for assigning the programmer interrupt address
(PIA) value at address $01.

• Peripheral devices are configured during system initialization.

• Following system initialization a bit-wise OR instruction sets the I-flag in the
condition code register, enabling interrupts.

• A peripheral device asserts IRQ to request service.

• The interrupt mechanism is triggered at completion of the current instruction.

• The interrupting device identifier (IID) code is read.

• The address of the next opcode and C register value are pushed into the stack

• The IID is bit-wise anded with $1F and put into the condition code register

• The PIA value is read from memory and put in the PC register, which effectively
invokes the exception handler.

Given that only the PC and condition code registers are pushed into the stack, the
assembly language programmer is responsible for preserving and later restoring other
registers used by the exception handler. With the PIA as the only vector for exceptions
the IID value can be used to dispatch execution to a corresponding interrupt service
routine. Traps will have an IID value of zero.

• Before returning from the exception handler, service must be provided in a way so
that the requesting device no longer asserts the IRQ signal.

• The 'rti' instruction returns execution from the interrupt handler by popping the
condition code register and PC register values from the stack, respectively.

First Example Program

The following example program uses a real-time clock to generate interrupt requests,
causing an LED display to count in binary. The period of the real time clock peripheral is
defined in hardware and otherwise is not configurable in software. The device is periodic
in that it regularly asserts the interrupt request, whether or not the request is cleared. The
exception handler is responsible for clearing the request.

P
age 13.1328.6

The following is true with performing a read from the control/status register (RTCTL):

• bits 7 to 2 - Read as '0'

• bit 1 - RTIE - The device IRQ enable flag, when high requests can be made

• bit 0 - RTF - The real time flag (RTF) state

In performing a write to the control/status register the following applies:

• bits 7 to 2 - Writes are ignored

• bit 1 - RTIE - The device IRQ enable flag, when high requests can be made

• bit 0 - RTFC - Writing a '1' clears the real time flag (RTF)

The following program rtex1.asm demonstrates the real time clock. Here we assume that
the period is 100ms, corresponding to a 10Hz rate. The labels RTCTL and LEDS refer to
the address of each corresponding device. The full details of the mnemonics and
assembly language encoding are in the Architecture document8. This example only uses
implied (IMP), immediate (IMM) and direct (DIR) addressing.

System initialization is performed starting with the load stack register (lds) instruction
which initializes the stack. Next, the load and store register A instructions (lda and sta)
clear the count value stored at Count. The square brackets mean the contents of the given

address, which here indicates direct addressing. The next lda and sta instructions enable
and clear the real time interrupt request signal, completing system initialization. The orc
instruction performs a bitwise OR with the C register, enabling the exception mechanism.

The exception handler starts at the address ISR. Note that with only one source of
exceptions, there is no need to examine the IID to dispatch execution to this interrupt
service routine. Likewise, there is only one place in the main program where interrupts
can occur, that is just before or after the jump-always (jmp) instruction executes. Given
that the jmp instruction forms a very tight loop to itself, the exception handler need not
preserve the A register value which it uses. In more practical examples, the ISR must
preserve and restore the registers that it uses.

At the top of the ISR the real time interrupt request signal is cleared the same way as
during initialization. Next, the load, add, and store A register (lda, adda, and sta)
instructions increment the count and update the value displayed by the LEDs. Finally,
the return from interrupt instruction (rti) returns execution back to the main program
code. The rti instruction is different from a return from subroutine (rts) instruction as the
condition code register must also be pulled from the stack.

P
age 13.1328.7

The nod4.1 Microprocessor Implementation

In contrast, the implementation is how the computer is actually constructed. Students are
provided with VHDL modules that they use to make symbols and use schematic capture
to implement the processor themselves. In this way students are exposed to register
transfer level and higher level schematics. Constructing the given nod4.1 implementation
is similar to drawing schematics using MSI parts. While students are not expected to
know VHDL, they are welcome to investigate what the VHDL modules contain. The
nod4 architecture strives for clarity and is transparent so that nothing is hidden from the
student.

Implementations of nod4 thus far use microcode in the controller to provide a clear way
to investigate the cycle by cycle behavior of the implementation. Figure 1 gives a fairly
close conceptual outline of the fetch-execute cycle by representing related blocks of
microcode as states. Starting at init, the program start address or PSA is read from
memory and is loaded in the PC register.

; rtex1.asm – Jonathan Hill – Fall 2007

; Demonstrate the real-time clock interrupt

RTCTL: EQU $FD

LEDS: EQU $FC

 ORG $00 ; Point of assembly

 FCB Start,Isr ; PSA,PIA

Start: lds $FC ; (IMM) Init stack

 lda $00 ; Load zero and

 sta [Count] ; (DIR) clear the count

 lda $03 ; Load value to

 sta [RTCTL] ; enable device

 orc $20 ; Enable interrupts

Done: jmp Done ; Hang out here

Isr: lda $03 ; Load value to

 sta [RTCTL] ; reset flag

 lda [Count] ; Get count and

 adda $01 ; increment value

 sta [Count] ; store count

 sta [LEDS] ; write to LEDs

 rti ; (IMP) Done for now

 ORG $C0

Count RMB 1 ; Counter value

P
age 13.1328.8

fetch2

init

EA
access

execute
interrupt

fetch1

Figure 1: Microcode overview

The fetch1 state reads an instruction opcode and fetch2 reads a second byte from
memory. At this point, with the opcode and the following byte fetched, implied and
immediate type instructions can be executed. Direct and indexed instructions access data
at the corresponding effective address or EA. The access-EA states calculate the
effective address (EA) as reads or writes data as necessary. Once executed, as needed the
interrupt states prepares for an interrupt.

Immediate, direct, and indexed addressing instructions use both bytes fetched from
memory. Most implied instructions treat the second fetch as a pre-fetch of the following
instruction. In pre-fetching the following opcode, the current implied instructions appear
to execute in one less clock cycle. The choice to arbitrarily fetch two bytes in sequence
from memory in this fashion actually has less to do with implied instructions and more to
do with the rest. By immediately fetching a second byte, regardless of addressing mode,
then no time is used to decide if a second fetch is required, so that all instructions execute
faster. The idea of pre-fetching so that implied instructions execute faster yet is a happy
coincidence.

The downside is that the exact meaning of the PC register is less clear. Once fetch2 is
complete, the PC register contains the address of the current opcode plus two, which
could be the next instruction or something after that. Thus the PC register has the role of
a fetch counter. Normally this is not a problem as we know the situations where the PC
register is expected to refer to the next opcode in memory. All jump instructions are two
bytes long so that in executing a jump to subroutine (JSR) instruction, the PC register will
refer to the return address, and will properly be pushed onto the stack.

In invoking an interrupt, the previous completed instruction may not be two bytes long.
In completing an implied instruction, the pre-fetching must be first be undone before
jumping the machine code to the exception handler, so that the correct return address is
pushed onto the stack. Figure 2 illustrates the flow through microcode to invoke the
exception handler. The states with vertical internal bars are the entry points.

P
age 13.1328.9

swi1

intx4

swi3

intx5

swi4 swi5

jmpentry

intx2 intx1
un−prefetch

intx3

entry entry

un−prefetch

swi2

Figure 2: Microcode flow invoking the exception handler

State intx1 is entered after an immediate, direct, or extended instruction is completed.
State intx2 is entered after a pre-fetch-type implied instruction is completed. State swi1
is entered when the swi instruction is executed. States intx2 and swi1 un-pre-fetch the
following opcode as necessary by decrementing the PC register. Hence, intx1 is entered
when a non-pre-fetch-type instruction is completed. Full details of the microcode are in
the Implementation document8.

Interrupt Latency

As outlined earlier, interrupts provide the means to quickly respond to significant real-
world events, so that interrupt latency is a critical parameter. Following a request, the
worst case interrupt latency is the worst case delay till the corresponding ISR actually
provides service. Interrupt latency is the sum of several delay values. In many real time
systems the interrupts are disabled at least some of the time. Interrupts may be disabled
during execution of a critical section, and are disabled when the exception handler itself
is invoked. Once interrupts are enabled, the exception handler must wait for the current
instruction to complete. As outlined in the previous section, the mechanism requires six
clock cycles to invoke the exception handler. Once invoked, the exception handler
provides a decision tree to dispatch execution to the corresponding ISR.

With a 50MHz clock, each bus cycle consumes 20ns. The worst case interrupt latency is
the sum of the longest number of cycles for which interrupts are disabled, the largest
number of cycles to execute an instruction, the number of cycles to invoke the exception
handler, and finally the number of cycles to dispatch execution to the ISR which provides
service. Other than the longest number of cycles for which interrupts are disabled, the
microcode provides a cycle by cycle account of the nod4 processor behavior.

Handling Multiple Interrupt Sources

In considering the handling of multiple interrupt sources, several related topics arise
related to interrupt identifier codes (IID), interrupt priorities, and dispatching execution to
the corresponding handler. First off, while the processor has only one interrupt request
input (IRQ) the IID code has five bits. With the IID code zero reserved for the swi
instruction, there can be as many as 31 interrupt request sources. Given that a device
produces an IID to identify the source, it is possible for a device such as a UART to
produce one of several IID codes, based on the service being requested.

P
age 13.1328.10

With only one exception handler present, to handle multiple interrupts, the programmer is
responsible for providing code to dispatch execution to the corresponding ISR, based on
the received IID value. Such code is basically a simple decision tree. Next consider the
actual devices. A single device connects with signals as shown in Figure 3. The device
asserts IRQ as necessary to request service. When the processor is able, it acknowledges
the request by asserting the IRA signal. In the same bus cycle the device puts its IID
code into the di memory system data bus.

nod4

IRQ

IRA IRA

di

IRQ

device

di

Figure 3: Single interrupt requestor

In systems with two or more devices, the interrupt priority encoder (IPE) establishes
priorities between devices. In receiving multiple requests, the IPE determines which
device will receive service first. In Figure 4, the IPE receives interrupt requests from two
devices. Inside the IPE an OR gate combines the device requests, producing the IRQ
signal passed to the processor. When the processor asserts IRA, the IPE passes the
acknowledgement to the highest priority device making a request. It is given here that
device0 has priority over device1. As with the case with one device, the acknowledged
device uses the di memory system data bus to send its IID code to the processor.

di

nod4 device0

IRQ

IRA

di

device1

IRQ

IRA

di

IRQ

IRA

IPE

IRQ0

IRA0

IRQ1

IRA1

IRQ

IRA

Figure 4: Two interrupt requestors

Summary

The nod4 processor architecture and implementation provide opportunities for students to
investigate interrupts. Details of interrupts with nod4 are fairly generic. The concept
roughly follows the discussion in Tanenbaum1 and also borrows concepts from several
other commercial processors. The nod4 architecture provides students with a means to
investigate interrupts from an assembly language programmer’s point of view. Students
are provided with VHDL modules that they use to make symbols and use schematic
capture to implement the processor themselves. In this way students are exposed to
register transfer level and higher level schematics. With nod4 implemented, students can
investigate the cycle by cycle behavior of how interrupts are actually invoked.

P
age 13.1328.11

Bibliography

1. Andrew S. Tanenbaum, Structured Computer Organization, copyright 2006 by Pearson Education, Inc.
2. Peatman, John, Design With PIC Microcontrollers, copyright 1997 by Prentice Hall
3. Walter Triebel and Avtar Singh, The 8088 and 8086 Microprocessors: Programming, Interfacing,

Software, Hardware, and Applications, 4th Edition, copyright 2002 by Prentice Hall
4. PowerPC 405 architecture, documents available from

http://www.xilinx.com/ipcenter/processor_central/embedded/architecture.htm
5. Microblaze architecture documents available from

http://www.xilinx.com/products/design_resources/proc_central/microblaze_arc.htm
6. Peter Spasov, Microcontroller Technology, the 68HC11 and 68HC12, copyright 2004 by Pearson

Prentice Hall.
7. Jonathan Hill, “Microprocessor Architecture with FPGA Implementation for Undergraduate Computer

Architecture Courses,” Computers in Education, published by the ASEE, Jan.-Mar. 2008
8. Jonathan Hill, “Project page for nod4,” http://uhaweb.hartford.edu/jmhill/projects/nod4/index.htm

P
age 13.1328.12

